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Executive Summary 

The deliverable D6.6 – Implementation for Cross Domain and Intra Domain Reuse (c), is the third output of 
the task T6.3 (Implementation for Cross-Domain and Intra-Domain Reuse). Based on the results of tasks 
T2.2 (AMASS Reference Tool Architecture and Integration) and T6.2 (Conceptual Approach for Cross-
Domain and Intra-Domain Reuse), task T6.3 develops a prototype-tooling framework to support cross and 
intra-domain reuse, as well as compliance management. D6.6 is the evolution of D6.5, which described the 
second prototype. 

This deliverable reports the final status of the tooling framework for the AMASS platform by describing the 
supported WP6-related functionality and the details about its implementation. 

T6.3 progresses iteratively and incrementally, in close connection with the conceptual task (T6.2) and the 
other technical WPs (WP2 to WP5). The implementation follows the requirements of the case studies, 
which must benchmark the prototypes. This iterative process helps benchmarking the prototype 
implementation, so that it makes easier to check the continuous refinement done during the different 
AMASS prototypes. 

The WP6-related part of the final iteration (P2) of the AMASS platform extends the initial implementation 
of the basic building blocks for this prototype, which has been a consolidation and integration of results 
from previous projects. More concretely, the developed tools in the WP6-related part of P2 support the 
following functional areas: 

• Capture, retrieve and share information from standards. 

• Define compliance and equivalence mappings. 

• Generate argumentation fragments based on development processes. 

• Manage assurance projects. 

• Monitor progress status of assurance project. 

• Reuse discovery and reuse assistance. 

• Variability management at assurance case/process/product level. 

• Semi-automatic generation of product/process arguments. 

This document presents in detail the pieces of functionality implemented in the AMASS platform for the 
areas above, their software architecture, the technology used, and source code references. 

D6.6 relates to other AMASS outcomes referred in this deliverable: 

• D6.5, where the main differences are described in the chapter Appendix A: Document changes with 
respect to D6.5. 

• Installable AMASS platform tools for the Prototype P2. 

• User manual and installation instructions [18]. 

• Source code [17]. 
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1. Introduction  

The AMASS approach focuses on the development and consolidation of an open and holistic assurance and 
certification framework for CPS, which constitutes the evolution of the approaches proposed by the EU 
projects OPENCOSS [1] and SafeCer [2] towards an architecture-driven, multi-concern assurance, reuse-
oriented, and seamlessly interoperable tool platform. 

The expected tangible AMASS results are: 

a) The AMASS Reference Tool Architecture, which will extend the OPENCOSS and SafeCer conceptual, 
modelling and methodological frameworks for architecture-driven and multi-concern assurance, as 
well as for further cross-domain and intra-domain reuse capabilities and seamless interoperability 
mechanisms (based on OSLC (Open Services for Lifecycle Collaboration) specifications [12]). 

b) The AMASS Open Tool Platform, which will correspond to a collaborative tool environment 
supporting CPS assurance and certification. This platform represents a concrete implementation of 
the AMASS Reference Tool Architecture, with a capability for evolution and adaptation, which will 
be released as an open technological solution by the AMASS project. AMASS openness is based on 
both standard OSLC APIs with external tools (e.g. engineering tools including V&V tools) and on 
open-source release of the AMASS building blocks. 

c) The Open AMASS Community, which will manage the project outcomes, for maintenance, 
evolution and industrialisation. The Open Community will be supported by a governance board, 
and by rules, policies, and quality models. This includes support for the AMASS base tools (tool 
infrastructure for database and access management, among others) and extension tools enriching 
the AMASS platform functionalities. As Eclipse Foundation is part of the AMASS consortium, the 
Polarsys/Eclipse community (www.polarsys.org) is going to host the AMASS Open Tool Platform. 

To achieve the AMASS results, as depicted in Figure 1, the multiple challenges and corresponding scientific 
and technical project objectives are addressed by different work-packages. 

 

Figure 1. AMASS Building blocks in AMASS Prototype P2 

http://www.polarsys.org/
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Since AMASS targets high-risk objectives, the AMASS Consortium decided to follow an incremental 
approach by developing rapid and early prototypes. The benefits of following a prototyping approach are: 

• Better assessment of ideas by initially focusing on a few aspects of the solution. 

• Ability to change critical decisions based on practical and industrial feedback (case studies). 

AMASS has planned three prototype iterations: 

1. During the first prototyping iteration (Prototype Core), the AMASS Platform Basic Building Blocks 

(see Figure 1), were aligned, merged and consolidated at Technology Readiness Levels TRL41. 
Concerning this first prototype, the basic building block assigned to WP6 was Compliance 
Management.  

2. During the second prototyping iteration (Prototype P1), the AMASS-specific Building Blocks were 
developed and benchmarked at TRL4; this comprises the blue basic building blocks as well as the 
green building blocks in Figure 1. Regarding WP6, in this second prototype the specific building 
blocks included a (cross/intra-domain) reuse assistant potentially using semantics standards 
equivalence mappings and a toolset for product/process/assurance case line specification.  

3. Finally, at the third prototyping iteration (Prototype P2), all AMASS building blocks are integrated 
in a comprehensive toolset operating at TRL5. WP6 functionalities developed during the second 
prototype iteration are enhanced and fully integrated with functionalities of other technical work 
packages. 

Each of these iterations has the following three prototyping dimensions: 

• Conceptual/research development: development of solutions from a conceptual perspective. 

• Tool development: development of tools implementing conceptual solutions. 

• Case study development: development of industrial case studies using the tool-supported 
solutions. The case studies are described in D1.1 [20]. 

As part of the Prototype P2, WP6 is responsible for driving the work resulting on intra-domain and cross-
domain reuse, in order to design and implement the building blocks for “Reuse Assistant”, “Impact 
Analysis”, “Automatic Generation of Process/Product based Arguments”, “Semantics Standards 
Equivalence Mapping” and “Product/Process/Assurance Case reuse via management of variability” (cf. 
Figure 1). 

This deliverable reports the tool development results of the building blocks commented above. It presents 
in detail the design of the functionality implemented in the AMASS platform tools, the software 
architecture, the technology used, and source code references. The design is based on the investigated 
state-of-the-art and state-of-practice approaches. Their gaps are identified to come up with a way forward, 
enabling the formulation of requirements to achieve the reuse-oriented vision of AMASS. This activity will 
serve to ensure both, the innovation of the project and future feasibility of exploitation of results. 

Other important documents related to D6.6 are: 

• Installable AMASS Platform tools for the Prototype P2. 

• User manuals and Installation instructions [18]. 

• Source code. 

 

                                                             
1 In the context of AMASS, the EU H2020 definition of TRL is used, see 
http://ec.europa.eu/research/participants/data/ref/h2020/other/wp/2016_2017/annexes/h2020-wp1617-annex-g-
trl_en.pdf  

http://ec.europa.eu/research/participants/data/ref/h2020/other/wp/2016_2017/annexes/h2020-wp1617-annex-g-trl_en.pdf
http://ec.europa.eu/research/participants/data/ref/h2020/other/wp/2016_2017/annexes/h2020-wp1617-annex-g-trl_en.pdf
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2. Implemented Functionality 

2.1 Scope  

As stated in Section 1, the building blocks assigned to WP6 in this prototype are “Reuse Assistant”, 
“Semantics Standards Equivalence Mapping” and “Product/Process/Assurance Case Line Specification”. 
Also, some improvements have been implemented regarding the “Compliance Management” and 
“Assurance Project Lifecycle Management” blocks (see Figure 2). 

These blocks are highlighted with a red circle in Figure 2, showing the general functional overview of the 
AMASS platform (from deliverable D3.6 [14]).  

Furthermore, WP6 is aimed at providing the framework for cross-domain and intra-domain reuse. 

 

Figure 2. Functional decomposition for the AMASS platform 

The Compliance Management building block has been improved in this third prototype to allow monitoring 
the compliance progress using filtering by criticality levels (e.g., Safety Integrity Level, Automotive Safety 
Integrity Level, Development Assurance Level). The compliance is also performed by the generation of a 
compliance report in a web client application. 

The AMASS platform supports the Compliance Management functionalities with two toolsets: 

• Tools from the OpenCert project2. 

• Tools from the EPF (Eclipse Process Framework) project3. 

                                                             
2  Further information about the OPENCOSS toolset can be found at www.opencoss-project.eu and 
https://www.polarsys.org/projects/polarsys.opencert  
3  Further information about the EPF toolset can be found at http://www.eclipse.org/epf/  

http://www.opencoss-project.eu/
https://www.polarsys.org/projects/polarsys.opencert
http://www.eclipse.org/epf/
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The following section details both the satisfied requirements and the deployed components to show the 
implementation scope of the WP6-related part of the Prototype P2. 

2.2 Implemented Requirements  

From the requirements point of view, D6.6 has focused on a set of AMASS requirements as defined in 
deliverable D2.1 [13]. The requirements listed in Table 1 were implemented in the first iteration of the 
WP6-related part of the AMASS platform (Prototype Core). The column "Related requirement" refers to the 
list of items gathered in the deliverable D2.1. 

Table 1. Requirements implemented in the first prototype of the AMASS platform (Core Prototype) 

Function name Related 
Requirement  

Description 

Modelling of standards WP6_CM_001 The AMASS tools shall be able to model a set of industrial 
standards (including the parts, activities, requirements, work 
products, and criticality levels from the standards). 

Tailoring of standards 
models to specific 
projects 

WP6_CM_002 The AMASS tools shall enable the tailoring of standards 
models to a specific project (e.g., by establishing the parts of 
the standard that apply to a given assurance project). 

Compliance Monitoring WP6_CM_005 The AMASS tools shall support web-based monitoring of 
compliance status to be filtered by any custom criteria. 

Process Compliance 
(informal) management 

WP6_CM_008 The AMASS tools shall enable users to visualise process 
compliance. This means showing the links between the 
requirements and the applicant’s evidence (during the 
planning as well as execution phase). 

This visualisation could be done via compliance maps (matrix) 
or via arguments aimed at justifying the satisfaction of the 
requirements coming from the standards. 

In addition to that, the Prototype P1 focused on a second set of AMASS requirements as defined in 
deliverable D2.1 [13].  

Table 2. Requirements implemented in the second prototype of the AMASS platform (Prototype P1) 

Function name Related Requirement Description 

Intra-Domain, Intra 
standard, Reuse 
Assistance 

WP6_RA_001 The AMASS tools shall enable partial reuse of 
compliance artefacts when transiting from one project 
to another (different criticality level, etc.). The 
commonality that characterises the different projects 
should be recognised and proposed as reusable 
process structure. 

Intra-Domain, Cross 
standards, Reuse 
Assistance 

 

WP6_RA_002 The AMASS tools shall enable partial reuse of 
compliance artefacts when transiting from one project 
to another (different/same criticality level, if 
applicable, but different standards (e.g., Automotive 
SPICE, ISO 26262)). 

The commonality that characterises the different 
projects should be recognised and proposed as a 
reusable process structure. 
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Function name Related Requirement Description 

Intra-Domain, Cross 
versions, Reuse 
Assistance 

 

 

WP6_RA_003 The AMASS tools shall enable partial reuse of 
compliance artefacts when transiting from one project 
to another (different/same criticality level, if 
applicable, but different standards or different 
versions of a standard (e.g., ISO 26262-2011, ISO 
26262-2018)). 

The commonality that characterises the different 
projects should be recognized and proposed as 
reusable process structure. 

Cross-Domain 
Reuse Assistance 

 

WP6_RA_004 The AMASS tools shall enable partial reuse of 
compliance artefacts when transiting from one project 
to another belonging to different domains (e.g., from 
automotive to avionics). The commonality that 
characterises the different projects should be 
recognised and proposed as reusable process 
structure. 

Intra-Domain, Intra 
standard, Different 
Stakeholders, 
Reuse/Integration 
Assistance 

WP6_RA_005 The AMASS tools shall enable partial reuse of 
compliance artefacts during the integration 
(manufacturer/supplier). Assumed process 
requirements vs. actual process requirements. 

The AMASS tools 
must support 
variability 
management at 
process level 

WP6_PPA_001 

 

The AMASS tools shall enable the 
specification/systematisation of variability at the 
process level. 

The AMASS tools 
must support 
specification of 
variability at the 
component level 

WP6_PPA_004 The system shall enable users to specify what varies 
(and what remains unchanged) from one component 
and its evolved version at component level. 

The AMASS tools 
must support 
variability 
management at the 
assurance case level 

 

WP6_PPA_005 

 

The system shall enable users to specify what varies 
(and what remains unchanged) from one component 
and its evolved version at component level. 

Semi-automatic 
generation of 
product arguments 

WP6_PPA_002 

 

Assurance case arguments. This could be done by 
enabling semi-automatic generation of product-based 
arguments-fragments. 

Semi-automatic 
generation of 
process arguments 

WP6_PPA_003 

 

The system shall reduce efforts of manual creation of 
process-based assurance case arguments. This could 
be done by enabling semi-automatic generation of 
process-based arguments-fragments. 

Process Compliance 
(formal) 
management 

WP6_CM_009 

 

The AMASS tools shall enable users to formally check 
process compliance. 
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Finally, this last phase (Prototype P2) focuses on the last iteration of the AMASS requirements as defined in 
deliverable D2.1 [13]. The requirements listed in Table 3 have been implemented during the third iteration 
of the WP6-related part of the AMASS platform. The column “Related requirement” refers to the list of 
items gathered in the deliverable D2.1. 

Table 3. Requirements implemented in the third prototype of the AMASS platform (Prototype P2) 

Function name Related 
Requirement 

Description 

Triggering compliance 
Checking 

 WP6_CM_004  The AMASS tools shall provide the functionality for 
automatically triggering the requirements for 
(re)checking the compliance of safety processes 
against rules – especially, when there are changes in 
the standards/ regulations. 

Process Compliance (formal) 
management) 

 

WP6_CM_009 The AMASS tools shall enable users to formally check 
process compliance.  

Reusable off the shelf 
components 

WP6_RA_006 The AMASS tool shall provide the capability for reuse 
of pre-developed components and their 
accompanying artefacts. 

Semantics-based mapping of 
standards 

WP6_SEM_001 The AMASS tools shall enable the mapping of 
standards based on their semantics. 

The AMASS tools must 
support variability 
management at the 
assurance case level 

WP6_PPA_005 The system shall enable users to specify what varies 
(and what remains unchanged) from one component 
and its evolved version at component level. 

Each requirement, together with the implementation done so far that implements the requirement, is 
shortly outlined in the following sections. 

2.2.1 Modelling of standards 

This chapter describes the implementation of the requirement WP6_CM_001, described in Table 1. 

This feature is supported by both the OpenCert [26] and EPF toolsets [27]. Figure 3 shows examples of 
models for these two toolsets. 

• OpenCert uses Reference Framework Editor (as part of the OpenCert tools) to model standards 
(IEC 61508, ISO 26262, DO-178C, EN 50126, and the like) and regulations (either as additional 
requirements or model elements in a given model representing a standard or a new Reference 
Framework). Each Reference Framework model can be also mapped to others Reference 
Framework models by using the concept of Equivalence Map (diamond form). 

• EPF can be used to model company-specific processes (e.g., the process at Alstom or Thales to 
develop safety-critical systems).  
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Figure 3. Standard and Process Modelling 

3.1.2.1 Reference Framework Editor 

The Reference Framework Editor is composed of five views (see Figure 4): 

1. The Repository Explorer view shows the contents of the repository. 

2. The Outline view shows the elements of the model and permits its edition. 

3. The Diagram Editor permits the graphical modelling of a subset of concepts of the Reference 
Framework. The Diagram Editor can be replaced by the Tree View Editor, which is opened by 
double clicking on the file “.refframework” in the Repository Explorer. 

4. The Palette view is a toolbox with the concepts of the model and the connections between them to 
add to the diagram. 

5. The Properties view is used to edit the properties of the element of the selected model. 
 

 

Figure 4. Reference Framework Editor 

In addition, the recommendation or applicability tables (that is, the SIL levels) from industry standards can 
be specified using the Tree View editor, by associating the Tables to specific Requirements or Activities. 
Figure 5 illustrates an example for ISO 26262 recommendation table. A similar approach can be used for 
other standards such as DO-178C objective tables. 
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Figure 5. ISO 26262: Recommendation Table associated to a Requirement 

3.1.2.2 Standards modelling with EPF 

The EPF composer is a tool for the modelling of engineering process based on the SPEM 2.0 (Software & 
Systems Process Engineering Metamodel) OMG (Object Management Group) standard [25]. The 
functionality of the EPF composer is organised in two views, the Authoring perspective (opened by default 
in the EPF Composer) and the Browsing perspective. The goal of the Authoring perspective is to provide 
functionality to formally model process element and processes, while the goal of the Browsing perspective 
is to present the contents modelled of the Authoring perspective. So, most of the work of the user will take 
place in this last perspective.  

Figure 6 shows a screenshot of this modelling perspective, which is composed of three parts: the Method 
library (left top of the workbench), the Configuration (left bottom of the workbench) and the Process 
element/process modelling space (right part of the workbench) that, in this case, is showing the modelling 
of a delivery process. 
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Figure 6. Authoring perspective of the EPF composer 

Standards can be modelled in the EPF composer tool [23] following an approach similar to those described 
in [22] for the IBM Rational Method Composer. In the work presented in [22], standards are modelled using 
a new user defined type named Requirement. However, EPF does not support the definition of a new user 
defined type. In order to overcome this limitation, we have customized the guidance “Practice” with an 
icon and variability relationships making possible the application of the mentioned work. The EPF composer 
supports variability mechanisms that are at disposal in SPEM 2.0. These variability mechanisms focus on set 
semantic relationships between process elements of the same type. These semantics relationships make 
possible to define a new process element as a variation of an existing one.  

Practices in EPF represent a proven way or strategy of doing work to achieve a goal that has a positive 
impact on work product or process quality. They are usually used to group process elements that belong to 
some practice like risk management, software quality verification or component-based development just to 
mention a few. Therefore, in our view, practice semantics and use are aligned with the semantics of 
requirements. Then, standards are modelled in the Authoring perspective of the EPF composer as a 
collection of nested Requirements (i.e. customised practices) (see Figure 7).  

Method Library 

Configuration 

Process element/Process modelling space 
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Figure 7. Standard modelled in the EPF composer 

The EPF composer also supports the modelling of the recommendation tables by means of customized 
practices. In this case, five customized practices were created to represent tables, criticality levels, 
recommendation levels and concepts to make possible to associate these three concepts. Recommendation 
tables are modelled as a composition of customized practices of different kinds. Figure 8 shows the result 
of modelling of a recommendation table from RTCA DO-178C.  

 

Figure 8. Recommendation table modelled in the EPF composer 

The EPF composer allows import and export projects (known as plug-ins in EPF) in the library space. This 
allows using process and process elements defined in the imported project in other projects of the library 
space. In order to facilitate the modelling of standard information in the EPF composer, we have grouped 
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all the modelling concepts that we have developed for the modelling of standard information in a plug-in 
that can be imported in any method library. 

2.2.2 Tailoring of Standards models to specific projects  

This chapter describes the implementation for requirement WP6_CM_002, described in Table 1. 

The information managed by the AMASS tools can be organised in two types: project-independent 
information that can be used by various projects (e.g., models of generic processes and standards) and 
project-specific information (e.g., evidence and argumentation models). The main element of project-
specific information is the so-called Assurance Project. One important part of an Assurance Project is the 
Baseline model. A Baseline model represents what is planned to comply with (regarding a Reference 
Framework model) a specific Assurance Project. Baseline models can be tailored from Reference 
Framework models.  

As shown in Figure 9, Baseline models can be instantiated from the Reference Framework models. It is 
possible to import Baseline models based on the Standard processes modelled in EPF. 

 

Figure 9. Tailoring of Baseline Models from Standard Models 

Each baseline model results from importing (copying) a Reference Framework model and selecting the 
subset of activities, artefacts and the like that apply in a given Assurance Project. Figure 10 shows the 
selection step before creating a baseline model upon a reference framework model (the latter displayed in 
a tree view). 
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Figure 10. Baseline tailoring 

We have implemented a filter so that the elements affected by the criticality and the applicability levels of 
the standard are selected accordingly. Figure 11 shows an example of baseline model automatically 
generated from the reference framework model. 
 

 

Figure 11. Baseline graphical editor 

Transformation of Standard Requirements to Baseline Model: Model-Driven Engineering principles and 
techniques can facilitate and improve assurance of safety-critical systems by providing support for the 
transformation of standard requirements modelled (through the customization of the guidance “Practice”) 
in EPF Composer to Baseline models in OpenCert. The mapping between Unified Method Architecture 
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(UMA) metamodel [27] and Baseline metamodel is achieved by using Epsilon Transformation Language 
(ETL) [8]. For that, a plugin has implemented that transform the standard requirements to Baseline models. 
The main mapping rules for baseline generation are as follows:  

• Content Package of EPF Composer is mapped into Base Framework 

• Requirements (modelled as practices) are mapped into Base Requirements  

• Id, name and description of requirements are mapped into Id, name and description 

2.2.3 Process Compliance (informal) management 

This chapter describes the implementation for requirement WP6_CM_008, described in Table 1. 

As described in Section 2.2.2, users can maintain the lifecycle of projects by creating Assurance Projects. 
Figure 12  illustrates the elements of an Assurance Project. An Assurance Project has three main elements: 

1. Baseline Configuration. A Baseline Configuration has a set of Baseline Models. A Baseline model 
represents what is prescribed in a specific assurance project. 

2. Permissions Configuration. This functionality has been revised for Prototype P2. It supports profile 
creation to enable restricted access to AMASS functionality and data. 

3. Assurance Assets Package. This is a pointer to project-specific Artefacts models, Argumentation 
models, Process models and System models. These four models represent what has been done in a 
specific assurance project. System Component models are managed by the CHESS toolset (see 
deliverable D3.4 [15]). The implementation plan for this point has been revised for P2 due to CDO 
technical problems during P1. Dependencies with external projects have prevented us to make the 
link for this prototype. We expect to achieve the problems in the last prototype. 

The mapping of Assurance Asset Package elements with Baseline Models is specified using the concept of 
Compliance Map.   

Additionally, Evidence and Process models can be created using EPF process planning models (model 
transformation arrows in Figure 12). This model transformation helps users get a first version of their 
evidence and execute process models to demonstrate compliance with standards. 
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Figure 12. Assurance Project and System Component Specification structure 

3.1.2.3 Compliance modelling with OpenCert 

Compliance maps can be edited in two different views that can be opened from the Baseline models, as 
shown in Figure 13. “Mapping Set” allows users to edit each of the compliance maps by using a tree view. 
“Mapping Table” shows a summary of the compliance maps and their status in the form of a table. 
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Figure 13. How to create Compliance Maps 

Figure 14 shows the Compliance Set view. 
 

 

Figure 14. Compliance Set view 

The Compliance Set view form is organised in three zones: 

• The left zone shows the baseline model elements.  

• The middle zone allows to make different filters and to add the type of mapping (Full, Partial, No 
Map) and any mapping justification. 

• The right zone shows the list of target models and their model elements (evidence, argumentation 
or process). 

 
 
 
 
 
 
 
 
 
Baseline model elements 

 
 
 
 
 
 
 
 
 
Evidence, Argumentation or, 
Process model elements 

 
 
 
 
 
 
 
 
 
Maps and map 
justification 
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It is possible to create compliance maps for activities, artefacts, requirements, roles and techniques, with 
the following allowed maps: 

• BaseArtefact  ->  Artefact 

• BaseRequirement  ->  Artefact , Claim or Activity 

• BaseActivity  ->  Activity 

• BaseRole  ->  Participant 

• BaseTechnique  ->  Technique 

Figure 15 shows the Compliance Table view. The Compliance Map window is organised in two zones: 

• The upper part (blue circle) has controls to allow filtering. It is possible to filter by criticality level, 
applicability level, map model, a map group of the selected map model, a type of element that 
could be mapped and the mapping type. The “Not Defined” option is used to include in the table all 
the elements of the baseline that have not mapping established; in this way, it is possible to see the 
compliance Gap. It is necessary to click the Search button to begin the search process based in the 
filter options selected that will fill the table. 

• The lower part (green circle) shows three controls: 

o The compliance mapping table that shows all the baseline elements that accomplish with the 
searching criteria selected by the user. By default, all the baseline elements of a compliance 
map are shown in the table. 

o A text box that shows the compliance map justification introduced for the base element 
selected in the bottom left table with a simple left click. 

o A list that shows all the target elements of the base element selected in the table with a simple 
left click.  

 

 

Figure 15. Mapping Table view 
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Importing EPF process models into OpenCert for compliance management 

It is also possible to export the EPF planned process models and import them in OpenCert. As 
abovementioned, EPF can be used for modelling the definition and planning of processes. OpenCert also 
allows users to model processes but looking at post-planning phases. We can get benefit of the EPF process 
information to create a first view (which can evolve during an assurance project) of process models in 
OpenCert by importing EPF information into OpenCert. Specifically, the transformation process takes a 
delivery process modelled in EPF and generates an evidence model and a process model in OpenCert.  

Figure 16 shows the Importing View implemented in OpenCert. 
 

 

Figure 16. Import View in OpenCert for EPF: Result of the import operation 

3.1.2.4 Compliance mappings in EPF 

The compliance of a process with a specific standard can be modelled in the EPF composer as proposed in 
[22]. The use of EPF for compliance modelling allows planning how our process will address standard 
requirements.  

As a part of the approach presented in [22], it is necessary to define a new method plug-in in the EPF 
composer that will contain just the requirements of the standard mapped to elements of a process. This 
procedure makes possible to re-use standards and processes for different compliance mappings. 
Compliance mappings are modelled in the references tab of the requirements (see Figure 17). In this tab, 
we can use as evidence for compliance process activities, a portion of a process (i.e. a capability of a 
pattern) and guidance elements like guidelines, tools or practices. Activities include actions, roles and work 
products involved in the activity. EPF includes filters and patterns to make the selection of evidence for 
compliance easier.   
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Figure 17. Modelling of compliance mappings in the EPF composer 

This modelling solution supports three types of compliance: full compliance, partial compliance and no-
compliance. The full compliance is modelled providing at least one evidence for requirement like the case 
of “Document Architecture Alternative” (see Figure 18). The partial compliance is modelled by 
decomposing requirements in sub-requirements and providing evidence just for the part of the 
requirements that is accomplished. This is illustrated by the requirement “Document sys requirements”: the 
sub-requirement “Detail a use case” is fulfilled by the process with the activity “Detail use case scenarios”, 
while the sub-requirement “Identify and outline requirements” is not fulfilled. Therefore, “Document sys 
requirements” is partially satisfied by the process. Finally, “Development Environment Multi Part” does not 
have any associated evidence, so the process does not address this requirement. 

 

Figure 18. Mapped Requirements in the EPF composer 

The transformation of standard’s requirements modelled in EPF Composer (compliant with UMA 
metamodel) to baseline models (compliant with CACM metamodel) is supported (see Figure 19). The 
generated models will be stored in selected assurance case project in the CDO repository. 
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Figure 19. Generating baseline model from EPF mapping requirements 

2.2.4 Solution for Process Compliance Checking  

This chapter describes the implementation for the requirements WP6_CM_009 described in the Table 3. 

The compliance checking vision is supported by EPF composer [27] and Regorous [33]. To be able to check 
compliance, Regorous requires three models, namely the execution semantics of the process, the 
compliance effects annotations, and the rule set. To provide the process descriptions required by Regorous, 
the creation of three plugins, as done by the IBM approach for mapping standards requirements [34], is the 
methodology adopted. The three plugins can be seen in Figure 20, and are explained below.  

 

Figure 20. Plugins required for compliance checking. 

1. Plugin for capturing standard’s requirements: In the method authoring of EPF composer, we capture 
the standard’s requirements using custom categories.  The root of the custom categories is the name 
of the standard. The novelty added to this plugin is that the rule set and the rules are added by using a 
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customized reusable asset for the former and customized concepts for the latter. The rules are 
associated to the corresponding standard’s requirements. 

 

 

Figure 21. Custom Categories 

The rule is written in the main description field of the compliance effect, as presented in Figure 22. 
 

 

Figure 22. Rule specification 

The rule set is defined in a customized reusable asset, which contains the superiority relations 
between rules, as presented in Figure 23.  

 

 

Figure 23. Rule set specification 

2. Plugin for capturing process elements: In the method authoring of EPF composer, we capture the 
process elements required to support the software process modeling by using the current modeling 
capabilities of EPF composer (see Figure 24). 
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Figure 24. Process Elements Plugin 

3. Plugin for annotating process description: This plugin is used to match standard’s requirements with 
processes. This plugin contains an extended copy of the tasks defined in the previous plugin (by using 
contributes to the original ones) in the method authoring of EPF composer (see the tasks that are 
surrounded by a red box in Figure 25).   
 

 

Figure 25. Annotated process description plugin 

Then, tasks are annotated with compliance effects.  To annotate the task, we double click on the task to 
open the task descriptor. Then we click on the tab Guidance and add the compliance effect annotations as 
presented in Figure 26. 

 

Figure 26. Annotating a task with compliance effects 
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Once the tasks are annotated, we model the delivery process, by inserting the annotated tasks in the work 
breakdown structure, as presented in Figure 27. 
 

 

Figure 27. The work breakdown structure of the delivery process 

Then, an activity diagram is created by using the proprietary activity diagram provided by EPF composer 
(see Figure 28). 

 

Figure 28. Activity diagram of the delivery process 

Once the plugins are modelled, we export them by using the function “export XML file” provided by EPF 
composer.  From the exported plugins, two files are extracted: 

• First, an XMI file (usually called diagram), which describes the activity diagram, is selected for 
transferring the process description required by Regorous. The elements of interest are an Activity 
that provides the name of the process, an initial node and a final node that represent the start and 
end event respectively, one Activity parameter node for every task and one control flow for every 
sequence.  Other process elements of interest could be a decision, merge, and fork and join nodes for 
modeling exclusive and parallel gateway respectively, which can be useful for complex processes.  

• Second, an XML file, which provides the compliance annotated process information, is also extracted. 
In The activity name corresponds to the process name. Tasks have associated concepts that 
correspond to the compliance effects. We can also create the rule set since every concept is 
described with the actual rule and the reusable asset with the superiority relation. 

These two files are transformed to the three models required by Regorous. First, the rule set can be 
obtained from the Delivery Process created in the plugin for the annotated process description (provided by 
EPF Composer). The corresponding mapping descriptions are listed below.  

• Reusable Asset, a type of content element, is transformed into the rule set. The attributes 
transferred are name, presentationName and briefDescription. 

• Concept, a type of content element, is transformed into the Terms. The attribute transferred is 
name. 

• Each content category that contains a rule in the field brief description is transformed into a rule. 
The attributes transferred are name, presentationName, and briefDescription. 

Regorous also requires the representation of the process in a canonical form (CPF). Within AMASS, such 
representation is given via EPF Composer-supported representation, which is based on UML 2.0 Diagram 
Interchange Specification. Below, the mapping between CPF and UML is given. 

• Activity information is transformed to a canonical process in CPF. The attribute transferred is id. 

• The Initial Node becomes a node with type start event in CPF. 

• Each Activity Parameter Node becomes a task type in the CPF. Attributes transferred are id and 
name. 

• Each Control Flow becomes an edge in CPF. Attributes transferred are id, name, source and target. 



              

         AMASS Prototype for cross/intra-domain reuse (c) D6.6 V1.0 

 

 
H2020-JTI-ECSEL-2015 # 692474 Page 30 of 71 

 

• The Activity Final Node becomes an end event type in CPF. 

• The Decision Node becomes an XORSplitType in CPF. 

• The Merge Node becomes an XORJoinType in CPF. 

• The Fork Node becomes an ANDSplitType in CPF. 

• The Join Node becomes an ANDJoinType in CPF. 

Finally, the compliance effects annotations require a structure that complies with the Regorous schema 
called Compliance Check Annotations. This information can be retrieved from EPF Composer taking into 
account that the process elements can be extracted from the process structure (described with UML 
elements) and the compliance effects annotations can be extracted from the delivery process (described 
with UMA elements). The corresponding matching elements description is listed below. 

• A reusable asset becomes a ruleSetList. The attribute transferred is the name. 

• Each edge becomes a special element in the compliance annotations file called conditions. The 
attribute transferred is the id. 

• The node becomes a Task Effects. The attribute transferred is the id. Then, the id is also used to 
search for the concepts that should be converted into the compliance effects in the delivery process 
file. 

• Every concept associated to the task is transferred to the Effect. The attribute transferred is the 
name. 

The generated files are provided as input to Regorous, which is able to check compliance and generate a 
compliance report as is shown in Figure 29. 
 

 

Figure 29. Compliance checking result provided by Regorous 
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2.2.5 Compliance Monitoring 

This chapter describes the implementation for requirement WP6_CM_005, described in Table 1. 

Compliance report provides extensive functionality that helps the AMASS platform users to assess the 
current compliance of their project to the selected safety standard (i.e., baseline). Two modes of the report 
can be distinguished: 

• An interactive mode, where the user can actively browse the report, select the specific baseline 
items, view their properties, their compliance mapping and the associated evidence, and add or 
remove the evidence resources mapped to the specific baseline element. 

• A printer friendly report - which is a textual output presenting all the information of the current 
compliance of the selected project. 

Figure 30 shows an example of compliance report in interactive mode. The “Project Compliance” table, 
which is placed in the left, presents base artefacts and base activities of the selected standard. The most 
important column is the “Compliance Status” one, which presents the overall compliance status of a 
project to the specific standard item. This column can be sorted by value, thus allowing user to assess the 
project compliance at one glance. In case base activities or base artefacts are defined to have a parent-child 
hierarchy, this relation is presented accordingly in a tree structure of the table. 

In addition, users can look at the list of Argumentation, Evidence and Process model elements in the 
respective menu options at the top right corner of the web view. 

 

Figure 30. Compliance report in web client 

2.2.6 Reuse Assistance  

This chapter describes the implementation for requirements WP6_RA_001, WP6_RA_002, WP6_RA_003, 
WP6_RA_004, and WP6_RA_005, described in the Table 2.  

The reuse assistance functionality concerns intra and cross-domain reuse of assurance and certification 
assets. The Reuse Assistant functionality includes cross-system reuse and cross-standard reuse, as 
described in the following subsections. 
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3.1.2.5 Cross-systems reuse (intra standard or intra domain product upgrade) 

This functionality implies reuse of assurance assets when a product or system evolves in terms of 
functionality or technology, e.g. product upgrade. Product upgrade corresponds to a development scenario 
in which an already-assessed system is modified and thus a new assessment (e.g., re-certification) is 
required. For example, a new system can be developed based on an existing one. Such a new system can 
include, for instance, some new components. We assume that the reusable assurance assets were 
compliant with the same standards we target in the new scenario. 

We have implemented this functionality by using a specific view called “Reuse” in OpenCert. It is used to 
reuse models from one source assurance project to a target assurance project. This view is particularly 
useful to reuse a subset of model elements, which can be selected manually by the user.  

Figure 31 and Figure 32 show how to open the Reuse View and how to select model elements to be reused. 
The Reuse view is also integrated in the set of OpenCert views and it will be already opened when the 
OpenCert perspective is activated. 

        

Figure 31. Cross-project Reuse View 
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double click

 

Figure 32. Using the Reuse View 

The AMASS Prototype P2 version allows users through a context menu (see Figure 33) search a specific 
subset of an evidence model elements using two reuse discovery approaches. The first one is related to 
OSLC-KM module (see chapter Reuse Discovery based on OSLC-KM) and the second one related to Elastic 
Search (see Reuse Discovery based on ElasticSearch).  

The user can search reusable assets in the selected evidence model according a text and/or a selected 
critically level and/or a selected applicability (see Figure 34). Those criticality and applicability levels are 
specified by the standard that the source project is compliant with. If the user activates the bottom option, 
the elements to reuse will be select automatically according the results of the search, modifying the 
previous subset of model elements selected. 
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Figure 33. Context menu to choose a search technology 

 

 

Figure 34. Window to introduce the search parameters 

The results are shown to the user with a colour code (see Figure 35). 
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• In green. The previously selected asset, by the user or by a previous search, is a good candidate for 
reusing according the introduced searching criteria.  

• In red. The previously selected asset, by the user asset or by a previous search, does not comply 
with the introduced searching criteria and therefore should be unselected to avoid its reuse. 

• In yellow. The previously not selected asset, by the user asset or by a previous search, is a good 
candidate for reusing and therefore should be selected to be reused. 

   

Figure 35. Results of a search (right one with automatic selection option active) 

3.1.2.6 Cross-standard reuse (cross-concern or cross-domain) 

This functionality is related to the reuse of assurance assets from a project that was completed in 
compliance with a different dependability concern (e.g., security-compliant assurance project reused from 
a safety-compliant assurance project) or different domain (e.g. avionics-compliant assurance project reused 
from an automotive compliant assurance project). The second standard could correspond to a new 
standard, a new version of a standard, or a different interpretation of a standard (e.g., by a different 
certification authority). 

For cross-standard reuse, AMASS enables reuse of assurance assets of one assurance project in another 
project, when they relate to different industry domains, dependability concerns or industry standards in 
general. To perform cross-standard reuse, an Equivalence Map model must be created between the source 
and the target standard models. The Reuse Assistant provides information on the reuse opportunities as 
result of the equivalence relationships. Once the actor selects the assurance assets to be reused, the reuse 
operation itself can be executed. A module for compliance gap analysis allows AMASS users to look at the 
reuse post-conditions identified in the equivalence map model. 

To create Equivalence Maps, we have developed a tailored functionality in OpenCert. To open it, we 
provide a menu called “Mapping Set” on the properties form of the reference framework using the tree 
view editor (see Figure 36). 
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Figure 36. How to create Equivalence Map. 

Figure 37 shows the form for Equivalence Map. The Equivalence Map form is organised in three zones: 

• The left zone shows the actual reference framework, and it loads the type of elements for which we 
want to make the equivalence maps.  

• The middle zone allows to make different filters like: 

o Filter Mapping Model lists all the mapping models stored in the database. It will be necessary 
to select one of them and one group model.  

o Filter Map Element. It is possible to create equivalence maps for activities, artefacts, 
requirements, roles and techniques. 

o Filter Equivalence Map. This filter allows making different equivalence maps for the same 
refframework element. 

o The user must also introduce the mapping information in the middle part; this information 
consists ofthe ID, the name, the type and a justification text. 

• The right zone shows two lists and a combo box.  

o The combo box shows all the database refframeworks to select the reference framework that 
will be the target of the equivalence map to create. 

o The upper list loads the elements, according to the filter selected, of the refframework chosen 
in the combo box that will be the target of the equivalence map to create. 

o The lower list displays the full content (not filtered) of the source refframework that will be 
postConditions in case of reusing. The postConditions are mandatory extra activities, not 
included in the standard, that must be performed in case of reusing the target element from 
one assurance project based in the target refframework in another assurance project based in 
the source refframework using the cross-domain functionality. 
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Figure 37. Equivalence Map form. 

For the reuse assistant, it is mandatory that the target assurance project is based on a refframework with 
equivalence maps associated to the refframework, in which the source assurance project is based. Figure 
38 shows how to open the reuse assistant for cross-domain reuse. We focus on the evidence reuse for this 
version of AMASS prototype. 

 

Figure 38. Cross-Domain button 
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Figure 39 shows the cross-domain assistant form. It is organised in three zones: 

• The left zone shows information about the target project. In the top part, the URL of the target 
assurance project can be found. Below, a tree shows the contents of the target baseline, where we 
can select one of the items in order to display its compliance map information in the tree at the 
bottom.  

• The middle zone displays equivalence map information. It includes controls to select the 
equivalence mapping model and the equivalence map group and displays the equivalence map 
details of the target baseline element selected and its postconditions in a list (to see the ID, Name 
and description one postcondition must be selected). 

• The right zone presents information about the source project. In the top part, the URL of the source 
assurance project can be found. Below, a tree shows the contents of the source baseline, where we 
can select one of the items to display its compliance map information and the contents of the 
source evidence model in the tree at the bottom. 

 

 

Figure 39. Cross-domain window 

The user must follow the following steps: 

• Choose the source project of reuse using the “Search button”, so that the source baseline and 
evidence model tree will be loaded.  

• Select the equivalence model and the equivalence group.  

• Select the target base element that will receive the evidences to be reused, so that its compliance 
and equivalence map information will be loaded (highlighting in green its target elements in the 
trees).  

• Finally, select the target Artefact and press the “Reuse” button to start the copy of the checked 
source Artefacts to the target selected Artefact (only one can be selected).  

The source repository configuration information inside the Artefact Model Object, the Resource objects of 
the checked source Artefacts and the repository files related to these resources will be copied to the target 
evidence model. Additionally, the postconditions will be selected in the target baseline model. 



              

         AMASS Prototype for cross/intra-domain reuse (c) D6.6 V1.0 

 

 
H2020-JTI-ECSEL-2015 # 692474 Page 39 of 71 

 

2.2.7 Product/Process/Assurance Case Line Specification 

To manage families/lines, it is necessary to have at disposal modelling means for systematising 
commonalities and variabilities. These means might be provided either as a specific solution targeting a 
single type of family (e.g., a process line) or as an orthogonal solution applicable to any type of family 

3.1.2.7 Variability management support at process level 

This chapter describes the implementation for requirement WP6_PPA_001, described in the table above. 

The safety-oriented processes tend to be reused, modified and extended to individual projects in a similar 
manner to the product lines. However, to be able to establish the Safety-oriented Process Lines (SoPLs), the 
seamless integration between process engineering and variability management is required. This might be 
done in two possible ways: either the support for variability modelling and management is incorporated 
and implemented in a process engineering framework, or otherwise the integration with variability 
management solution needs to be achieved. This chapter focuses on the seamless integration between 
Eclipse Process Framework (EPF) Composer and Base Variability Resolution (BVR) Tool. The former supports 
the major parts of the OMG's Software & Systems Process Engineering Metamodel (SPEM) Version 2.0, 
while the latter is a simplification and enhancement of the OMG's revised submission of Common 
Variability Language (CVL). EPF Composer and BVR Tool are implemented as Eclipse plugins, which are 
licensed under the Eclipse Public License (EPL) Version 1.0. In a tool paper, the integration between EPF 
Composer and BVR Tool is discussed [35]. 

EPF Composer is the only available implementation of OMG's SPEM 2.0, but the migration of EPF Composer 
to newer versions of technologies was never performed. Accordingly, we evolved the EPF Composer from 
Eclipse Galileo 3.5.2 to Eclipse Neon 4.6.3 after 11 years. This is done for integration in the AMASS 
platform. This contribution is acknowledged by the IBM, and therefore committer status is assigned for the 
project. The migration is performed in four steps [36]: 

1. Compatible versions of required software’s are installed from the Neon software repository and 
then deprecations in the source code are analysed and fixed.  

2. Scheduling conflicts are resolved for the persistence of method elements (i.e., method 
configurations, method plugins, method content descriptions and processes) in their own folders 
and XMI files. 

3. Appearance and height problems are resolved for the combo box which supports users in selecting 
the currently used method configuration, the blank views are removed from the authoring and 
browsing perspectives, and problems with the rich text editor are resolved for enabling users to 
format and style text. 

4. Incompatible bundles are removed from the feature plugins, replacing bundles are added and 
other missing dependencies for the bundles are resolved for exporting the application. As per 
recommendation, the EPF Composer might be launched as a standalone application, but also in the 
Eclipse Integrated Development Environment (IDE). 

BVR defines variability orthogonally for any MOF-compliant model, but the integration with EPF Composer 
brings additional challenges. EPF Composer is based on the UMA metamodel. It persists the method library 
contents in their own folders and files. The XMI files produced by EPF Composer are neither directly 
opened nor mapped at the realization editor. Therefore, the problems in XMI files have to be resolved for 
variability management with the BVR Tool. EPF Composer is based on the UMA metamodel. It persists the 
method library contents in their own folders and XMI files, in particular, method plugins, processes, content 
descriptions and configurations. In case of a new plugin, a plugin.xmi file is created in the new plugin 
directory and the reference of plugin is added to the library.xmi file. When a new capability pattern or 
delivery process is created, the model.xmi and content.xmi files are created in a new directory, and the 
reference of new process is added to the plugin.xmi file. Similarly, moving a content element to another 
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plugin changes plugin.xmi in both plugins. The configuration file is used to specify the working set: It 
records the references to included content packages and processes. 

It is decided to copy the method library before resolving the problems in XMI files for two reasons. Firstly, 
the library might be keep running in EPF Composer. Secondly, reverting back is just required for configured 
processes. The packages and resource factories are registered for the UMA metamodel. Otherwise, the 
package and class not found exceptions would be raised. We have identified that the hypertext references 
(hrefs) in XMI files are based on the globally unique identifiers (GUIDs) for example 
uma://_ErexoKA4EeaPp8nsuu2eew. This is the case with multiple UMA metamodel elements, such as 
tasks, roles, work products, tool mentors and method packages. As a result, the malformed URL exceptions 
are produced. The platform specific paths or otherwise Uniform Resource Identifiers (URIs) should be used 
instead. The support for the identification and resolution of problems with hrefs has been implemented. 

 

Figure 40. The achievement of error free models 

To create the placement and replacement fragments, the model elements are dragged and dropped to the 
realisation editor, and then create placement or create replacement option is selected from the context 
menu. This, however, produces the illegal operation exception for UMA compliant models. The analysis 
reveals that multiple metamodel elements have associated description implementations, such as 
deliverables and break down elements. Their naming structure “parent name,parent GUID” is not allowed. 
Accordingly, we performed temporary adaptations for supporting placements and replacements in the 
realization editor. The problems are resolved for all XMI files; the method library, configurations, plugins, 
processes and content descriptions might be considered for variability management with the BVR Tool. The 
visual support for highlighting objects placements in red while replacements in blue colours, as well as 
retrieving selections are supported for UMA compliant models.  

We have implemented a dialogue wizard to support the mapping of target configurations at the realization 
editor, as shown in Figure 40 the recent/default path choice is automatically filled in the path text box 
otherwise the path containing a specific method library might be browsed. The dialogue wizard performs 
two tasks: (i) imports the contents of the method library in the target directory; and (ii) resolves problems 
with the XMI files. The error free models are made available in the project folder. All the model files can be 
opened, for example, method configurations, method plugins, method content descriptions and processes. 
The generation of target configurations for a software process modelled in EPF Composer is performed 
with VSpec, Resolution, and Realisation editors, as illustrated in Figure 41.  

The generated process models are automatically exported back to the EPF Composer. If EPF Composer is 
running, the dialogue window pops up to inform that “the files have been changed on the file system. Do 
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you want to load the changes?” The selection of yes option further allows the user to save the copy of 
previous model. Pressing the finish button loads the derived process model in EPF Composer. It might be 
noted that the changes for resolving problems in XMI files and supporting the communication with 
realization editor had been reverted back in exported models. 
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Figure 41. ECSS-E-ST-40C compliant SoPL 
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3.1.2.8 Specification of variability at component level  

This section describes the implementation for requirement WP6_PPA_004, described in the Table 2.  The 
integration between CHESS and BVR tools represents a feasible and technically advantageous solution for 
variability management at product level. Similar to process lines, the generation of target product is 
performed with three editors: VSpec, Resolution, and Realization. 

The CHESS Tool is built on top of Eclipse Papyrus. Similar to Papyrus, the CHESS model is stored in .di, 
.notation and .uml files. In order to visualise the diagrams, the .di file is opened with the Papyrus editor, in 
which the dragged model variants from model explorer or palette are dropped. As a consequence, the style 
information is recorded in the .notation file. The model variants, however, are stored in .uml file. The 
placements and replacements would have been defined for the variations in .uml file; the interactions of 
CHESSML compliant models with the BVR Tool are supported. 

When the model variants are removed from the .uml file, the dangling stereotypes problem is caused. In 
particular, the repair stereotypes dialog pops up after the removal of model variants. To resolve this 
problem, the stereotypes applied at the placement variants are retrieved and deleted. This is done before 
the removal of model variants. Besides the dangling stereotypes, the orphan views appear in the diagram 
editors. In this context, the implemented command for clean diagrams needs to be executed; the style 
information of orphan views is removed from the .notation file. This is done for both opened and closed 
diagrams. The replacements in executed fragments have also been recorded. Specifically, the replacement 
variants are tracked within the .uml file and dropped at the diagram editors. After that, the Arrange All 
command is executed for the editors. At the opening of EPF Composer and CHESS Tool, the dialogue 
window pops up to inform that “the files have been changed on the file system. Do you want to load the 
changes?” Pressing the “Yes” button loads the tailored model. 

3.1.2.9 Variability management support at assurance case level  

This chapter focuses on the implementation of requirement WP6_PPA_005, described in Table 3.  

To support the variability management at assurance case level, the OpenCert Tool and BVR Tool are 
utilised. In a similar manner to the process and product lines, the generation of target model is performed 
with three editors: VSpec, Resolution, and Realization. Since the BVR Tool defines variability orthogonally 
for any Meta-Object Facility (MOF)-compliant model (representing the Base model), the interactions of 
CACM compliant models with the BVR Tool are supported to map the elements of a target configuration 
and variability abstractions in BVR. The argumentation is stored in .arg and .arg_diagram files. The 
placements and replacements are defined for the variations in .arg file. For making specification intuitive 
and visual, the placements and replacements are highlighted in red and blue colours, respectively.  The 
execution of configuration/resolution generates the tailored model. Accordingly, the command for 
propagation of injected model elements into diagram is executed.  

3.1.2.10 Variability Management and Change Impact Analysis in Multiple Lines  

The process, product and assurance case variability might be specified in the combined or otherwise 
individual models. In the combined models, the individual branches might be taken into consideration for 
the process and product variability. The constraints are enforced over the model elements, for which their 
names are considered. It is therefore important to avoid duplicates; the occurrences can also be defined. 
However, the BVR Tool does not support variability management and impact analysis in multiple lines. 

The idea with the individual models is separation of concerns, so that the process, product and assurance 
case engineers work on their respective models. The interactions between process, product and assurance 
case models have been supported; the logical operators such as implication, alternative, negation might be 
used in the cross-cutting constraints. It is a meaningful way to enforce the process-product-assurance case 
dependencies. There is also a need to consider the occurrence specifications between the variability 
models of a project. The presence of elements mentioned within the constraint is first checked in the 
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current model. If the elements are not detected, the search is extended to other models in a project. In 
case the elements are detected in another model, the dialogue window pops up to inform the existence in 
specific model. The user, however, needs to authenticate the enforcement of cross-cutting constraints. 

The resolution editor is used for specification, validation and execution of process, product and assurance 
case configurations. The resolutions are automatically generated from the VSpec model in which the 
varying choices needed to be included or excluded. It is possible to define multiple resolutions for the 
processes, products and assurance cases with variabilities. The constraints are used to specify the 
dependencies between choices. Therefore, there is a need to pair the process, product and assurance case 
resolutions to perform error checking and validation. The command for pairing of resolutions is 
incorporated; valid impact analysis and change propagation are guaranteed if the cross-cutting constraints 
are properly specified. 

In BVR, the resolution execution was supported for a single base model. To be able to support the variant 
management and change impact analysis in integrated lines, the execution of two or more base models is 
needed, for which the source code is altered. A dialogue wizard is used to inform the possible candidates to 
the user, in particular, the models for which realisation fragments have been specified. The checklist 
selection is supported for the base models. Besides that, the user either selects the execution of cross-
cutting dependencies for the purpose of impact propagation, or otherwise the whole joined resolution is 
executed. Accordingly, the back-propagation of tailored models is performed. The support for saving the 
copy of previous models is also incorporated. 

3.1.2.11 Semi-automatic generation of product arguments 

This section describes the implementation for requirement WP6_PPA_002, described in Table 2. 

The generation of product-based arguments functionality uses the information specified in a CHESS model 
to generate a set of argument-fragments for each of the components from the specified model. The 
argument-fragments are created on the connected CDO [11] repository in the assurance case selected by 
the user. The generated .arg and .arg_diagram files for each component are available after generation in 
the corresponding “ARGUMENTATION” folder. Each argument-fragment contains information about the 
contracts of the corresponding component. If a contact is validated (has the status set to “validated”) the 
clarification of the contracts as well as supporting evidence is added to the argument. If the contract is not 
validated, then a challenge is added to the argument, implying that the satisfaction of the contract is 
challenged by the refinement results. The generator uses traceability enabled by Capra to get the traces 
between contracts and supporting evidence, but it also generates the traces between components, 
contracts and formal properties with the corresponding automatically generated argumentation elements 
such as claims, contexts, evidence, etc.  

3.1.2.12 Semi-automatic generation of process arguments 

This chapter describes the implementation for requirement WP6_PPA_003, described in the Table 2. 

2.2.7.1.1 Detecting fallacies in process models 

The process-based argumentations cannot ensure that the evidences are sufficient to support the claim. In 
order to prevent or detect fallacies in the process-based argumentations, fallacy detection plugin is 
developed that validates the process models and prevents the occurrence of fallacy, specifically, “Omission 
of Key Evidence” in process-based arguments. Omission of key evidence fallacies within the context of 
process argumentation are the flaws or defects in which arguments can fail to provide sufficient evidence. 
For example, evidences about staff competency or skills to support the process claim about designer who is 
responsible for the design task, which deals with the production of design-related work products are not 
provided. Furthermore, the tool and its related tool mentor qualification is missing in order to ensure that 
the evidence generated by that tool is trustworthy and valid. 
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Detect Fallacies plugin enables the process engineers and/or safety engineers to detect whether the 
process models contains all the essential information for supporting the key evidence(s). In case of 
omission of crucial information, recommendations are provided to aid process engineers or safety 
engineers in resolving deviations. Based on the recommendation(s), engineers are expected to modify the 
process model. The operation will only be applicable by clicking on those elements of type 
ProcessComponent (Capability Pattern or Delivery Process) since these elements are the ones that have all 
the information of process (see Figure 42). 
 

 

Figure 42. Detecting fallacies in process models menu 

To detect fallacies in process models and to perform the generation of fallacy free process-based 
argumentation, a safety process in EPF Composer is modelled according to the best practices as well as 
according to the standard(s). Either, the requirements and associated process life cycle can be modelled by 
following the IBM approach as discussed in AMASS D6.3 [30] and AMASS User Manual [18]; or the standard 
requirements can automatically be imported into the EPF Composer as described in AMASS D1.5 [70]. 
Certifications against the required standard’s requirements for the roles in process_lifecycle can be 
described in Skills (Staffing Information) field, as shown in Figure 43. Certifications or rationales against 
required tool qualifications can be defined in Key considerations (Detail Information) field, as shown in 
Figure 44. If the evidence details are omitted or the rationale is not provided; it means that process 
contains the omission of key evidence fallacies.  
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Figure 43. Modeling of evidence associated to Role 

 

Figure 44. Modeling of evidence associated to Tool Qualification 

The fallacy detecting functionality provides validation results including the list of elements containing 
sufficient and insufficient information (i.e., detected fallacies). In addition, the appropriate 
recommendations to resolve the particular deviations will be presented. These results are printed on the 
console (see  Figure 45) as well as the validation reports, two new “.txt” files are created in the selected 
folder (see Figure 46). The information related to the Roles is stored under the file called “Staffing Plan 
Report.txt”, and the information regarding the Tools is stored in the “Tool Qualification Plan Report.txt” 
file. Moreover, this information is sorted in the following way: the elements with insufficient evidence 
appear in the first place, and then the elements having sufficient evidences are placed below. 
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 Figure 45. Validation results printed on the console 

 

 

Figure 46. Generated results reports 
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2.2.7.1.2 Semi-automatic generation of process arguments representing plans 

The main goal of this functionality is to generate fallacy free process-based argumentation model (with 
diagram). A specific process plan has derived from the family of processes (managed by EPF Composer), 
which is automatically transformed into safety argument fragments using Epsilon Transformation Language 
(ETL) [8]. In Prototype P2, the generation of process-based arguments functionality is invoked from a right-
click menu of ProcessComponent (Capability Pattern or Delivery Process) modelled in EPF Composer, in 
particular, by selecting “Transformation -> Generate Process-based Argument” option, as shown in Figure 
47. 
 

 

Figure 47. Generating process-based argumentation menu (representing plan) 

To perform the generation of process-based arguments, the mapping between process elements 
(SPEM/UMA) and argumentation elements (SACM/CACM) has implemented in EPF Composer. The 
mapping between meta-models has also been extended. In particular, the mapping of elements is focused 
on the Work Breakdown Structure of processes in EPF Composer, such as Capability Pattern, Phase, Activity, 
Task Descriptor, Role Descriptor, Work Product Descriptor, Tool, and Tool Mentors. Since the generation of 
process-based argumentation focused on the planning phase of the processes, the evidences of some 
elements such as Work Products, Checklist, Guideline, and Example are not available in those stages of the 
projects. These elements have mapped into undeveloped Claim, which requires further development (see 
Figure 48). The evidences associated to elements have mapped into InformationElementCitation typed 
“solutions” showing that the particular goals have been achieved. The rationale related to element (e.g., 
tool qualification is not needed since source code is fully tested) is mapped into 
InformationElementCitation typed “justification”. The “purpose” attribute of the process is used to show 
that the process is compliant with the standard, which is mapped to InformationElementCitation “context”. 
The detailed mapping between process model, argumentation mode is provided in D6.3 [30]. The 
generated process-based arguments are visualized in Assurance Case Editor in OpenCert under the 
“ARGUMENTATION” folder. The generated elements would be visible in the editing window of the 
Argumentation Diagram (.arg_diagram) by using drag and drop functionality. Furthermore, the 
argumentation model and diagram will be stored locally in a new project into the current Workspace under 
the name “Argumentation”. 
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Figure 48. Locally generated argumentation model and diagram 

2.2.8 Reuse Discovery 

This chapter describes the implementation for requirements WP6_RA_002 and WP6_RA_006, described in 
Table 2. This requirement has been developed in two different complementary implementations, so in the 
following chapter both implementations will be described. 

3.1.2.13 Reuse Discovery based on OSLC-KM 

The implementation of the indexing and retrieval algorithms for Reuse Discovery, based on OSLC-KM, has 
been an iterative process within the AMASS platform. For P1, the development and integration focused on 
physical SysML Papyrus Models (see chapter 2.2.8.1.1), and for P2 the focus was set on the integration with 
the CDO Repository to index Requirements and Evidence Models to be reused later on in the Reuse 
Assistant Component (see chapter 2.2.8.1.2). 

2.2.8.1.1 Indexing and Retrieval of SysML Physical models 

The main goal of this functionality is to allow the user to search for similar artefacts (e.g. Papyrus SysML 
models) within a set of indexed artefacts. This functionality was implemented for Prototype P1, and it’s a 
very basic connector for indexing and searching for files, based on the OSLC-KM standard [28] which allows 
exchanging artefacts content from different and heterogeneous sources. For the Prototype P2, this will be 
the starting point for the further integration with the CDO. 

The core functionality is developed in KM, as part of the TRC toolset. It allows indexing the content of a 
SysML model in a SKB (System Knowledge Base), as shown in Figure 49, so that this SKB can receive input 
queries in order to get similar artefacts by a given input artefact (see Figure 54). 
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Figure 49. SysML content transformed into RSHP metamodel  

 

Figure 50.  SysML model content as a query to search for similar artefacts  

It was also integrated within the AMASS platform as a technological demonstrator of the OSLC-KM 
capabilities in order to integrate this core functionality in P1 (see Figure 51). So, this functionality is 
available from P1. 
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Figure 51. Reuse Discovery operations integrated in AMASS 

The previous integration (P1) included two basic operations: 

1. Index file: By selecting local files, it is possible to create a wide SKB to perform searches. 

2. Look for similar models: By selecting a local file as an input, it is possible to query the SKB in order 
to get similar models. This search is based on the RSHP model [29], and its goal is to look for similar 
artefacts by artefact content (relations between elements and meta-properties). 

Both operations will ask the user for a Papyrus model to work with. So far, this implementation for P1 is 
limited to work only with Papyrus files but not yet with other kind of SysML models (MagicDraw, Rhapsody, 
etc.). A further integration for P2, described in the next chapter, allows the user to select items from the 
CDO repository. 

2.2.8.1.2 Indexing and Retrieval of CDO objects 

The functionality developed for Prototype P2 includes the integration with the CDO database. Thus, the 
OSLC-KM based functionality for indexing and retrieval has been extended, so that is possible to navigate 
through the CDO database (manually, project by project) to index the different projects that we have. After 
this, a “Search” functionality is available in the Reuse Assistant component. This way, it’s possible to query 
for Artefacts that contain requirements of a given “SIL” level, or simply query by free text. 

 

Figure 52. Operations integrated in the CDO Repository 

Regarding the indexing process, we index two types of items: 

• Assurance Projects: the process creates a mapping between the SIL Level of the requirements 
inside, and the Target Artefacts pointed by the Compliance Maps. 

• Evidence Models: the process indexes all the active Artefact Models inside, together with the SIL 
Level mapping calculated by means of indexing the assurance project. This way is possible to reuse 
Artefacts via OSLC-KM later. 



              

         AMASS Prototype for cross/intra-domain reuse (c) D6.6 V1.0 

 

 
H2020-JTI-ECSEL-2015 # 692474 Page 52 of 71 

 

 

Figure 53. CDO metamodel to index 

As an example, from the following project in the CDO repository, the Prototype P2 allows indexing the 
content via OSLC-KM through the top menu: 

 

Figure 54. Actions within the AMASS Platform 

 

Figure 55. Project Folder selection 
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Once the project is selected, the content of the project in the CDO (see image) will be indexed in the OSLC-
KM representation schema. 

 

Figure 56. Content of the selected project 

 

Figure 57. Project indexed in OSLC-KM 

On the other hand, the OSLC-KM service also provides with an API function to search by text. We can query 
SIL levels to check that the service retrieves indexed artefacts. This functionality will be integrated in the 
Reuse Assistant component. 

 

Figure 58. Query results 
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3.1.2.14 Reuse Discovery based on ElasticSearch 

With P1 a generic indexing feature based on Elasticsearch has been implemented in a first version. Indexing 
is possible at EMF (Eclipse Modelling Framework) level, independent on what kind of EMF storage system is 
used (CDO, XMI files, or any other). Objects and their attributes are indexed into any Elasticsearch server 
and can be visualized using Dashboard facilities as Kibana. The indexing is not automated yet but has to be 
triggered manually on an object, a resource or a whole object tree. The conceptual approach, challenges 
and way forward were described in detail in D6.3 [30]. 

With P2, an additional high-level “Search and Query API” was added to support value added features as 
reuse assistant or impact analysis. The API is again on rather high EMF level, that means any query can be 
made on high abstraction level (aka object level), is transformed into low level Elasticsearch REST calls and 
the reply (basically hits) is transferred back to EMF Object level. That includes resolution strategies and 
object identification for CDO but also file based (workspace) EMF storages. 

 

Figure 59. Big Picture of the Reuse Discovery functionality with ElasticSearch 

The component requires a running Elasticsearch server. That server may run on any node in the IP network. 
Note that originally an Elasticsearch server could be embedded into any Java runtime environment (e.g. 
Eclipse Runtime) but that option was removed by the Elasticsearch development team later on. Anyway, 
installation and setup is rather easy and straight on all major operating systems.  
 
ZIP packages are available at https://www.elastic.co/products/elasticsearch and can be downloaded freely. 
They just need to be extracted to an arbitrary location and the server can be started by using MS CMD or 
UNIX batch scripts. P1 was basically built on and thus supporting Elasticsearch version 5.0.0. For P2 the 
code was ported to Elasticsearch 5.6.x which should be also the minimum at the server side. Although the 
REST API is rather stable over time, there are a few obstacles that may occur when using an older version. 
Note that upcoming version 7.x is not supported due to a major change in the handling of indexes and 
types. Version 6.x on the other hand should be supported because it offers backward compatibility. 

https://www.elastic.co/products/elasticsearch
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Once the server is up and running, the AMASS client can be configured in the Eclipse preferences. By 
default, Elasticsearch is started on port 9200 which would lead to “http://localhost:9200” as the default 
server URL - assuming Elasticsearch is running on local machine. An index name must be specified as well 
but an arbitrary alphanumeric name can be chosen here. 

 

Figure 60. ElasticSearch Preferences in P1 

With P2 the preferences were improved to allow to ping the server but also to clean the remote index (this 
was only possible using the Kibana dashboard in P1). 
 

 

Figure 61. ElasticSearch Preferences improved in P2 
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An additional toolbar shows the status of the Elasticsearch configuration and connection at any time to the 
user. There are two “bulbs” to reflect the status, one showing the server connection and details, the second 
the status of the index. Both should be green in best case. Note that the search index is created on first 
usage, so it will switch from yellow to green at that time. 
 

 

Figure 62. ElasticSearch status icons 

2.3 Installation and User Manuals  

The steps necessary to install the AMASS Prototype P2 are exhaustively described in the AMASS User 
Manual [18] and will not be repeated here. That document contains all required steps and document 
references to set up the tools. A pre-packaged distribution will be supplied in this iteration of the AMASS 
platform. 

In summary, the AMASS User Manual itself is the user guide of the AMASS tool prototype implementation. 
The users can find the installation instructions, the tool environment description, and the functionalities 
described in this document. 
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3. Implementation Description 

3.1 Implemented Modules  

3.1.1 Compliance Management 

We have decomposed the Compliance Management module into three components: Standards Editor, 
Process Editor and Compliance Editor (see Figure 63). The Standards Editor tool component includes 
services to capture the knowledge from the standards, while the Process Editor tool captures information 
of the life-cycles that are described in the process. The focus of the third component, the Compliance Editor 
tool, is to map the information from the standards (i.e. obligations) with the information managed in the 
context of a given assurance project (i.e. accomplishment). We use two toolsets for compliance 
management: OpenCert is used for modelling standards and processes, as well as compliance maps 
between those models and the assurance and certification assets created in specific projects; and EPF 
(Eclipse Process Framework) is used for modelling processes and for modelling standards as well.  

 

Figure 63. Tool components for Compliance Management 

3.1.2 Management of families/lines 

To manage families/lines, it is necessary to have at disposal modelling means for systematising 
commonalities and variabilities. These means might be provided as either a specific solution targeting a 
single type of family (e.g., a process line) or as an orthogonal solution applicable to any type of family 

3.1.2.1 Semi-automatic generation of process-based arguments 

This section provides the big picture of the solution for the automatic generation of process-based 
arguments within AMASS (see Figure 64). The solution embraces both phases of the certification liaison 
process (which is explicitly defined within DO-178C and implicitly in place in all certification/qualification 
frameworks): the planning and the execution phase. 
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Figure 64. Tool components for Automatic generation of process-based arguments 

3.1.2.2 Semi-automatic generation of process-based arguments representing plans 

This section provides the big picture of the solution for the generation of fallacy free process-based 
arguments during the planning phase within AMASS (see Figure 65). The solution embraces, at the planning 
phase, a specific process plan is derived from the family of processes (managed by EPF-C & BVR Tool), then 
an argument is automatically generated by following MDSafeCer [32] principles and visualized via the 
Assurance Case Editor. Furthermore, the detect fallacies solution validates the process models (managed 
by EPF Composer), and prevents the occurrence of fallacy, specifically, omission of key evidence in process-
based arguments. 

 

 

Figure 65. Tool components for generation of fallacy free process-based arguments 

3.1.2.3 Semi-automatic generation of product-based arguments 

This section provides the big picture of the solution for the automatic generation of product-based 
arguments (see Figure 66). The generator uses a pre-existing argument pattern for the generation. The 
generated argument-fragments include only those contracts whose assumptions are validated, hence only 
those artefacts related to the validated contracts. 
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Figure 66. Tool components for Automatic generation of product-based arguments 

3.1.3 Cross/Intra Domain Reuse 

The Cross/Intra domain reuse module is composed of two main components: Reuse Assistance and Line 
Specification (see Figure 67). The Reuse Assistance tool focuses in intra and cross-domain reuse of 
assurance and certification assets. The Line Specification tool is a composite component constituted of a 
seamless integrator and a set of editors enabling the management of variability. More specifically, the Line 
Specification can get in input models regarding Product/Process/Assurance Cases and via the Seamless 
Integrator these models can be cleaned if necessary and used to feed the Variability Editor, the Resolution 
Editor and the Realization Editor, which can be used to change the models in accordance to the Line 
constraints. 
 

 

Figure 67. Tool components for Cross/Intra Domain Reuse 

3.2 Source Code Description for the AMASS Tool Platform  

The source code of the WP6-related components in AMASS prototype P2 can be found in the source code 
GIT repository [17].  
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The code for the Compliance Management module in Prototype Core was stored together with the code of 
the other building blocks in the SVN repository under “tag” to distinguish the state of the code at the time 
of the integrated release. 

The necessary plugins for the Standards, Projects, Compliance and Processes Management Specification 
are: 

• org.eclipse.opencert.apm.assuranceassets 
In this plugin, the Assurance Assets metamodel is defined and stored, and the Java implementation 
classes for this model are generated. 

• org.eclipse.opencert.apm.assuranceassets.edit 
The edit plugin includes adapters that provide a structured view and perform command-based 
edition of the Assurance Assets model objects. 

• org.eclipse.opencert.apm.assuranceassets.editor 
This plugin provides the user interface to view instances of the model using several common 
viewers, and to add, remove, cut, copy and paste model objects, or modify the objects in a standard 
property sheet. This editor saves the generated data in a local file. 

• org.eclipse.opencert.apm.assuranceassets.editor.dawn 
This plugin is an extension of the previous one. It aims to communicate with the CDO Server to 
store the generated model in a database instead of a local file. 

• org.eclipse.opencert.apm.assurproj 
In this plugin, the Assurance Project metamodel is defined and stored, and the Java 
implementation classes for this model are generated. 

• org.eclipse.opencert.apm.assurproj.edit 
The edit plugin includes adapters that provide a structured view and perform command-based 
edition of the Assurance Project model objects. This plugin also includes the import functionality 
from EPF process models into OpenCert Evidence and Process models. 

• org.eclipse.opencert.apm.assurproj.editor 
This plugin provides the user interface to view instances of the model using several common 
viewers, and to add, remove, cut, copy and paste model objects, or modify the objects in a standard 
property sheet. This editor saves the generated data in a local file. 

• org.eclipse.opencert.apm.assurproj.editor.dawn 
This plugin is an extension of the previous one. It aims to communicate with the CDO Server to 
store the generated model in a database instead of a local file. 

• org.eclipse.opencert.apm.assurproj.reuse 
This plugin includes the reuse view that offers the reuse assistance functionalities.  

• org.eclipse.opencert.apm.assurproj.utils 
This plugin provides additional features for to the standard CheckboxTreeViewer. 

• org.eclipse.opencert.apm.assurproj.wizards 
This plugin provides a wizard to facilitate to the user the assurance project creation process and 
another wizard for adding a new baseline to an existing assurance project or updating an existing 
baseline of a project. 

• org.eclipse.opencert.pkm.baseline   
In this plugin, the Baseline definition metamodel is defined and stored, and the Java 
implementation classes for this model are generated. 

• org.eclipse.opencert.pkm.baseline.edit  
This plugin contains a provider to display Baseline definition models in a user interface. This plugin 
also contains the window to view the existing compliance maps of a project and the window to 
create or update one project’s compliance maps. 

• org. eclipse.opencert.pkm.baseline.editor  
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This plugin provides the user interface to view instances of the model in a tree-based way using 
several common viewers, and to add, remove, cut, copy and paste model objects, or modify the 
objects in a standard property sheet. This editor saves the generated data in a local file. 

• org.eclipse.opencert.pkm.baseline.editor.dawn  
This plugin is an extension of the previous one. It aims to communicate with the CDO Server to 
store the generated model in a database instead of a local file. 

• org.eclipse.opencert.pkm.baseline.diagram  
This plugin provides the user interface to view instances of the model in a graphical way using 
several common viewers, and to add, remove, cut, copy and paste model objects, or modify the 
objects in a standard property sheet. This editor saves the generated data in a local file. 

• org.eclipse.opencert.pkm.baseline.diagram.dawn  
This plugin is an extension of the previous one. It aims to communicate with the CDO Server to 
store the generated diagram model and the standard definition model in a database instead of a 
local file. 

• org.eclipse.opencert.infra.mappings   
In this plugin, the Mapping metamodel is defined and stored, and the Java implementation classes 
for this model are generated. 

• org.eclipse.opencert.infra.mappings.edit  
This plugin contains a provider to display Mapping models in a user interface. 

• org.eclipse.opencert.infra.mappings.editor  
This plugin provides the user interface to view instances of the model in a tree based way using 
several common viewers, and to add, remove, cut, copy and paste model objects, or modify the 
objects in a standard property sheet. This editor saves the generated data in a local file. 

• org.eclipse.opencert.infra.mappings.editor.dawn  
This plugin is an extension of the previous one. It aims to communicate with the CDO Server to 
store the generated Mapping model in a database instead of a local file. 

• org.eclipse.opencert.infra.properties   
In this plugin, the Property metamodel is defined and stored, and the Java implementation classes 
for this model are generated. 

• org.eclipse.opencert.infra.properties.edit  
This plugin contains a provider to display Property models in a user interface. 

• org.eclipse.opencert.infra.properties.editor  
This plugin provides the user interface to view instances of the model in a tree-based way using 
several common viewers, and to add, remove, cut, copy and paste model objects, or modify the 
objects in a standard property sheet. This editor saves the generated data in a local file. 

• org.eclipse.opencert.infra.properties.editor.dawn  
This plugin is an extension of the previous one. It aims to communicate with the CDO Server to 
store the generated Property model in a database instead of a local file. 

• org.eclipse.opencert.pam.procspec   
In this plugin, the Process definition metamodel is defined and stored, and the Java 
implementation classes for this model are generated. 

• org.eclipse.opencert.pam.procspec.edit  
This plugin contains a provider to display Process definition models in a user interface. 

• org.eclipse.opencert.pam.procspec.editor  
This plugin provides the user interface to view instances of the model in a tree-based way using 
several common viewers, and to add, remove, cut, copy and paste model objects, or modify the 
objects in a standard property sheet. This editor saves the generated data in a local file. 
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• org.eclipse.opencert.pam.procspec.editor.dawn  
This plugin is an extension of the previous one. It aims to communicate with the CDO Server to 
store the generated process model in a database instead of a local file. 

• org.eclipse.opencert.pkm.refframework   
In this plugin, the Standard definition metamodel is defined and stored, and the Java 
implementation classes for this model are generated. 

• org.eclipse.opencert.pkm.refframework.edit  
This plugin contains a provider to display standard definition models in a user interface. 

• org.eclipse.opencert.pkm.refframework.editor  
This plugin provides the user interface to view instances of the model in a tree-based way using 
several common viewers, and to add, remove, cut, copy and paste model objects, or modify the 
objects in a standard property sheet. This editor saves the generated data in a local file. 

• org.eclipse.opencert.pkm.refframework.editor.dawn  
This plugin is an extension of the previous one. It aims to communicate with the CDO Server to 
store the generated model in a database instead of a local file. 

• org.eclipse.opencert.pkm.refframework.diagram  
This plugin provides the user interface to view instances of the model in a graphical way using 
several common viewers, and to add, remove, cut, copy and paste model objects, or modify the 
objects in a standard property sheet. This editor saves the generated data in a local file. 

• org.eclipse.opencert.pkm.refframework.diagram.dawn  
This plugin is an extension of the previous one. It aims to communicate with the CDO Server to 
store the generated diagram model and the standard definition model in a database instead of a 
local file. 

• org.eclipse.opencert.chessdiagram.adapter 
This plugin adopts CHESS editor to interact with the BVR tool bundle. BVREnabledEditor is expected 
to interact with the CHESSBVREditor in order to highlight/select modelling elements to be 
placed/replaced as well as to exportTailoredProducts. 

• org.eclipse.opencert.lines (*) 
This plugin provides support for process, product and assurance case variability management, and 
integration of process-product-assurance case lines for the purpose of change impact analysis. The 
integration between EPF Composer, CHESS Tool, OpenCert Tool and BVR Tool is achieved for the 
establishment of lines. For the multiple/integrated lines, the cross-cutting constraints between 
variability models, joining of resolutions and simultaneous execution of realization fragments 
belonging to multiple base models are supported. 

• org.eclipse.opencert.epf.generateArgumentation (*) 
This plugin provides the transformation of an EPF process (compliant with UMA metamodel) to 
argumentation model and diagram (compliant with CACM metamodel). The generated model and 
diagram are stored in the ARGUMENTATION folder of the selected assurance case project in the 
CDO repository. The user is prompted to select both source process model (Capability 
Pattern/Delivery Process) and target assurance case project. The target model (argument) is also 
saved locally in a new project into the current Workspace under the name Argumentation. 

• org.eclipse.opencert.epf.detectFallacies (*) 
This plugin facilitates the detection of fallacies by identifying whether the safety process modelled 
in EFP Composer contains the sufficient information corresponding to the key evidence for 
supporting the specific requirement. The user is prompted to select the folder where he or she 
wants to store the validation reports .txt files. Moreover, the results are presented on the console. 

• org.eclipse.opencert.epf.transfromRequirements (*) 
This plugin provides the transformation of standard’s requirements modelled in EPF Composer 
(compliant with UMA metamodel) to baseline models (compliant with CACM metamodel). The 
generated models will be stored in selected assurance case project in the CDO repository.  
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• org. eclipse.opencert.evm.evidspec.editor (*) 
This plugin provides the user interface to view instances of the evidence model in a tree-based way 
using several common viewers, and to add, remove, cut, copy and paste model objects, or modify 
the objects in a standard property sheet. 
This plugin also allows the introduction of the searching parameters to find reusable artefacts by 
means of the OSLC-KM Reuse Discovery API or the Elastic Search Reuse Discovery API and shows 
the results to the user. 

 

 

Figure 68. Cross-Domain and Intra-Domain Reuse plugins 

In addition, the following plugin from the CHESS Polarsys project has been updated: 
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• org.polarsys.chess.service 
This plugin provides some utility functions for the CHESS editor; the plugin has been extended in 
the context of WP6 with a new feature regarding the removal of orphan views from the Papyrus 
UML diagrams. Orphan views are graphical elements of a Papyrus diagram that do not have any 
corresponding semantic element in the UML model. For instance, orphan views can originate in a 
Papyrus diagram if the associated entities in the UML model are removed without using the 
Papyrus editor facilities; this is the case when the CHESS model is modified to implement variability 
at product level trough the BVR tool (see section 3.1.2.8). 

The plugin is available from https://git.polarsys.org/c/chess/chess.git repository, together with the 
other CHESS related plugins. 

Furthermore, the functionality for Reuse Discovery has been integrated within the following plugin: 

• org.eclipse.opencert.evm.oslc.km.importevid 
This plugin provides both, the functionality for indexing Papyrus models into the KM database, 
through OSLC-KM, and the capability to look for similar Papyrus models given a Papyrus model as a 
query. 

The functionality for the product-based argument generation is located in the following plugin: 

• org.eclipse.opencert.chess.argumentGenerator 
This plugin facilitates generation of argument-fragments for each component of a CHESS model. It 
stores the argument files in the ARGUMENTATION folder of the selected CDO repository assurance 
case. The user is prompted to select both source CHESS model and target assurance case. The 
plugin is available on the AMASS_source. 

https://git.polarsys.org/c/chess/chess.git
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3.3 Source Code Description for External Tools 

3.3.1 OSLC-KM integration 

The core functionality for the Reuse Discovery section has been developed within the TRC toolset (mainly 
Knowledge Manager for the WP6). The interoperability with the AMASS platform has been performed via 
the OSLC-KM, using some of the operations defined in the context of WP5. Specially, the implementation of 
the functionality of the WP6 takes advantage of the following components: 

• Rqa.Face.OslcKM: it implements the connection of the OSLC-KM model instance with the rest of 
the functionalities of the TRC toolset. 

• System Representation Language (SRL): metamodel of the OSLC-KM layer. 

3.3.2 Ontology Reuse Operations 

In the context of AMASS WP6, some operations for ontology reuse have been developed in the TRC toolset 
(KM): 
 

 

Figure 69. Ontology Reuse Operations 
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4. Conclusions 

This deliverable presented the implementation work performed for Cross-Domain and Intra-Domain Reuse 
in AMASS Prototype P2, which is the latest version of the AMASS Tool Platform. The current support in the 
Platform allows a user to manage variability at the product, process and component level, semi-automatic 
generation of product/process arguments, and some external support provided for reuse discovery. 

As its current state and prior to validation in WP2 and application in WP1, Cross-Domain and Intra-Domain 
Reuse support for Prototype P2 should have TRL 5 (technology validated in real use cases). Basic 
technological components are integrated to establish that they work together. 

In addition to the implementation of further requirements in the AMASS tool Platform (and also to the 
general revision of some implementation for enhancement), the Prototype P2 includes the final decision 
upon the implementation of new features targeted at: reuse discovery, reuse assistant, variability 
management at the product/process/component level, and generation of product/process arguments. 
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Abbreviations and Definitions  

Abbreviation Explanation 

API Application Programming Interface 

ASIL Automotive Safety Integrity Level 

BVR Base Variability Resolution 

CACM Common Assurance and Certification Metamodel 

CDO Connected Data Objects 

CHESS 
Composition with Guarantees for High-Integrity Embedded Software Components 
Assembly 

CHESSML CHESS Modelling Language 

CPF Canonical Predictive Form 

CPS Cyber-Physical Systems 

DAL Development Assurance Levels 

DIN Deutsches Institut für Normung 

EBIOS 
Expression des Besoins et Identification des Objectifs de Sécurité (Expression of 
Needs and Identification of Security Objectives) 

ECSEL Electronic Components and Systems for European Leadership 

EMF Eclipse Modelling Framework 

EN European Norm 

EPF Eclipse Process Framework 

ETL Epsilon Transformation Language 

EU European Union 

FT Fault Tolerance 

GSN Goal Structured Notation 

GUID Globally Unique Identifier 

HW Hardware 

IEC International Electrotechnical Commission 

IED Intelligent Electronic Devices  

IEEE Institute of Electrical and Electronics Engineers 

IL Impact Level 

ISO International Organization for Standardization 

ITS Intelligent Transport Systems 

JU Joint Undertaking 

KM Knowledge Manager 

OCRA Othello Contracts Refinement Analysis 

OMG Object Management Group 

OSLC Open Services for Lifecycle Collaboration 

OSLC-KM OSLC for Knowledge Management 

PhD Philosophiae Doctor (neolatin; = doctor of philosophy) 

RSHP Relationship Model 

RTCA Radio Technical Commission for Aeronautics 

RT Real-Time 

SACM Structured Assurance Case Metamodel 

SDLC (Microsoft) Secure Development Life Cycle  
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Abbreviation Explanation 

SIL Safety Integrity Level 

SKB System Knowledge Base 

SL Security Level 

SoPLs Safety-oriented Process Lines 

SPEM Software & Systems Process Engineering Metamodel 

STO Scientific and Technical Objective  

SVN Subversion 

SW Software  

SysML System Modelling Language 

TOM Trade-Off Method  

TRC The REUSE Company 

TRL Technology Readiness Level 

UMA Unified Method Architecture 

UML Unified Modelling Language 

V&V Verification and Validation 

XMI XML Metadata Interchange 

XML Extensible Markup Language 

WP Work Package 
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Appendix A: Document changes with respect to D6.5 

New Sections: 

Section Title 

2.2.4 Solution for Process Compliance Checking 

3.1.2.10 Variability Management and Change Impact Analysis in Multiple Lines 

2.2.7.1.1 Detecting fallacies in process models 

2.2.7.1.2 Semi-automatic generation of process arguments representing plans 

3.1.2.13 Reuse Discovery based on OSLC-KM 

3.1.2.14 Reuse Discovery based on ElasticSearch 

3.1.2.16 Semi-automatic generation of process-based arguments representing plans 

3.3 Source Code Description for External Tools 

Appendix A Appendix A: Document changes with respect to D6.5 

Modified Sections: 

Section Title Change 

2.2.2 Tailoring of Standards Models to Specific 
Projects 

Completed with implementation in P2 

3.1.2.4 Compliance Mappings in EPF Added transformation of standard's 
requirements modelled in EPF composer to 
baseline models 

3.1.2.5 Cross-systems reuse (intra standard or 
intra domain product upgrade) 

Completed with the integration of the Reuse 
Discovery functionalities 

3.1.2.7 Variability management support at process 
level 

 

3.1.2.8 Specification of variability at component 
level 

 

3.1.2.9 Variability management support at 
assurance case level 

 

2.2.8 Reuse Discovery Implemented functionalities for P2 
(ElasticSearch and OSLC-KM) 

3.2 Source Code Description for the AMASS 
Tool Platform 

Revision of plugins 

4 Conclusions Included requirements completeness table 

 Abbreviations and Definitions Completed list 

 References Completed list 

 


