
This deliverable is part of a project that has received funding from the ECSEL JU under grant agreement No 692474.
¢Ƙƛǎ Wƻƛƴǘ ¦ƴŘŜǊǘŀƪƛƴƎ ǊŜŎŜƛǾŜǎ ǎǳǇǇƻǊǘ ŦǊƻƳ ǘƘŜ 9ǳǊƻǇŜŀƴ ¦ƴƛƻƴΩǎ IƻǊƛȊƻn 2020 research and innovation programme
and from Spain, Czech Republic, Germany, Sweden, Italy, United Kingdom and France.

ECSEL Research and Innovation actions (RIA)

AMASS

Architecture-driven, Multi-concern and Seamless Assurance and
Certification of Cyber-Physical Systems

Design of the AMASS tools and methods for
cross/intra -domain reuse (b)

D6.3

Work Package: WP6: Cross/Intra-Domain Reuse

Dissemination level: PU = Public

Status: Final

Date: 30 July 2018

Responsible partner: Barbara Gallina (MAELARDALENS HOEGSKOLA)

Contact information: barbara.gallina@mdh.se

Document reference: AMASS_D6.3_WP6_MDH_V1.0

PROPRIETARY RIGHTS STATEMENT

This document contains information that is proprietary to the AMASS Consortium. Permission to reproduce any content
for non-commercial purposes is granted, provided that this document and the AMASS project are credited as source.

mailto:barbara.gallina@mdh.se

H2020-JTI-ECSEL-2015 # 692474 Page 2 of 185

Contributors1

Reviewers2

1 The list includes the contributors to of D6.2, which is evolved in D6.3
2 The list includes the reviewers of D6.2, which is evolved in D6.3

Names Organisation

Barbara Gallina, Julieth Patricia Castellanos Ardila,
Muhammad Atif Javed, Irfan Sljivo, Faiz Ul Muram,
Shankar Iyer

MAELARDALENS HOEGSKOLA (MDH)

Anna Carlsson OHB Sweden (OHB)

Frank Bastuebner and Andreas Preussger INFINEON (IFX)

Norbert Bartsch and Vladislav Gribov Lange (LAN)

Jose Luis de la Vara, Jose María Álvarez, Pablo Sánchez,
Elena Gallego, Valentín Moreno, Manuela Alejandres,
Fabio di Ninno, Miguel Angel Rozalen

Universidad Carlos III de Madrid (UC3)

Borja López, Luis Alonso The REUSE Company (TRC)

Helmut Martin, Robert Bramberger Virtual Vehicle (ViF)

Detlef Sholle, Staffan Skogby, Samer Medawar Alten Sweden (ALT)

Michael Soden, Jan Mauersberger ANSYS medini Technologies (KMT)

Gabriel Pedroza, Morayo Adedjouma CommissŀǊƛŀǘ ŀ ƭΩŜƴŜǊƎƛŜ !ǘƻƳƛǉǳŜ Ŝǘ ŀǳȄ
Energies Alternatives (CEA)

Huascar Espinoza, Alejandra Ruiz, Angel López Tecnalia Research & Innovation (TEC)

Stefano Puri INTECS (INT)

Thomas Gruber Austrian Institute of Technology (AIT)

Marc Sango ALL4TEC (A4T)

Names Organisation

Silvia Mazzini (Peer reviewer-D6.2) INTECS (INT)

Erwin Schoitsch (Peer reviewer-D6.2, D6.3) Austrian Institute of Technology (AIT)

Cristina Martinez (Quality Manager-D6.2, D6.3) Tecnalia Research & Innovation (TEC)

Jose Luis de la Vara (TC review-D6.2, D6.3) Universidad Carlos III de Madrid (UC3)

Andrea Musone (Peer reviewer D6.3) INTECS (INT)

Garazi Juez Uriagereka (TC review) Tecnalia Research & Innovation (TEC)

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 3 of 185

TABLE OF CONTENTS

Executive Summary ... 10

1. Introduction (*) .. 11

2. Recap concerning industrial needs with respect to STO4 (*) .. 13
2.1 Industrial needs with respect to process engineering... 13
2.2 Industrial needs with respect to product engineering .. 14
2.3 Industrial needs with respect to assurance case engineering ... 15

3. AMASS vision for cross/intra domain reuse.. 17

4. Conceptual solution .. 19
4.1 Process-related reuse .. 19

4.1.1 Process-related macro and micro (reusable) elements (*) ... 19
4.1.2 Summary of previously conceived and validated conceptual solutions 21

4.2 Product-related reuse .. 21
4.2.1 Recap on challenges related to product reuse ... 21
4.2.2 Product-related macro and micro (reusable) elements .. 28
4.2.3 Summary of previously conceived and validated conceptual solutions 29

4.3 Assurance case-related reuse .. 29
4.3.1 Assurance case-related macro and micro (reusable) elements .. 30
4.3.2 Summary of previously conceived and validated conceptual solutions 30

5. Design Level Solution .. 32
5.1 Reuse discovery ... 32

5.1.1 Methodology to represent system artefacts .. 33
5.1.2 Architecture and Operations to support reuse discovery ... 35
5.1.3 Design of a research method to evaluate a reuse discovery process 37
5.1.4 The reuse discovery process in AMASS .. 38
5.1.5 Definition of an interface for reuse discovery (*) ... 38

5.2 Reuse assistance (*) .. 45
5.2.1 Cross-system reuse scenario ... 48
5.2.2 Cross-standard reuse scenario... 49

5.3 Management of families/lines ... 52
5.3.1 Base Variability Resolution .. 52
5.3.2 Process-related reuse via management of process lines .. 54
5.3.3 Product-related reuse via management of product lines (*) .. 66
5.3.4 Assurance case-related reuse via management of case lines (*) 81
5.3.5 Anti-Sisyphus: (3+1)-D Reuse and Impact Analysis via UMA, CHESSML, CACM, and BVR (*)85

5.4 Product-related reuse via MDE and meta-modelling: focus on analysis artefacts 88
5.5 Product-related reuse: focus on safety and security analysis artefacts (*) 89
5.6 Conceptual approach on product reuse (*) .. 92

5.6.1 Reuse using a Model-based Integrated Safety Analysis Approach 93
5.6.2 Implementation Approach and Use Cases ... 94

5.7 Model Based Testing for exploring the benefits of re-use of development cycles (*) 95
5.7.1 Automated Model Based Testing (*) ... 95

5.8 Approach on impact analysis and delta analysis based on data indices using Elasticsearch (*) 96
5.8.1 Achievements in P1 ... 97
5.8.2 Challenges... 98
5.8.3 Way forward / next step ... 99

5.9 Automatic generation of process-based arguments ... 101

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 4 of 185

5.9.1 Generating Process-based Argumentation Representing Plans (*) 101
5.9.2 Generating Process-based Argumentation Representing Executed Processes (*) 108

5.10 Automatic generation of product-based arguments... 111
5.10.1 Argument-fragment generation at the architectural pattern level (*) 111

6. Implementation Solution for Cross/intra domain reuse: a way forward .. 113

7. AMASS vision for compliance management (*) .. 115

8. Conceptual solution for compliance checking .. 117
8.1 Essential Background information ... 117

8.1.1 Defeasible Logic .. 117
8.1.2 Formal Contract Logic ... 118
8.1.3 Regorous Process Designer ... 120
8.1.4 Property Specification Patterns for Finite-State Verification (*) 123
8.1.5 EPF Composer metamodels (*) .. 124
8.1.6 Regorous metamodels (*) ... 125

8.2 Pioneering compliance checking in AMASS .. 125
8.2.1 Exploring the usage of defeasible logic and compliance by design. 125
8.2.2 Exploring the usage of REGOROUS for compliance checking .. 125
8.2.3 Exploration conclusions ... 134

8.3 Conceptual solution ... 135

9. Potential design solutions for the compliance checking ... 136
9.1 Proposals for adapting Regorous to the needs of AMASS ... 136
9.2 Creating an AMASS process compliance checker from scratch ... 138
9.3 Pros and cons of the architectural design solutions.. 138

10.AMASS design solution for compliance checking (*) ... 140
10.1 Safety compliance patterns ... 140

10.1.1 Safety compliance patterns ... 140
10.1.2 ISO 26262-related compliance patterns identification ... 140
10.1.3 ISO 26262-related compliance patterns definition ... 141
10.1.4 ISO 26262-related compliance patterns instantiation .. 142

10.2 Modelling SPEM 2.0-compatible process models for compliance checking 143
10.2.1 Mechanisms to annotate software process models ... 144
10.2.2 Modelling and annotating a small example from ISO 26262 .. 144

10.3 Generating Regorous inputs .. 147
10.3.1 Generating the rule set ... 147
10.3.2 Generating the structural representation of the process ... 148
10.3.3 Generating the Compliance Effect Annotations ... 150
10.3.4 Model checkable for compliance: an example for ISO 26262 ... 151

11.Implementation solution for compliance checking: a way forward ... 154

12.Conceptual solution for ontology-based mapping (*) ... 155
12.1 Representation of Safety Standards with Semantic Technologies Used in Industrial Environments

(*) 155
12.2 Semantic Analysis of Safety Standards (*) .. 159

13.Implementation solution for the ontology-based compliance management vision: a way forward ... 160

14.Metrics for reuse .. 161
14.1 GQMPS for process-related reuse .. 161

14.1.1 GQMPS ... 161
14.1.2 GQM + Strategies Model for the evaluation of families of processes (*) 161

14.2 GQMPS for product-&-assurance case related reuse (*) .. 163

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 5 of 185

15.Conclusion .. 164

Abbreviations and Definitions ... 165

References ... 168

Appendix A .. 175

Appendix B .. 176

Appendix C. Changes with respect to D6.2 (*) ... 184

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 6 of 185

List of Figures

Figure 1. AMASS Vision for Cross/Intra Domain Reuse .. 18
Figure 2. UMA-based solution partly supporting process reuse... 21
Figure 3. From out of context to in-context: the challenge of component reuse ... 23
Figure 4. From out of context to in-context: focus on the interfaces .. 24
Figure 5. FMEDA hierarchy within the automotive domain ... 25
Figure 6. /ƻƴŎŜǇǘǳŀƭ ƻǾŜǊǾƛŜǿ ƻŦ ŎƻƳƳƻƴ ŎƻƳǇƻƴŜƴǘǎ ŦǊƻƳ ŀ ǾŜƴŘƻǊΩǎ ǇŜǊǎǇŜŎǘƛǾŜ 25
Figure 7. CHESSML-based solution partly supporting component reuse .. 29
Figure 8. SACM-based assurance case metamodel .. 31
Figure 9. Layers of an ontology-driven approach to implement a Knowledge-Centric Systems Engineering

strategy.. 33
Figure 10. A system Knowledge Repository structure. .. 36
Figure 11. UML Class Diagram of the OSLC Knowledge Management Resource Shape. 40
Figure 12. Decision tree to expose existing operations in a REST-oriented fashion. ... 43
Figure 13. Building blocks of the functional architecture and technology for an OSLC KM environment. 45
Figure 14. Reuse Assistant: Scope of Reuse in Assurance and Certification ... 46
Figure 15. Reuse Assistant: Proposed Reuse Approaches .. 47
Figure 16. Reuse Assistant: Architecture of new functionalities (in green) in OpenCert tooling 48
Figure 17. Reuse Assistant: Components decomposition of Reuse Assistant ... 48
Figure 18. Reuse Assistant mock-up: Cross-system reuse scenario .. 49
Figure 19. Reuse Assistant mock-up: Supporting equivalence mapping process .. 50
Figure 20. Reuse Assistant: Showing reuse opportunities based on equivalence relations 51
Figure 21. Fragment substitutions exemplification, taken from [40] ... 52
Figure 22. Editors' architecture ... 53
Figure 23. Third party integration ... 54
Figure 24. Architecture of the seamless integrator plugin enabling process-related variability management .. 55
Figure 25. Models interplay enabling management of process lines ... 56
Figure 26. UMA-based model of the ECSS process fragment ... 57
Figure 27. VSpec model regarding a portion of ECSS-E-ST-40C .. 57
Figure 28. Resolution model ... 58
Figure 29. Realization model .. 58
Figure 30. Backward propagation of the changes onto the original model .. 59
Figure 31. Recommendation table from ISO 26262-4.. 61
Figure 32. ±ŀǊƛŀōƛƭƛǘȅ ƳŀƴŀƎŜƳŜƴǘΣ !{L[. ŀƴŘ wŜŎƻƳƳŜƴŘŀǘƛƻƴ ƭŜǾŜƭ άҌέ ŀǊŜ ŘŜǘŜǊƳƛƴŜŘΣ {ŜŎ[ƛǎ ƴƻǘ ŘŜŦƛƴŜŘ

 .. 62
Figure 33. VSpec diagram: Concept phase of an integrated safety and security process (ASIL:=B) 63
Figure 34. Resolution diagram: Concept phase of an integrated safety and security process (ASIL:=B) 64
Figure 35. Realization diagram and imported EPF-C model (Placement for Fragment Substitution in red) 64
Figure 36. EPF-C model before (left) and after replacement of FTA (right) .. 65
Figure 37. Process for verification in WEFACT ... 65
Figure 38. Models interplay enabling management of product lines ... 66
Figure 39. Architecture of the seamless integrator plugin enabling product-related variability management .. 67
Figure 40. ACS component model given in CHESSML .. 68
Figure 41. VSpec Model regarding Attitude Control System (ACS) ... 69
Figure 42. Resolution Model regarding Attitude Control System (ACS).. 69
Figure 43. Realization Model regarding Attitude Control System (ACS) ... 70
Figure 44. CHESS Views .. 71
Figure 45. SSTH (Sun SensorsTHrusters) ... 72
Figure 46. SSRW (Sun Sensors Reaction Wheels) .. 72

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 7 of 185

Figure 47. STTH (Star Tracker THrusters) .. 73
Figure 48. STRW (Star Tracker Reaction Wheels) .. 73
Figure 49. SSTH, SSRW, STTH and STRW Configurations .. 74
Figure 50. Intra-Domain Variability Modelling .. 75
Figure 51. Intra-Domain Variability Resolution ... 76
Figure 52. Intra-Domain Variability Realization ... 76
Figure 53. Infineon Automotive Electronic Computing Unit Model ... 79
Figure 54. Lange Aviation Central Computing Unit Model ... 80
Figure 55. VSpec representing the cross-domain product line... 81
Figure 56. Variability Resolution for Automotive .. 81
Figure 57. Automotive ECU realization ... 81
Figure 58. Models interplay enabling management of assurance case lines .. 82
Figure 59. Argumentation for FLEDS in OpenCert ... 83
Figure 60. VSpec model regarding FLEDS .. 84
Figure 61. Resolution models regarding FLEDS ... 84
Figure 62. Realization model regarding FLEDS .. 85
Figure 63. VSpec Model regarding ECSS-related SW Development Process and Attitude Control System (ACS)

 .. 86
Figure 64. Resolution Model regarding ECSS-related SW Development Process and Attitude Control System

(ACS) .. 86
Figure 65. Models interplay enabling management of process product and assurance case lines.................... 87
Figure 66. Impact analysis and change propagation in families/lines .. 88
Figure 67. MDE-based seamless safety-security analysis targeting reusable products design 89
Figure 68. EMF Diff/Merge Principle ... 90
Figure 69. Diff/Merge implementation in Safety Architect .. 90
Figure 70. Merge of two Safety Architect models ... 91
Figure 71. Differences between two models ... 91
Figure 72. Import from CHESS to Safety Architect ... 92
Figure 73. Overview of the Farkle implementation of model-based testing... 96
Figure 74. Elasticsearch overview .. 97
Figure 75. Interaction between P1 indexing tool, search app and Kibana dashboard 98
Figure 76. Relationships denormalization ... 99
Figure 77. Score information as meta-data ... 100
Figure 78. Utilization of Elasticsearch based APIs .. 101
Figure 79. Process-based arguments generation (Planning Phase) .. 102
Figure 80. Overview of the proposed method... 102
Figure 81. Requirements and Process modelling in EPF Composer .. 104
Figure 82. Result after detecting omission of key evidence fallacies.. 106
Figure 83. Generated argumentation model and diagram .. 108
Figure 84. Process-based arguments generation (Execution Phase) .. 109
Figure 85. Product-based argument generation .. 111
Figure 86. Compliance Management Vision, adapted from [155]. ... 116
Figure 87. Abstract framework of Regorous, taken from [72].. 121
Figure 88. Regorous architecture .. 122
Figure 89. Main components of SPINdle reasoner. Taken from [80] .. 123
Figure 90. Property Specification Patterns Hierarchy .. 124
Figure 91. Product development at the software level .. 126
Figure 92. Example of requirement for ISO 26262-software unit design and implementation 127
Figure 93. Trace 1 of the software unit design and implementation phase.. 128
Figure 94. A weakly compliant process checked by Regorous ... 129
Figure 95. Modelling of conditional requirements for ISO 26262: Software unit design and specification 130
Figure 96. Terms required for modelling rules for ISO 26262-Software unit design and Specification............ 131

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 8 of 185

Figure 97. Rules specification for ISO 26262-Software unit design and specification 132
Figure 98. Definition of the traces for the process Software unit design and specification 133
Figure 99. Complete model of ISO 26262-Software unit design and specification ... 134
Figure 100. Adding EPF Composer + rule editor .. 136
Figure 101. Replacing Activiti BPMN 2.0 with EPF Composer + rule editor .. 137
Figure 102. Replacing BPMN with EPF Composer + rule editor + extended

ComputeObligations/CheckCompliance components ... 137
Figure 103. AMASS Process Compliance Designer ... 138
Figure 104. Requirement that represents the initiation of the software unit design and implementation (sub-

)phase .. 142
Figure 105. Requirement that represents the selection of disjoint implementation strategies 142
Figure 106. Requirement that represents the selection of mandatory notations .. 143
Figure 107. AMASS Compliance Checking Vision ... 143
Figure 108. Rules required for compliance checking of a small example in ISO 26262 145
Figure 109. Standard's requirements plugin ... 145
Figure 110. Specification of rule 3.1 .. 145
Figure 111. Rule set specification ... 146
Figure 112. Process elements plugin ... 146
Figure 113. Annotated task .. 146
Figure 114. Activity Diagram of the Software Unit Design Process .. 147
Figure 115. Algorithm for Obtaining the Rule Set .. 148
Figure 116. Algorithm for Obtaining the Process Structure ... 150
Figure 117. Algorithm for Obtaining the Compliance Effects Annotations ... 151
Figure 118. Rule set generated ... 152
Figure 119. Process structure generated .. 153
Figure 120. Compliance annotations generated .. 153
Figure 121. Excerpt of the metamodel for the specification of safety compliance needs 156
Figure 122. Ontology layers in KM .. 157
Figure 123. 9ȄŀƳǇƭŜ ƻŦ ǎǇŜŎƛŦƛŎŀǘƛƻƴ ƻŦ ŀ ǎǘŀƴŘŀǊŘΩǎ ƛƴŦƻǊƳŀǘƛƻƴ ǿƛǘƘ YƴƻǿƭŜŘƎŜ aŀƴŀƎŜǊ 158
Figure 124. SoPLE-targeted GQM+ Strategies Model .. 162
Figure 125. Expanded version of Figure 40 ... 177
Figure 126. Expanded version of Figure 41 ... 178
Figure 127. Expanded version of Figure 45 ... 179
Figure 128. Expanded version of Figure 46 ... 180
Figure 129. Expanded version of Figure 47 ... 181
Figure 130. Expanded version of Figure 48 ... 182
Figure 131. Re-configured argumentation fragment ... 183

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 9 of 185

List of Tables

Table 1. Summary of STO4-related Use Cases [D1.1], where y stands for low priority, Y stands for high
priority and N/A stands for Not Applicable (in the context of AMASS) .. 13

Table 2. Summary of STO4-related high-level requirements and related CSs ... 16
Table 3. Common operations definition for the System Knowledge Base ... 36
Table 4. Operations for the management of the System Knowledge Base and the System Assets Store 37
Table 5. OSLC Resource Shapes for OSLC Defined Resources within the KM Domain 40
Table 6. Mapping of WSDL/SOAP operations to OSLC concepts. .. 43
Table 7. Delegated operations for an OSLC KM provider (SKB). .. 44
Table 8. Delegated operations for an OSLC KM provider (SAS). .. 44
Table 9. Mapping between avionics and automotive regulations ... 60
Table 10. Mapping between process model, argumentation model and GSN .. 107
Table 11. Mapping between WEFACT and OpenCert model elements ... 110
Table 12. STO4-Reuse Assistant as well as Product/Process/Assurance Case Line Specification + semi-

automatic generation of arguments ... 113
Table 13. STO4-Product/Process/Assurance Case Line Specification + semi-automatic generation of

arguments ... 114
Table 14. Property Specification Patterns Scope .. 123
Table 15. Pros and cons of the architectural design solutions .. 139
Table 16. Mapping of the patterns scope into FCL rule notation .. 141
Table 17. Annotated process description ... 147
Table 18. Mapping Elements from UMA to the Rule Set .. 148
Table 19. Mapping Elements from UML Diagram to a BPMN and Canonical Process 148
Table 20. Mapping Elements from UMA/UML Metamodel to the Compliance Check 150
Table 21. Compliance checking ... 154
Table 22. Ontology-based compliance management ... 160

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 10 of 185

Executive Summary

This deliverable (D6.3 - Design of the AMASS tools and methods for cross/intra-domain reuse (b)) is conceived

as an update3 of D6.2 - Design of the AMASS tools and methods for cross/intra-domain reuse (a) [18], which
was delivered as a confidential document. D6.3 is the final and public outcome of Task 6.2 Conceptual
Approach for Cross-Domain and Intra-Domain Reuse.

This deliverable presents the final design of the AMASS cross/intra-domain reuse vision, embracing three
dimensions: process, product, and assurance case. It also targets the final design of the strengthened vision
for compliance management.

The final design of both visions (cross/intra domain and compliance management) embraces functionalities
related to reuse assistance, semantics-based mapping of standards, specification of families of
processes/products/assurance cases, and logic-based automatic compliance checking. The final design is
conceived as an extension of the AMASS Reference Tool Architecture, initially specified in D2.2 [4], then in
D2.3 [5], and finally in D2.4 [6]. The design of both visions consists of the final specification of the architectural
solution and of the identification of the extension of the AMASS Common Assurance and Certification Meta-
model (CACM), to support the Scientific Technical Objective (STO) regarding Cross/Intra-Domain Reuse, STO4,
and compliance management.

Relations with D3.3 [10], D4.3 [13], and D5.3 [16] are explained, whenever reuse-related concerns involve
other work packages.

The solutions, presented in this deliverable, will guide the implementation of the third iteration of the AMASS
prototype, P2, in Task 6.3 (Implementation for cross/intra-domain reuse) for what regards the cross/intra-
domain reuse features of the AMASS platform as well as its strengthened compliance management features.

Finally, Task 6.4 (Methodological Guidance for cross/intra-domain reuse) will build upon the results identified
in this deliverable to provide methodological guidance to the AMASS end-users for the application of the
cross/intra-domain reuse solution.

3 The sections modified with respect to D6.2 have been marked with (*), then the details about the differences and
modifications are provided in Appendix C: Document changes with respect to D6.2 (*)

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 11 of 185

1. Introduction (*)

In the context of Cyber Physical Systems (CPSs), the pace of assurance and certification will be determined by
the ability of both industry and certification/assessment authorities to overcome technical, regulatory, and
operational challenges. A key regulatory-related challenge is faced when trying to reuse CPS products qualified
or certified for one application domain in another one. This challenge emerges because different domains are
constrained by different standards and the full assurance and certification process must be applied as if it were
a totally new product, thus reducing the return on investment of the reuse decisions. Similarly, reuse is often
hindered even within the same domain, when trying to reuse CPS products proven in use in one project in
another, where assumptions change (e.g., about the environment), and sometimes also the criticality level.
The increased connectivity of CPSs also contributes to hindering their reuse. Security-uninformed CPS
products, developed for non-connected safety-critical systems, require new solutions for enabling cross-
concern reuse when concern-specific regulations are in place and concern-specific threats impact CPSǎΩ
dependability.

WP6 aims at addressing these challenges related to cross and intra-domain reuse as well as cross-concern
reuse. More specifically, this deliverable (D6.3) documents the work conducted in the scope of Task 6.2, which
mainly addresses the design of the AMASS tools and methods related to: Goal 2 (G2), the corresponding project
objective O3, and the project Scientific and Technical Objective STO4. G2, O3 and STO4 are recalled here to
make the deliverable self-contained.

G2 demonstrates a potential reuse of assurance results (formerly either qualified or certified), leading to 40%
of cost reductions for component/product (re)certification/qualification activities.

O3 consolidates a cross-domain and intra-domain assurance reuse approach to improve the mutual
recognition agreement of compliance approvals and to help assessing the return of investment of reuse
decisions.

STO4 focuses on Cross/Intra-Domain Reuse and is constituted of three sub-objectives:

¶ Semantics-based Standards Equivalence. This sub-objective is expected to solve or at least reduce the
terminological and semantic inconsistencies, which are present across different application domains

and which hinder an efficient reuse of assurance artefacts4.

¶ Mapping, Reuse Assistant (Cross/Intra Domain). This sub-objective is expected to ease the
understanding of the role played by each activity and artefact in the overall assurance effort.

¶ Product/Process/Assurance-Case Line Specification. This sub-objective is expected to ease variability
management within interconnected families of products (product lines), processes (process lines), and
Assurance Cases (assurance case lines).

WP6-Task 6.2 contributes to the achievement of these sub-objectives as follows:

¶ Regarding semantics-based Standards Equivalence Mapping, AMASS extends the OPENCOSS
functionality for mapping between standards by supporting ontology-based analysis for the creation
of the maps.

¶ Regarding the Reuse Assistant (Cross/Intra Domain), AMASS supports users in evaluating whether
reuse of the assurance assets is feasible (appropriate) or determining what further analysis is required
to justify claims of compliance. The Reuse Assistant will benefit from the compositional argument
approach, which was developed by SafeCer and OPENCOSS to achieve a characterization of pre-
existing argument modules in order to meet the intent of the applicable standards.

4 For sake of clarity, it is worth noting that in this document artifact and artefact co-exist. The AMASS documents are
written in UK English (artefact). However, OMG specifications make use of US English and the OMG SACM specification
contains the meta-class artifact.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 12 of 185

¶ Regarding Product/Process/Assurance Case Line Specification, AMASS develops a systematic
approach for dealing with software/hardware variability management, but also with process and
assurance case-related variability. The AMASS project focuses on extending and integrating the current
methods (developed within SafeCer) in order to manage, for instance, the ripple effects (i.e., the
impact) on processes as well as assurance cases, as results of changes in product requirements.

In addition, WP6-Task 6.2 is responsible for further developing the Compliance management building block,
which was delivered as part of the AMASS first prototype, called Core. In particular, the expected development
within T6.2 consists of elaborating solutions for enabling automatic process-based argumentation generation,
ontology-based compliance management, and compliance checking.

Based on the proposed solutions, a way forward, enabling the implementation of the AMASS visions regarding
compliance management and reuse, is given.

The rest of the deliverable is organized as follows:

¶ Chapter 2 gives a recap concerning industrial needs with respect to STO4.
¶ Chapter 3 gives the AMASS vision regarding cross/intra domain reuse.

¶ Chapter 4÷6 present the conceptual solution, the design solution, and the way forward for the
implementation solution regarding the AMASS vision for cross/intra domain reuse.

¶ Chapter 7 provides the AMASS extended vision regarding compliance management.
¶ Chapters 8÷11 develop such vision by presenting solutions at conceptual, design, and implementation

levels, focusing on semi-automatic compliance checking.

¶ Chapters 12÷13 further develop such vision by presenting solutions at conceptual, design, and
implementation levels, focusing on ontology-based solutions.

¶ Chapter 14 proposes a set of metrics aimed at measuring the advantage, which could be gained
through adoption/application of the proposed solution for cross/intra domain reuse.

¶ Finally, Chapter 15 draws some conclusions.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 13 of 185

2. Recap concerning industrial needs with respect to STO4 (*)

AMASS expected results will be benchmarked by eleven Case Studies:

¶ CS1: (Industrial Automation) Industrial and Automation Control Systems;

¶ CS2: (Automotive) Advanced driver assistance function with electric vehicle sub-system;

¶ CS3: (Automotive) Collaborative automated fleet of vehicles;

¶ CS4: (Space) Design and safety assessment of on-board software applications;

¶ CS5: (Railways) Platform Screen Doors Controller;

¶ CS6: (Railways) Automatic Train Control & Interlocking Formal Verification;

¶ CS7: (Avionics & Automotive) Safety assessment of multi-modal interactions in cockpits;

¶ CS8: (Automotive) Telematics function;

¶ CS9: (Air Traffic Management) Safety-Critical SW Life-cycle of a Monitoring System for Navigational Aid
(NavAid);

¶ CS10: (Space) Certification basis to boost the usage of Multiprocessor System-on-Chip (MPSoC)
architectures;

¶ CS11: (Space) Design and efficiency assessment of model-based Attitude and Orbit Control software
development.

All case studies except CS7 and CS2 are single-domain centred. Thus, their main interest is intra domain reuse.
CS7 focuses on avionics, however it presents scenarios related not only to intra domain reuse but also scenarios
related to the exploration of cross-domain reuse with focus on reuse of process-related information from
automotive to avionics regarding hardware COTS. Similarly, CS2 focuses on automotive, however it presents
also one scenario related to the exploration of cross-domain reuse with focus on reuse of product-related
information from avionics to automotive. This scenario however is not expected to be developed in detail. It
is only expected to be a very preliminary learning experience.

As it was initially elicited in D1.1 [1] and then refined (due to changes within the consortium), the above-listed
eleven case studies focus on the different dimensions of reuse. Table 1 summarizes the industrial needs with
respect to STO4.

Table 1. Summary of STO4-related Use Cases [D1.1], where y stands for low priority, Y stands for high priority and N/A
stands for Not Applicable (in the context of AMASS)

STO4 Intra Domain Reuse CS1 CS2 CS3 CS4 CS5 CS6 CS7 CS8 CS9 CS10 CS11

Product Y Y Y N/A N/A Y Y N/A y Y Y

Process y y Y N/A N/A Y y y y N/A Y

Assurance Case (Product) Y Y Y N/A N/A Y Y N/A y Y Y

Assurance Case (Process) y y Y N/A N/A Y N/A y y N/A Y

From Table 1, it emerges that nine CSs are related to STO4. Their specific needs with respect to the different
dimensions are recalled in the following subsections.

2.1 Industrial needs with respect to process engineering

This subsection recalls the industrial needs with respect to process engineering. More specifically, the following
bulleted list recalls the specific needs stemming from the following AMASS Case Studies (CSs), as taken from
former comprehensive list:

¶ CS1: Given the interest in product reuse and in compliance management, indirectly an interest in reuse
of process-related information emerges.

¶ CS3: Reuse or enhancement of current safety methods (HARA) for other concerns, such as cyber-

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 14 of 185

security (TARA).

¶ CS6: Reuse of compliance management artefacts, e.g. safety plans.

¶ CS8: Methodology for handling interplay between concerns and/or re-use between concerns for multi-
concern assurance and assessment for multiple standards.

¶ CS11: Reuse of process-based engineering and assurance artefacts.

In D6.1 [17], the reuse scenarios related to the process-dimension were identified. They are briefly recalled
here:

1. Regulatory jurisdiction: Critical systems may operate in places where different jurisdictions apply, for
example a plane landing in different countries. In this case, different jurisdictions apply to the same
product/component and the certification artefacts generated for one jurisdiction can be used in
order to achieve compliance with other jurisdiction(s). When components are expected to be used in
different countries, the different jurisdictions of each country shall be taken into account during the
component design.

2. Communities of practice: Reuse of the methodologies and practices related to one or more activities
mentioned in a standard and shared between different communities with the same objectives.

Based on D1.1 [1], none of the CSs focuses on regulatory jurisdictions. The main focus is on communities of
practice. Despite the absence of a specific CS focusing on regulatory jurisdictions, a brainstorming session was
held, during a meeting, to identify cases where regulatory jurisdictions may play a decisive role. Such a session
was held in order to challenge our design solutions and make them robust in case of additive or conflicting
requirements stemming from different jurisdictions. Specifically discussed was a hypothetic case of a Bi-
Standards ERTMS (European Rail Traffic Management System)/TVM (Transmission Voie-Machine, English:
track-to-train transmission, which is a form of in-cab signalling) on-board system that crosses French/Swiss
border. In this case, depending on the country, the on-board system is running two conflicting behaviours,
prescribed for the same system and appropriate context switching has to be guaranteed.

The Swiss national requirement - OFT (Office Fédéral des Transports): CH-TSI LOC&PAS-022 [113] is in conflict
with the French national requirement - EPSF (Établissement Public de Sécurité Ferroviaire): SAM S 706 [114].
To reduce time and cost while spotting inconsistencies, new means are needed. More specifically, specification
means, connecting requirements stemming from standards and architectural requirements, are essential. For
instance, the solution presented in Chapter 5.3.5 is expected to serve this purpose, where constraints can be
specified to limit the inclusion/exclusion of functionalities depending on specific choices (e.g., contextual
choices related to jurisdictions).

Essential might also be automatic compliance checking methods able to identify contradictions and support
standardization bodies to solve the issues at the source. For instance, the solution presented in Chapter 10 is
expected to serve this purpose.

2.2 Industrial needs with respect to product engineering

This subsection recalls the industrial needs with respect to product engineering. More specifically, the
following bulleted list recalls the specific needs stemming from the following AMASS Case Studies (CSs), as
taken from former comprehensive list:

¶ CS1: Reuse in the case of product upgrades and product families.

¶ CS2: Reuse of self-assessment artefacts when undergoing partial changes, be it a variant of a product
family or a change of components due to new suppliers.

¶ CS6: Reuse of product evidence such as formal proofs.

¶ CS7: Reuse of the existing artefacts (Automated safety assessment results, formal verification results)
within aerospace domain.

¶ CS8: Reuse of e.g. analysis and verification results between different concerns (e. g., safety and
security) in a multi-concern assurance case.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 15 of 185

¶ CS10 as well as CS11: Reuse of pre-qualified components, or components that have been certified in a
previous space mission.

In D6.1 [17], the reuse scenarios related to the product were identified. In this subsection, they are briefly
recalled:

1. (Same project) Upgrade ς new feature: A component associated with a particular hardware and/or
software will include new features that the previous component did not have. There is a basic
component that will include a new feature in its next version.

2. (Same project) Upgrade ς Enhance performance: A component associated with a particular hardware
and/or software will be modified as part of its maintenance and will keep the same functionalities as
the previous version but with enhanced performance.

3. Similar project: A component is reused and integrated into a new system with the same context and
domain as previously used. The functionalities needed in both projects are the same and so the
component can be straightforwardly reused.

4. Similar Project - Product Lines: A software product line is a set of software-intensive systems that
share a common, managed set of features satisfying the specific needs of a particular market segment
or mission and are developed from a common set of assets in a prescribed way.

5. Different project - same domain: A component developed for a specific project in a certain domain is

reused in another project with a different context5, but in the same domain. The operational
environments and/or systems in which the component is integrated might be different.

6. Different project - different domain: General-purpose components (e.g., operating systems) may be
reused not only in projects from the same domain but also in projects from different domains.

7. (C)OTS: In this case, the reuse is of a componeƴǘ ŘŜǎŎǊƛōŜŘ ŀǎ άό/ƻƳƳŜǊŎƛŀƭύ hŦŦ-The-{ƘŜƭŦέΦ /h¢{
components are usually general-purpose ones that can apply to different domains and purposes. OTS
(without leading ά/ƻƳƳŜǊŎƛŀƭέ ƛƴ ǘƘŜ ǘŜǊƳύ are instead developed in house and may or may not cross
the original domain.

In the scientific literature, COTS6 (if software) are identified as Software of Unknown Pedigree (SOUP)
when it is not proven (documented) that their development has followed the best practices mandated
by the applicable domain standards. ComǇƻƴŜƴǘǎ ǿƛǘƘ ŀ άǇŜŘƛƎǊŜŜέ ŀǊŜ ŦƻǊ ƛƴǎǘŀƴŎŜ L{h нснсн-
compliant SEooC (Safety Elements out of Context) [90].

2.3 Industrial needs with respect to assurance case engineering

This subsection recalls the industrial needs with respect to assurance case engineering. More specifically, the
following bulleted list recalls the specific needs stemming from the following AMASS Case Studies (CSs), as
taken from former comprehensive list:

¶ CS6: Reuse of assurance casesΩ structure.

¶ CS7: Reuse of the existing artefacts (Safety assessment argumentation methods).

¶ CS9: Automatic generation of reports, checklists and evidences to support the certification. Automatic
check to verify that all the objectives, stated in the standards, have been satisfied.

¶ CS11: Systematic reuse of product-based assurance artefacts.

In D6.1 [17], the reuse scenarios related to the assurance case were identified. In what follows, they are briefly
recalled:

5 Note that the different contexts in which a differently configured component is deployed could to some extent be
addressed via product line techniques. The set of differently configured components may also be interpreted as a product
line and thus product line best practices can be used.

6 Note that a COTS could be addressed via product line best practices since a COTS could to some extent be seen as a set
of components with different configuration parameters.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 16 of 185

1. Argumentation ς Patterns: Assurance case patterns are considered as one of the main approaches for
managing reuse of assurance. An assurance case pattern provides a means of explicitly and clearly
documenting the structure of common reasoning as found in assurance cases, and it promotes the
reuse of best practices for assurance.

2. Argumentation ς Modules: Assurance case modules are parts of an overall assurance case containing
part of an argument and relevant citations of evidence.

For instance, when contributing to an argument aimed at showing process compliance, an assurance
case module may correspond to an interrelated set of assurance activities, scope of responsibilities of
a particular engineering organisation, or well-defined sub-system or equipment used within the overall
CPS platform.

Given the elicited needs, within D2.1 [3], high-level requirements where specified aimed at addressing such
needs. Table 2 recalls such requirements. Note that in the following chapters, at the end of each designed
solution, some tables detailing the covered requirements and their descriptions are presented.

Table 2. Summary of STO4-related high-level requirements and related CSs

 Requirement (as it was formulated in D2.1 [3]) Case Study (CS)

STO4
Intra Domain

Reuse

Intra-Domain, Intra standard, Reuse Assistance CS1, CS9

Intra-Domain, Cross version, Reuse Assistance CS1

Reusable off the shelf components CS1, CS11

Intra-Domain, Intra standard, Different Stakeholders, Reuse/Integration
Assistance

CS2, CS11, CS10

The AMASS tools must support variability management at process level CS3, CS7, CS11, CS8

The AMASS tools must support variability management at product level CS1, CS2, CS11

The AMASS tools must support variability management at assurance

case level

CS11

Semi-automatic generation of product arguments CS6, CS11, CS3

Semi-automatic generation of process arguments CS6, CS9

 Requirement (as it was formulated in D2.1 [3]) Case Study (CS)

STO4
Cross Domain

Reuse

Cross-Domain Reuse Assistance CS7, CS2

The AMASS tools must support variability management at process level CS7

The AMASS tools must support variability management at product level CS2

Semantics-based mapping of standards CS7

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 17 of 185

3. AMASS vision for cross/intra domain reuse

The vision of AMASS for cross/intra domain reuse is exemplified in Figure 1, which is composed of three sub-
figures (a, b, and c). The sub-figures are vertically placed and depict respectively the semantics-based standards
mapping, the reuse assistant, and the specification of families of processes/products/assurance cases.
Coherently with the envisioned way forward, which was sketched in D6.1 [17], this vision integrates and
extends the results achieved by OPENCOSS and SafeCer projects. This vision incorporates and cross-fertilizes
άfrom-scratchέ ǊŜǳǎŜ όǊŜǳǎŜΣ ǿƘƛŎƘ ƛǎ ƴƻǘ Ǉƭŀƴned/enabled from concurrently engineered assets, part of the
same family) and not-from-scratch reuse (reuse, which, instead, is planned/enabled from concurrently
engineered assets, part of the same family).

More specifically, on the top of Figure 1 (subfigure (a)), from-scratch reuse is in focus. In particular, semantics-
based automatic identification of commonalities is proposed as a solution to identify reuse possibilities from
scratch. This solution builds on top of initial explorations, conducted in the framework of SafeCer and in this
document empowered by considering recent advances in the semantic web and in tools interoperability. For
sake of clarity, it should be noted that subfigure (a) is taken from [87] and was the underlying approach that
was already extensively recalled in D5.1 [14].

Once commonalities are identified, the reuse assistant (sub-figure (b)) is expected to exploit them in order to
perform a more powerful compliance gap analysis.

Moving on to the bottom of the Figure (subfigure (c)), systematic reuse is in focus. In this case, reuse is not
expected to be done from scratch or ad-hoc. Gathered experience is here systematized. Gathered experience
is expected to be derived from the left side of the figure. Systematization is conducted by properly engineering
the domain and then by deriving desired processes/products/assurance cases via valid configuration. For sake
of clarity, it should be noted that subfigure (a) is taken from [86] and was already included and extensively
explained in D6.1 [17].

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 18 of 185

Figure 1. AMASS Vision for Cross/Intra Domain Reuse

!

AMASS 3Event,	Location,	Month	Day,	Year

Open	
Services	for	

Lifecycle	
Collaborat ion

EN	50126	
Hazard	

ident if icat ion

EN	50126	Risk	
Analysis	Phase

ISO	26262	
HARA	clause

ISO	26262
Hazard	

ident ificat ion

ISO	26262
Safety	case

representat ion

EN	50126
Safety	case

representat ion

From	Scratch

Re u se Ass i s t an t

Com p l i an c e Gap An al y s i s

Not	from	Scratch

(a)

(b)

(c)

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 19 of 185

4. Conceptual solution

This chapter addresses the conceptual solution for intra and cross-domain reuse. To realise the vision
presented in Chapter 3, first of all it is necessary to identify which candidate reusable elements should be
targeted and at which granularity. As it was recalled in Chapter 2, various reuse scenarios are of interest in the
context of the AMASS Use Cases. These scenarios embrace three coarse grained macro elements: process,
product and assurance case.

However, the monolithic reuse of these coarse-grained macro elements is not feasible. The internal structure
of these elements needs to be revealed in order to identify more fine-grained reusable micro elements. Once
the macro and micro elements are conceptually identified, the intended AMASS conceptual and design
solutions, aimed at targeting reuse of specific elements or structures, are proposed.

4.1 Process-related reuse

This section explains the concepts and conceptual solutions that are needed to implement the cross and intra
domain reuse-related functionalities (Prototype P1 and P2), when process-related information is in focus.

4.1.1 Process-related macro and micro (reusable) elements (*)

To enable reuse of process-related information, first of all macro and micro reusable elements need to be
identified. Typically, a basic process structure is constituted of: a unit of work, (a set of) role(s), (a set of) work
product(s), (a set of) tool(s), and (a set of) guideline(s).

¶ Unit of work: indicates what should be done.

¶ Role: indicates who is responsible for the execution of the work.

¶ Work product: indicates the documents, more generally artefacts, which are expected to be produced
during the execution of the work or used as input information to be able to execute the work.

¶ Tool: indicates the application that should be used to automate/support the execution of the work.

¶ Guideline: indicates specific guidance, methods and principles that should be followed during the
execution of the work.

All these constituting elements can be considered as reusable micro elements. The above-given basic process
structure can be used to create more complex process structures: by chaining and/or by nesting. When an
entire basic structure or a more complex process structure can be reused, we are already addressing reusable
macro elements, called process patterns.

Note that the above listed concepts are part of the most widely used languages for process modelling. In
process engineering-related literature, various reference life-cycle models have been proposed for developing
systems (e.g., waterfall, V-model, etc.). In the context of safety-critical CPSs, the V-model is the one that is
frequently suggested within e.g. automotive standards.

Note that in the context of certification/self assessment it is fundamental to be able to model processes that
represent plans (as safety plans) as well as processes that represent the actual execution of the plans. In ISO
нснснΣ tŀǊǘ нΣ /ƭŀǳǎŜ рΦнΦнΣ ŦƻǊ ƛƴǎǘŀƴŎŜΣ ƛǘ ƛǎ ǎǘŀǘŜŘ ǘƘŀǘ άThe key management tasks are to plan, coordinate
and track the activities related to functional safetyέΦ ¢ƘŜ ǊŜǎǳƭǘ ƻŦ ǇƭŀƴƴƛƴƎ ƛǎ ŀ ǎŀŦŜǘȅ ǇƭŀƴΦ ¢ƘŜ ǊŜǎǳƭǘ ƻŦ
coordination and tracking is the model of the executed plan (where the deviations are also highlighted).

More specifically, in ISO 26262, Part 2, Clause 5.4.2.2, it is also stated that the organization shall institute,
execute and maintain organization-specific rules and processes to comply with the requirements of ISO 26262.

Moreover, these models (the model of the plan and the model of the execution) should be tailored according
to the criticality level of the system under development as well as according to the recommended safety,
performance, protection or security level. Thus, these levels represent additional concepts that need to be
modelled to support the tailoring. In addition, since different domains have different notions for these levels,

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 20 of 185

ways to compare them, when possible, should also be considered.

Given this tailoring possibility, it becomes clear that a single process model does not fit all development needs.
One size does not fit all. An entire family of processes (process line) is embraced. Thus, additional concepts are
needed to enable the systematization of reusable process elements between family members. Such concepts
are:

¶ Process-related commonality: indicating the process elements that do not vary and that characterize
the family of processes.

¶ Process-related variability: indicating the process elements that vary and that characterize the
individuals within a family of processes.

¶ Process-related variation point: indicating points of variation where a process element may represent:
o Process-related options
o Process-related alternatives

Families of processes in the context of safety-critical systems engineering are called:

¶ Safety-oriented Process Line (SoPL) [53], when families are characterized by the processes derived
from safety-related standards.

¶ Security-informed Safety-oriented Process Line (SiSoPL) [52], when families are characterized by the
processes derived from safety-related and security-related standards, more generally, from multi-
concern standards.

The above-listed and discussed process-related macro and micro elements can be easily identified within the
current certification frameworks. It is however well known that there are ongoing initiatives e.g., in the US,
promoted by Federal Aviation Administration (FAA), as well as in Europe, developed within the RESSAC (Re-
Engineering and Streamlining the Standards for Avionics Certification) project, aimed at streamlining avionics
certification.

From what has been published so far [163], the goal of these initiatives is to move back to fundamentals and
identify a set of overarching properties. These identified properties are:

1. Intent ς The defined intended behavior is correct and complete with respect to the desired behaviour.

2. Correctness ς The implementation is correct with respect to its defined intended behavior, under
foreseeable operating conditions.

3. Acceptability ς Any part of the implementation that is not required by the defined intended behavior
has no unacceptable safety impact.

Given these properties, which in turn are given at conceptual level and applicable at system/subsystem level,
the certification process to show them becomes less time consuming. However, also within this new approach,
a planning phase is defined and processes need to be defined and the executed.

More specifically, the requirements for processes that have been elaborated and documented in the initial
published results are:

¶ Identifies the aim of the process.

¶ Identifies the type of evidence to be produced.

¶ Defines the means of performing the process.

¶ Defines any limitations.

¶ Identifies the environment to be used for the process.

¶ Requires the identification of the artefacts used in the process be recorded.

¶ Requires the identification of any additional artefacts used for supporting the processes be recorded.

¶ Defines any additional constraints that should be satisfied to perform the process.

Thus, the AMASS approach, conceived within this chapter and designed in the next one, remains valid.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 21 of 185

4.1.2 Summary of previously conceived and validated conceptual solutions

Deliverable D2.2 [4], as well as its latest update D2.4 [6], contains the documentation related to the design
solutions for the management ƻŦ ǇǊƻŎŜǎǎ ŀƴŘ ǎǘŀƴŘŀǊŘǎΩ ƛƴŦƻǊƳŀǘƛƻƴ, including mapping between processes
and standards. To model processes representing plans, an UMA (Unified Method Architecture) meta-model-
based solution was proposed. It should be recalled, for sake of clarity, that UMA was initially introduced as an
evolution of the OMG (Object Management Group)Ωǎ {t9a мΦм [116] specification and then it further evolved
ǘƻ ƻŦŦŜǊ ŀ ŎŜǊǘŀƛƴ ŎƻǾŜǊŀƎŜ ƻŦ ǘƘŜ haDΩǎ {t9aнΦл [117] specification.

Figure 2 recalls the UMA-based solution that integrates the concepts presented in Section 4.1.1. In Figure 2,
the meta-classes representing roles, work products, units of work (e.g., tasks), as well as process patterns,
called in UMA as Capability patterns, can be easily recognized.

Figure 2. UMA-based solution partly supporting process reuse

To model the processes representing executed processes, a refactoring of CCL (Common Certification
Language), result of OPENCOSS, was proposed and developed within WP5. From the validation phase,
documented in D2.6 [5], it emerged that the modelling of the micro/macro reusable elements is satisfactory.

UMA however does not offer a flexible and powerful support for commonality and variability modelling.

4.2 Product-related reuse

This section first provides a recap regarding the challenges and needs associated to product reuse, and then it
explains the concepts and conceptual solutions that are needed to implement the cross and intra domain
reuse-related functionalities (Prototype P1 and P2), when product-related information is in focus.

4.2.1 Recap on challenges related to product reuse

4.2.1.1 Out of context/In-context

Product related reuse strives for building a component once and re-use it in different applications or products.
Since the scope of reuse is sometimes difficult to define, we speak in general of reusable assets, or, when it
comes to model-based design, of (model) elements. The elements may represent whole subsystems, i.e.,

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 22 of 185

composite components (HW, SW, both), or just parts of them (e.g. atomic components or components with
lowered functionalities), for example a SW component with only a subset of its functional capabilities.
Together with these design model elements a set of accompanying documentation is exchanged and reused,
e.g. (safety/security) requirements or certain parts of safety analysis such as FMEDA (Failure Modes, Effects
and Diagnostic Analysis) or FTA (Fault Tree Analysis) that analyse the failure behaviour and put it in relation to
a (sub-)system context.

In order to reuse a component, which has been designed, developed, and analysed with respect to functional
safety, an elaboration on these (system) context dependencies of the component itself is required. These
dependencies can be seen as interfaces and need to be taken into account to define a clear safety contract,
which is then reflected in the safety analyses. For example, component failure modes need to be re-visited and
their effects and causes can be assessed with various analyses such as FMEDA or FTA.

The dependencies of a component are multi-fold and exist on various levels regarding the development
process and the product context, for example:

¶ A hardware component has electrical and physical interfaces to the circuit it is integrated in.

¶ Software components have multiple interfaces to other SW components, but also to the
implementation platform (e.g. middleware, operating system, HW dependencies for memory and
interrupts, etc.).

¶ Components consisting of hardware and software might have configuration options to work in various
environments. Examples include microcontrollers with fixed HW interfaces but configurable
software/firmware/libraries, FPGA (Field Programmable Gate Array)s that can be adapted almost
freely to new contexts, complete ECU (Electronic Control Unit)s that support configurable software
and patching, etc.

¶ Physical stress (vibrations, mounting) as well as thermal energy flow, unwanted electrical interferences
or EMC disturbances between components and/or the physical/electrical environment are additional
interfaces that might be considered with respect to safety.

¶ The configuration on how a component is (re-)used is of importance for putting it into a new context,
e.g. which safety mechanisms are activated for use.

Allocated requirements ς especially for safety and security ς are the most important interface/dependency of
the component model that needs to be considered since they define the performance and characteristics of a
component. These design level, also known as model information, provides also the connection to the safety,
security, and simulation analyses.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 23 of 185

Figure 3. From out of context to in-context: the challenge of component reuse

Based on these considerations, reusing a model of a component requires also to reuse the associated analysis
artefacts such as FMEDA, FTA, Requirements, and others. These analysis models must be taken into the reuse
context and they need to be adapted, as shown in Figure 3. A component has all the interfaces/dependencies
described above (here depicted using the typical UML notation), which must be adapted to the target
application context. The figure shows for example a component model expressed in the SysML modelling
language and its related model information such as used libraries, mission profile with stress parameters, like
temperature, lifetime specification, maintenance, etc., relevant for failure rate determination, potential failure
causes and effects from/to connected components, and so on. The reusable component can be seen as a
άƳƻŘǳƭŜέ ǿƘƛŎƘ ŎƻƳŜǎ ŀǎ ŀ ƳƻŘŜƭ όƛΦŜΦ ǘƘŜ ŎƻƳǇƻƴŜƴǘ ŘŜŦƛƴƛǘƛƻƴ ƛǘǎŜƭŦύ ǿƛǘƘ ŀ ǎŜǘ ƻŦ ŀŘŘƛǘƛƻƴŀƭ ƛƴŦƻǊƳŀǘƛƻƴ
(e.g. configuration options, built-in safety mechanisms, safety requirements, etc.) which can be seen as meta-
data about the component itself. We use the term module because of lack of a better wording for this set of
related data. However, most of this data has to be processed by analysis (manual, automated) during the
integration of the component into the reuse context.

At the modelling level of a component, a formalization of the safety characteristics is required to enable reuse.
One formalization approach consists of the safety contracts described in D3.1 [8], D3.2 [9], and D3.3 [10]
deliverables of AMASS. Besides the compatibility that can be expressed there for runtime verification of safety
properties, the fault model is a design level model extension that is required to perform reliable and consistent
analysis for a reused component. One aspect here is the possible failure modes of a component and the safety
mechanisms which are built into the component or assumed from the context. This qualitative information,
together with the failure rate and use assumptions, is often a minimal set of required information for validating
how a component is affecting the context it is embedded into. Figure 4 shows some more details about these
implied interfaces of a component:

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 24 of 185

Figure 4. From out of context to in-context: focus on the interfaces

For example, a microcontroller that is reused might have been analysed and its failure characteristics might
have been assessed as a Safety Element out of Context (SEooC) or in a predecessor project context (άǇǊƻǾŜƴ-
in-ǳǎŜέΣ same domain or different application domain). The analysis results can be represented as an extension
to the component models interface, failure properties depicted in red, safety mechanism and measures in
yellow and green. When reusing such an assessed component all this safety-related information has to be
adapted (i.e. connected) to the new context. This step has to be supported by the modelling capabilities and
the tools in an (semi-)automated manner.

The situation gets even more important when taking a deeper look at reuse and integration chains, e.g. for a
Tier 1 in the automotive domain. While the Tier 1 is an integrator for a set of hardware components developing
its own software, a lot of the hardware components are reused and the demand is there to reuse and adapt
the safety analyses of these components. The semiconductor companies supplying the HW parts are also
integrators of a number of (reusable) IP design information. Therefore, reuse is challenged along this
integration hierarchy to have a consistent set of analyses for the final safety case. Figure 5 shows an example
of an FMEDA hierarchy for this example case:

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 25 of 185

Figure 5. FMEDA hierarchy within the automotive domain

Each analysis level takes input data that comes ideally with the component model which is reused. An IP
provider might deliver a set of FMEDA (or at least failure modes/failure causes analysis) to the semiconductor
manufacturer, who in turn aggregates the chip level information for use in the Tier 1 context. While the first
two analyses at IP and semiconductor level might have incomplete information from the system context, the
Tier 1 might be able to complete the analysis, taking into consideration all the various configuration options
and environmental constraints.

4.2.1.2 Common components

The usage of common components represents a challenge. For example, there are several different function
implementations from different vendors, and they are reused from an open-source library:

Figure 6. /ƻƴŎŜǇǘǳŀƭ ƻǾŜǊǾƛŜǿ ƻŦ ŎƻƳƳƻƴ ŎƻƳǇƻƴŜƴǘǎ ŦǊƻƳ ŀ ǾŜƴŘƻǊΩǎ ǇŜǊǎǇŜŎǘƛǾŜ

¶ Common component full internal access of the source code (total openness)

¶ Common component developed by third-party (closed)

¶ Common component developed as open-source (shared development)

Vendor
A

Vendor
B

Vendor
C Common component 1

Common component 2

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 26 of 185

In case of development, where total control of both products and processes exists, total openness of the
evolution of the product and its quality control process is fully manageable. In case of third-party involvement,
the component is more or less a black-box in this sense. The third case is relevant where the productΩs internal
design is visible (source-code, etc.) but the process and strategy of the development is under control of a third-
party.

If there is full access to both the development process and its result, it is possible to address safety assurance
according to classic methods and tools. Using the AMASS platform may then focus on lowering the needed
effort and improving the quality of the assessment work. Even though there is full visibility in the development,
a large system project may have separated teams and software components. This may imply that the size of
the project will generate a more complex situation similar to the case of external ownerships of the
component.

4.2.1.3 Safety/ Security Analyses Reuse together with component reuse

The reuse of the model of a component demands the reuse of the associated analysis artefacts. As long as the
component model introduces product-reuse aspects (configuration options, environmental constraints, etc.),
the analysis artefacts should also introduce built-in features to fit in. To some extent and for certain domains,
the coupling between safety and security is nowadays better understood. For instance, the European
standards ED-202A [101] and ED203 [103] provide guidelines and methodological support to integrate security
and safety in the development cycle of aeronautics systems. Industry and academy recognize that a joint
analysis is required to improve product confidence. This is particularly true for systems that were originally
designed and deployed to operate locally and mainly/only considering safety aspects. For instance, in the case
of Industrial Control Systems (ICS), security has progressively become a concern as long as ICS connectivity
increased, and new threats emerged. In addition, the evolution in systems engineering shows that, in the past,
safety and security analyses had been proposed and conducted independently and the need for a joint safety-
security analysis is relatively recent. Several efforts have been already conducted and implemented to address
this concern, e.g., IEC 63069 for industrial process automation [104]. Other similar initiatives, like ISO 26262
Edition 2 FDIS for the automotive domain, are currently in progress and their results are expected to be
released soon. In this context, the identification of commonalities and variabilities between safety and security
concepts and methods is an important work to achieve the joint consideration of safety-security aspects from
early stages of the design process. To render this consistent, the following aspects are considered:

¶ Regulation: the government policies, international or domestic standards, technical
recommendations, requirements, etc., issued to ensure or improve safety, security and, more
recently, safety-security.

¶ Methodologies: the works performed by industry and academia to propose methods to conduct
safety, security and safety-security analyses.

¶ Knowledge bases: the definition and evolution of knowledge bases that contain the concepts,
categories, types, patterns, etc., useful to specialize safety and security aspects, for instance,
according to the product domain or for cross-domain use.

¶ Frameworks and tool support: the development of languages, frameworks and tools to support and
automate as much as possible the analysis methods. Tool development is also concerned with the
integration of knowledge bases. To ensure seamless product reuse from design, a certain level of
tools/frameworks interoperability needs to be achieved.

The following items describe relevant variability aspects to be considered when targeting reusable elements
amenable for security and safety analyses:

¶ Analysis criteria: the typical safety criteria are related to product reliability, failure rate, and
robustness against natural or accidental use and failures. The typical security criteria are related to
product/system/data/exchanges integrity, availability, confidentiality, authenticity, freshness, non-
repudiation, controlled access, and privacy, within a hostile environment, intentionally exploiting
vulnerabilities by attacks.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 27 of 185

¶ Analysis goals: The safety and security goals are settled to ensure product/system trustworthiness
with respect to the associated criteria. The goals accomplishment depends upon the efficacy to elicit
appropriate requirements and their dependencies. In the context of AMASS, a joint analysis driven by
safety is proposed. It means that a security criterion is introduced as long as an impact on safety is
identified. Thus, the security criteria having negligible or no effect on safety are left out. The initial
security criteria that likely impact safety, in case of non-authorized access, are:

o Integrity

o Availability

o Confidentiality

¶ Product context: in a safety analysis, the context is often fully mapped into the component/system
model (hazardous events, failure conditions and propagations, component reliability, etc.). The
mapping finally yields classical outputs like Failure Mode, Effects and (Criticality) Analysis FME(C)A
tables, FTA diagrams, etc. The context in a security analysis is hostile, independent, and smart. An
attacker model is independent from the safety analysis, and it is modelled relying on several structures
like Attack Trees, Attack-Defence Trees, Threat Scenarios, Misuse Scenarios, and severity of impact
and efforts required for a successful attack, etc.

¶ Evaluation metrics: the risk is a metric used to evaluate both security and safety, but different for
safety and security context (IEC 61508 vs. IEC 62443). The risk (security) is measured in terms of the
likelihood of failures/attacks occurrence (which is not necessarily a probabilistic value in the
mathematical sense) and the severity of consequences (which is sometimes not known). In safety, the
risk is defined as combination of the probability of occurrence of harm (caused by a failure, therefore
the SIL are probabilistic terms) and severity of that harm [105]. In security, several metrics have been
proposed and used to evaluate risks. Indeed, whereas severity is commonly accepted and used to
evaluate attacks impact, several qualitative and quantitative metrics have been proposed to evaluate
attacks likelihood. As for qualitative metrics, we can mention the resources, skills, and complexity for
attack preparation and accomplishment. As for quantitative metrics, there exist some efforts to reuse
probability distributions so as to determine attack probability, e.g., [106], [107]. Even if some
standards like IEC 62443 [109] introduce principles for quantitative risk assessment, the existing
security methods still lack of quantitative metrics to adequately evaluate aspects like attacks difficulty,
probability of attack actions/paths, and realistic times for attack occurrence, and consequences,
which may not be only physical harm, but indirect operational harm, loss of property, etc. In addition,
the evaluation of countermeasures efficacy is conducted against an attacker model. The definition
and implementation of an attacker model should consider attacker categories, motivations,
resources, capabilities to search and exploit vulnerabilities, and variability. Building such model often
demands the integration of several methods, frameworks, and techniques.

4.2.1.4 Verification phases of the life-cycle maintenance of SEooC (*)

In the context of ISO 26262, verification of safety critical parts (focus on software elements out of context
(SEooC)) constitutes an important part of the product development project effort. Such effort is expected to
increase in the case of safety-critical parts that can be affected by security-related aspects. Cross-concern reuse
of verification results represents a challenge.

With the rapid growth of software in CPSs, there is a need to automate the verification of software as well as
enable reuse of verification results. The traditional model-based system engineering (MBSE) methods and
more specifically the available model-based verification methods do not seem to be adequate to enable (cross-
concern) reuse.

The challenges of software SEooC for high functional safety (and cybersecurity) systems are related to:

¶ The maintenance and regressions tests due to the needed efforts to keep the modelling in
synchronization with the software. This effort is needed in many development projects, where no

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 28 of 185

tight automatic connections exist between the system model and the code (i.e., no code generator is
implemented).

¶ The divergence in synchronization between the system models and the code, when automatically
generated code is patched.

¶ The test re-execution, which might be needed to fulfil ISO 26262 requirements to guarantee the
expected code coverage.

¶ The insufficiency of MBSE with manual inspections of models, when high-level safety integrity is
expected.

¶ To provide the inputs for software verification there needs to be exhaustive test drivers, as the SEooC
may have many different inputs in the different contexts.

¶ The reuse of the component requires that the components have been exhaustively verified for all
possible combinations of inputs.

Software testing generally consumes between 30 and 60 percent [146] of the overall development, therefore
it is of vital importance to address the testing aspect when developing the methods and tools for re-use in
CPSs:

In the waterfall development cycle, as referred in both ISO 26262 and IEC 61508, there is a large emphasis on
the right (ascending) side of the V-model in said waterfall development model.

WP6 is addressing the methods and tools for re-use in CPSs. The need for efficient testing is of vital importance,
due to the following reasoning:
ω In large systems there will be a mixture of re-used and non-reused software components.
ω When addressing a complex CPS, with possibly multi-concern, we need many test cases.
ω The automated model-based testing (aMBT) is one of the strongest solutions to address this challenge

that grows with the complexity of the CPS.

Due to the complexity of testing, which is demanded by the highest integrity levels within the IEC 61508 and
ISO 26262 safety standards, the verification represents a significant effort of the total effort of CPSs
development.

For the higher ASIL (in ISO 26262), the verification phase is necessary to the complete system test according
to the current standards. The updating of the ISO 26262 standard in 2018 is expected to elaborate on the
software cycle but still the verifications phase will be a cornerstone in the product assurance.

The verification phase for the development and maintenance of complex cyber-physical systems (CPSs) for
safety critical applications can imply growing costs. In ISO 26262, the V-model for development has strict
requirements on the verifications for the safety-critical system ς ISO 26262. To enable cost-reduction and
reduced time to market for safety-critical CPSs, there is a need for methods and tools for the regression tests
to support the intra-domain and cross-domain re-use of software components.

4.2.2 Product-related macro and micro (reusable) elements

To cope with the previously recalled challenges that hinder reuse, first of all macro and micro reusable
elements need to be identified. Typically, a basic architectural design is constituted of the following elements:
components (or blocks) including ports, contracts (classifiable e.g., into weak and strong), and connectors.
These elements constitute the micro reusable elements.

When micro elements are composed to build complex and reusable architectural models, such models are
called architectural patterns. Micro and macro elements were extensively explained in D3.2 [9].

Similar to processes, these elements may vary in critical systems based on their criticality. For instance, a
component may provide a specific service for the highest criticality level and no such service for lower criticality
levels. Given this tailoring possibility, it becomes clear that a single component model does not fit all
development needs. One size does not fit all. An entire family of products (product line, more specifically

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 29 of 185

design specification line) is embraced. Thus, additional concepts are needed to enable the systematization of
reusable architectural elements between family members:

¶ Product-related commonality: indicates the product elements that do not vary and that characterize
the family of products.

¶ Product-related variability: indicates the product elements that vary and that characterize the
individuals within a family of products.

¶ Product-related variation point: indicates points of variation where a product element may represent:
o Product-related options
o Product-related alternatives

4.2.3 Summary of previously conceived and validated conceptual solutions

Deliverable D2.2 [4], as well as its latest update D2.4 [6], contains the documentation related to the
implementation solutions for the management of system-and-component related information, including
modelling and reuse of architectural specifications. To model and reuse system-and-components (as well as
their associated evidence for assurance purposes), a domain specific language, conceived for modelling
contract-based component-based systems, was proposed in D3.2 [9]. Figure 7 recalls a subset of the meta-
model of such domain-specific language. In particular, Figure 7 emphasises the concepts presented in Section
4.2.2.

CHESSML [143], which sometimes is spelled CHESS-ML in the literature, is a modelling language compatible
with such domain specific language.

Figure 7. CHESSML-based solution partly supporting component reuse

4.3 Assurance case-related reuse

This section explains the concepts and the conceptual solutions that are needed to implement the cross and
intra domain reuse-related functionalities (Prototype P1), when assurance case-related information is in focus.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 30 of 185

4.3.1 Assurance case-related macro and micro (reusable) elements

As known, an assurance case is constituted of claims, contextual information, evidence, and reasoning
structures aimed at explaining why the claims are sufficiently supported by the evidence. Knowing that the
concepts for Evidence-reuse are already covered in previous sections (see 4.1 and 4.2), those macro and micro
reusable elements targeting reuse of arguments are identified in this subsection. These elements are:

¶ Module: self-contained, weakly coupled argumentation element.

¶ Reasoning structures: patterns; the concept of a safety (more broadly assurance) case patterns
represents άŀ means of documenting and reusing successful ǎŀŦŜǘȅ ŀǊƎǳƳŜƴǘ ǎǘǊǳŎǘǳǊŜǎέ όƛΦŜΦΣ Ǝƻŀƭ
structures in GSN terms).

Similar to processes and products, in critical systems, these elements may vary based on the criticality. Given
this tailoring possibility, it becomes clear that a single assurance case model does not fit all assurance needs.
One size does not fit all. An entire family of assurance cases is embraced. Thus, additional concepts are needed
to enable the systematization of reusable assurance-case-related modelling elements between family
members.

¶ Assurance case-related commonality: indicates the assurance case elements that do not vary and that
characterize the family of assurance cases.

¶ Assurance case-related variability: indicates the assurance case elements that vary and that
characterize the individuals within a family of assurance cases.

¶ Assurance case-related variation point: indicates points of variation where a product element may
represent:

o Assurance case-related options, when for instance an additional branch aimed at developing
the argument is not always needed due to optional requirements.

o Assurance case-related alternatives, when for instance alternative branches aimed at
developing the argument can be chosen, due to requirements that can be met in different
ways.

¶ Variability: Two kinds of variability might be identified within a set of assurance cases:

o Intrinsic: whenever there is more than one argumentation style to support the claims of a
particular product line instance (see, for instance, alternative)

o Extrinsic: whenever reusable assets (referenced in the assurance case and bound to concrete
assets within product-line models, such as the feature and reference architectural models)
vary.

Remark: Commonality as well as variabilities are both supported in GSN, but only in GSN.

4.3.2 Summary of previously conceived and validated conceptual solutions

Deliverable D2.2 [4] contains the documentation related to the implementation solutions for the management
of assurance case related information, including modelling of argumentation-related architectures. To model
and reuse assurance cases, a SACM-based solution was proposed. Figure 8 recalls the SACM-based solution
that integrates the concepts presented in Section 4.3.1.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 31 of 185

Figure 8. SACM-based assurance case metamodel

Figure 8, however, does not include meta-classes for modelling the management of commonality and
variability.

