
This deliverable is part of a project that has received funding from the ECSEL JU under grant agreement No 692474.
This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme
and from Spain, Czech Republic, Germany, Sweden, Italy, United Kingdom and France.

ECSEL Research and Innovation actions (RIA)

AMASS

Architecture-driven, Multi-concern and Seamless Assurance and
Certification of Cyber-Physical Systems

Design of the AMASS tools and methods for
cross/intra-domain reuse (b)

D6.3

Work Package: WP6: Cross/Intra-Domain Reuse

Dissemination level: PU = Public

Status: Final

Date: 30 July 2018

Responsible partner: Barbara Gallina (MAELARDALENS HOEGSKOLA)

Contact information: barbara.gallina@mdh.se

Document reference: AMASS_D6.3_WP6_MDH_V1.0

PROPRIETARY RIGHTS STATEMENT

This document contains information that is proprietary to the AMASS Consortium. Permission to reproduce any content
for non-commercial purposes is granted, provided that this document and the AMASS project are credited as source.

mailto:barbara.gallina@mdh.se

H2020-JTI-ECSEL-2015 # 692474 Page 2 of 185

Contributors1

Reviewers2

1 The list includes the contributors to of D6.2, which is evolved in D6.3
2 The list includes the reviewers of D6.2, which is evolved in D6.3

Names Organisation

Barbara Gallina, Julieth Patricia Castellanos Ardila,
Muhammad Atif Javed, Irfan Sljivo, Faiz Ul Muram,
Shankar Iyer

MAELARDALENS HOEGSKOLA (MDH)

Anna Carlsson OHB Sweden (OHB)

Frank Bastuebner and Andreas Preussger INFINEON (IFX)

Norbert Bartsch and Vladislav Gribov Lange (LAN)

Jose Luis de la Vara, Jose María Álvarez, Pablo Sánchez,
Elena Gallego, Valentín Moreno, Manuela Alejandres,
Fabio di Ninno, Miguel Angel Rozalen

Universidad Carlos III de Madrid (UC3)

Borja López, Luis Alonso The REUSE Company (TRC)

Helmut Martin, Robert Bramberger Virtual Vehicle (ViF)

Detlef Sholle, Staffan Skogby, Samer Medawar Alten Sweden (ALT)

Michael Soden, Jan Mauersberger ANSYS medini Technologies (KMT)

Gabriel Pedroza, Morayo Adedjouma Commissariat a l’energie Atomique et aux
Energies Alternatives (CEA)

Huascar Espinoza, Alejandra Ruiz, Angel López Tecnalia Research & Innovation (TEC)

Stefano Puri INTECS (INT)

Thomas Gruber Austrian Institute of Technology (AIT)

Marc Sango ALL4TEC (A4T)

Names Organisation

Silvia Mazzini (Peer reviewer-D6.2) INTECS (INT)

Erwin Schoitsch (Peer reviewer-D6.2, D6.3) Austrian Institute of Technology (AIT)

Cristina Martinez (Quality Manager-D6.2, D6.3) Tecnalia Research & Innovation (TEC)

Jose Luis de la Vara (TC review-D6.2, D6.3) Universidad Carlos III de Madrid (UC3)

Andrea Musone (Peer reviewer D6.3) INTECS (INT)

Garazi Juez Uriagereka (TC review) Tecnalia Research & Innovation (TEC)

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 3 of 185

TABLE OF CONTENTS

Executive Summary ... 10

1. Introduction (*) .. 11

2. Recap concerning industrial needs with respect to STO4 (*) .. 13
2.1 Industrial needs with respect to process engineering... 13
2.2 Industrial needs with respect to product engineering .. 14
2.3 Industrial needs with respect to assurance case engineering ... 15

3. AMASS vision for cross/intra domain reuse.. 17

4. Conceptual solution .. 19
4.1 Process-related reuse .. 19

4.1.1 Process-related macro and micro (reusable) elements (*) ... 19
4.1.2 Summary of previously conceived and validated conceptual solutions 21

4.2 Product-related reuse .. 21
4.2.1 Recap on challenges related to product reuse ... 21
4.2.2 Product-related macro and micro (reusable) elements .. 28
4.2.3 Summary of previously conceived and validated conceptual solutions 29

4.3 Assurance case-related reuse .. 29
4.3.1 Assurance case-related macro and micro (reusable) elements .. 30
4.3.2 Summary of previously conceived and validated conceptual solutions 30

5. Design Level Solution .. 32
5.1 Reuse discovery ... 32

5.1.1 Methodology to represent system artefacts .. 33
5.1.2 Architecture and Operations to support reuse discovery ... 35
5.1.3 Design of a research method to evaluate a reuse discovery process 37
5.1.4 The reuse discovery process in AMASS .. 38
5.1.5 Definition of an interface for reuse discovery (*) ... 38

5.2 Reuse assistance (*) .. 45
5.2.1 Cross-system reuse scenario ... 48
5.2.2 Cross-standard reuse scenario... 49

5.3 Management of families/lines ... 52
5.3.1 Base Variability Resolution .. 52
5.3.2 Process-related reuse via management of process lines .. 54
5.3.3 Product-related reuse via management of product lines (*) .. 66
5.3.4 Assurance case-related reuse via management of case lines (*) 81
5.3.5 Anti-Sisyphus: (3+1)-D Reuse and Impact Analysis via UMA, CHESSML, CACM, and BVR (*)85

5.4 Product-related reuse via MDE and meta-modelling: focus on analysis artefacts 88
5.5 Product-related reuse: focus on safety and security analysis artefacts (*) 89
5.6 Conceptual approach on product reuse (*) .. 92

5.6.1 Reuse using a Model-based Integrated Safety Analysis Approach 93
5.6.2 Implementation Approach and Use Cases ... 94

5.7 Model Based Testing for exploring the benefits of re-use of development cycles (*) 95
5.7.1 Automated Model Based Testing (*) ... 95

5.8 Approach on impact analysis and delta analysis based on data indices using Elasticsearch (*) 96
5.8.1 Achievements in P1 ... 97
5.8.2 Challenges... 98
5.8.3 Way forward / next step ... 99

5.9 Automatic generation of process-based arguments ... 101

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 4 of 185

5.9.1 Generating Process-based Argumentation Representing Plans (*) 101
5.9.2 Generating Process-based Argumentation Representing Executed Processes (*) 108

5.10 Automatic generation of product-based arguments... 111
5.10.1 Argument-fragment generation at the architectural pattern level (*) 111

6. Implementation Solution for Cross/intra domain reuse: a way forward .. 113

7. AMASS vision for compliance management (*) .. 115

8. Conceptual solution for compliance checking .. 117
8.1 Essential Background information ... 117

8.1.1 Defeasible Logic .. 117
8.1.2 Formal Contract Logic ... 118
8.1.3 Regorous Process Designer ... 120
8.1.4 Property Specification Patterns for Finite-State Verification (*) 123
8.1.5 EPF Composer metamodels (*) .. 124
8.1.6 Regorous metamodels (*) ... 125

8.2 Pioneering compliance checking in AMASS .. 125
8.2.1 Exploring the usage of defeasible logic and compliance by design. 125
8.2.2 Exploring the usage of REGOROUS for compliance checking .. 125
8.2.3 Exploration conclusions ... 134

8.3 Conceptual solution ... 135

9. Potential design solutions for the compliance checking ... 136
9.1 Proposals for adapting Regorous to the needs of AMASS ... 136
9.2 Creating an AMASS process compliance checker from scratch ... 138
9.3 Pros and cons of the architectural design solutions.. 138

10.AMASS design solution for compliance checking (*) ... 140
10.1 Safety compliance patterns ... 140

10.1.1 Safety compliance patterns ... 140
10.1.2 ISO 26262-related compliance patterns identification ... 140
10.1.3 ISO 26262-related compliance patterns definition ... 141
10.1.4 ISO 26262-related compliance patterns instantiation .. 142

10.2 Modelling SPEM 2.0-compatible process models for compliance checking 143
10.2.1 Mechanisms to annotate software process models ... 144
10.2.2 Modelling and annotating a small example from ISO 26262 .. 144

10.3 Generating Regorous inputs .. 147
10.3.1 Generating the rule set ... 147
10.3.2 Generating the structural representation of the process ... 148
10.3.3 Generating the Compliance Effect Annotations ... 150
10.3.4 Model checkable for compliance: an example for ISO 26262 ... 151

11.Implementation solution for compliance checking: a way forward ... 154

12.Conceptual solution for ontology-based mapping (*) ... 155
12.1 Representation of Safety Standards with Semantic Technologies Used in Industrial Environments

(*) 155
12.2 Semantic Analysis of Safety Standards (*) .. 159

13.Implementation solution for the ontology-based compliance management vision: a way forward ... 160

14.Metrics for reuse .. 161
14.1 GQMPS for process-related reuse .. 161

14.1.1 GQMPS ... 161
14.1.2 GQM + Strategies Model for the evaluation of families of processes (*) 161

14.2 GQMPS for product-&-assurance case related reuse (*) .. 163

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 5 of 185

15.Conclusion .. 164

Abbreviations and Definitions ... 165

References ... 168

Appendix A .. 175

Appendix B .. 176

Appendix C. Changes with respect to D6.2 (*) ... 184

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 6 of 185

List of Figures

Figure 1. AMASS Vision for Cross/Intra Domain Reuse .. 18
Figure 2. UMA-based solution partly supporting process reuse... 21
Figure 3. From out of context to in-context: the challenge of component reuse ... 23
Figure 4. From out of context to in-context: focus on the interfaces .. 24
Figure 5. FMEDA hierarchy within the automotive domain ... 25
Figure 6. Conceptual overview of common components from a vendor’s perspective 25
Figure 7. CHESSML-based solution partly supporting component reuse .. 29
Figure 8. SACM-based assurance case metamodel .. 31
Figure 9. Layers of an ontology-driven approach to implement a Knowledge-Centric Systems Engineering

strategy.. 33
Figure 10. A system Knowledge Repository structure. .. 36
Figure 11. UML Class Diagram of the OSLC Knowledge Management Resource Shape. 40
Figure 12. Decision tree to expose existing operations in a REST-oriented fashion. ... 43
Figure 13. Building blocks of the functional architecture and technology for an OSLC KM environment. 45
Figure 14. Reuse Assistant: Scope of Reuse in Assurance and Certification ... 46
Figure 15. Reuse Assistant: Proposed Reuse Approaches .. 47
Figure 16. Reuse Assistant: Architecture of new functionalities (in green) in OpenCert tooling 48
Figure 17. Reuse Assistant: Components decomposition of Reuse Assistant ... 48
Figure 18. Reuse Assistant mock-up: Cross-system reuse scenario .. 49
Figure 19. Reuse Assistant mock-up: Supporting equivalence mapping process .. 50
Figure 20. Reuse Assistant: Showing reuse opportunities based on equivalence relations 51
Figure 21. Fragment substitutions exemplification, taken from [40] ... 52
Figure 22. Editors' architecture ... 53
Figure 23. Third party integration ... 54
Figure 24. Architecture of the seamless integrator plugin enabling process-related variability management .. 55
Figure 25. Models interplay enabling management of process lines ... 56
Figure 26. UMA-based model of the ECSS process fragment ... 57
Figure 27. VSpec model regarding a portion of ECSS-E-ST-40C .. 57
Figure 28. Resolution model ... 58
Figure 29. Realization model .. 58
Figure 30. Backward propagation of the changes onto the original model .. 59
Figure 31. Recommendation table from ISO 26262-4.. 61
Figure 32. Variability management, ASIL B and Recommendation level “+” are determined, SecL is not defined

 .. 62
Figure 33. VSpec diagram: Concept phase of an integrated safety and security process (ASIL:=B) 63
Figure 34. Resolution diagram: Concept phase of an integrated safety and security process (ASIL:=B) 64
Figure 35. Realization diagram and imported EPF-C model (Placement for Fragment Substitution in red) 64
Figure 36. EPF-C model before (left) and after replacement of FTA (right) .. 65
Figure 37. Process for verification in WEFACT ... 65
Figure 38. Models interplay enabling management of product lines ... 66
Figure 39. Architecture of the seamless integrator plugin enabling product-related variability management .. 67
Figure 40. ACS component model given in CHESSML .. 68
Figure 41. VSpec Model regarding Attitude Control System (ACS) ... 69
Figure 42. Resolution Model regarding Attitude Control System (ACS).. 69
Figure 43. Realization Model regarding Attitude Control System (ACS) ... 70
Figure 44. CHESS Views .. 71
Figure 45. SSTH (Sun SensorsTHrusters) ... 72
Figure 46. SSRW (Sun Sensors Reaction Wheels) .. 72

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 7 of 185

Figure 47. STTH (Star Tracker THrusters) .. 73
Figure 48. STRW (Star Tracker Reaction Wheels) .. 73
Figure 49. SSTH, SSRW, STTH and STRW Configurations .. 74
Figure 50. Intra-Domain Variability Modelling .. 75
Figure 51. Intra-Domain Variability Resolution ... 76
Figure 52. Intra-Domain Variability Realization ... 76
Figure 53. Infineon Automotive Electronic Computing Unit Model ... 79
Figure 54. Lange Aviation Central Computing Unit Model ... 80
Figure 55. VSpec representing the cross-domain product line... 81
Figure 56. Variability Resolution for Automotive .. 81
Figure 57. Automotive ECU realization ... 81
Figure 58. Models interplay enabling management of assurance case lines .. 82
Figure 59. Argumentation for FLEDS in OpenCert ... 83
Figure 60. VSpec model regarding FLEDS .. 84
Figure 61. Resolution models regarding FLEDS ... 84
Figure 62. Realization model regarding FLEDS .. 85
Figure 63. VSpec Model regarding ECSS-related SW Development Process and Attitude Control System (ACS)

 .. 86
Figure 64. Resolution Model regarding ECSS-related SW Development Process and Attitude Control System

(ACS) .. 86
Figure 65. Models interplay enabling management of process product and assurance case lines.................... 87
Figure 66. Impact analysis and change propagation in families/lines .. 88
Figure 67. MDE-based seamless safety-security analysis targeting reusable products design 89
Figure 68. EMF Diff/Merge Principle ... 90
Figure 69. Diff/Merge implementation in Safety Architect .. 90
Figure 70. Merge of two Safety Architect models ... 91
Figure 71. Differences between two models ... 91
Figure 72. Import from CHESS to Safety Architect ... 92
Figure 73. Overview of the Farkle implementation of model-based testing... 96
Figure 74. Elasticsearch overview .. 97
Figure 75. Interaction between P1 indexing tool, search app and Kibana dashboard 98
Figure 76. Relationships denormalization ... 99
Figure 77. Score information as meta-data ... 100
Figure 78. Utilization of Elasticsearch based APIs .. 101
Figure 79. Process-based arguments generation (Planning Phase) .. 102
Figure 80. Overview of the proposed method... 102
Figure 81. Requirements and Process modelling in EPF Composer .. 104
Figure 82. Result after detecting omission of key evidence fallacies.. 106
Figure 83. Generated argumentation model and diagram .. 108
Figure 84. Process-based arguments generation (Execution Phase) .. 109
Figure 85. Product-based argument generation .. 111
Figure 86. Compliance Management Vision, adapted from [155]. ... 116
Figure 87. Abstract framework of Regorous, taken from [72].. 121
Figure 88. Regorous architecture .. 122
Figure 89. Main components of SPINdle reasoner. Taken from [80] .. 123
Figure 90. Property Specification Patterns Hierarchy .. 124
Figure 91. Product development at the software level .. 126
Figure 92. Example of requirement for ISO 26262-software unit design and implementation 127
Figure 93. Trace 1 of the software unit design and implementation phase.. 128
Figure 94. A weakly compliant process checked by Regorous ... 129
Figure 95. Modelling of conditional requirements for ISO 26262: Software unit design and specification 130
Figure 96. Terms required for modelling rules for ISO 26262-Software unit design and Specification............ 131

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 8 of 185

Figure 97. Rules specification for ISO 26262-Software unit design and specification 132
Figure 98. Definition of the traces for the process Software unit design and specification 133
Figure 99. Complete model of ISO 26262-Software unit design and specification ... 134
Figure 100. Adding EPF Composer + rule editor .. 136
Figure 101. Replacing Activiti BPMN 2.0 with EPF Composer + rule editor .. 137
Figure 102. Replacing BPMN with EPF Composer + rule editor + extended

ComputeObligations/CheckCompliance components ... 137
Figure 103. AMASS Process Compliance Designer ... 138
Figure 104. Requirement that represents the initiation of the software unit design and implementation (sub-

)phase .. 142
Figure 105. Requirement that represents the selection of disjoint implementation strategies 142
Figure 106. Requirement that represents the selection of mandatory notations .. 143
Figure 107. AMASS Compliance Checking Vision ... 143
Figure 108. Rules required for compliance checking of a small example in ISO 26262 145
Figure 109. Standard's requirements plugin ... 145
Figure 110. Specification of rule 3.1 .. 145
Figure 111. Rule set specification ... 146
Figure 112. Process elements plugin ... 146
Figure 113. Annotated task .. 146
Figure 114. Activity Diagram of the Software Unit Design Process .. 147
Figure 115. Algorithm for Obtaining the Rule Set .. 148
Figure 116. Algorithm for Obtaining the Process Structure ... 150
Figure 117. Algorithm for Obtaining the Compliance Effects Annotations ... 151
Figure 118. Rule set generated ... 152
Figure 119. Process structure generated .. 153
Figure 120. Compliance annotations generated .. 153
Figure 121. Excerpt of the metamodel for the specification of safety compliance needs 156
Figure 122. Ontology layers in KM .. 157
Figure 123. Example of specification of a standard’s information with Knowledge Manager 158
Figure 124. SoPLE-targeted GQM+ Strategies Model .. 162
Figure 125. Expanded version of Figure 40 ... 177
Figure 126. Expanded version of Figure 41 ... 178
Figure 127. Expanded version of Figure 45 ... 179
Figure 128. Expanded version of Figure 46 ... 180
Figure 129. Expanded version of Figure 47 ... 181
Figure 130. Expanded version of Figure 48 ... 182
Figure 131. Re-configured argumentation fragment ... 183

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 9 of 185

List of Tables

Table 1. Summary of STO4-related Use Cases [D1.1], where y stands for low priority, Y stands for high
priority and N/A stands for Not Applicable (in the context of AMASS) .. 13

Table 2. Summary of STO4-related high-level requirements and related CSs ... 16
Table 3. Common operations definition for the System Knowledge Base ... 36
Table 4. Operations for the management of the System Knowledge Base and the System Assets Store 37
Table 5. OSLC Resource Shapes for OSLC Defined Resources within the KM Domain 40
Table 6. Mapping of WSDL/SOAP operations to OSLC concepts. .. 43
Table 7. Delegated operations for an OSLC KM provider (SKB). .. 44
Table 8. Delegated operations for an OSLC KM provider (SAS). .. 44
Table 9. Mapping between avionics and automotive regulations ... 60
Table 10. Mapping between process model, argumentation model and GSN .. 107
Table 11. Mapping between WEFACT and OpenCert model elements ... 110
Table 12. STO4-Reuse Assistant as well as Product/Process/Assurance Case Line Specification + semi-

automatic generation of arguments ... 113
Table 13. STO4-Product/Process/Assurance Case Line Specification + semi-automatic generation of

arguments ... 114
Table 14. Property Specification Patterns Scope .. 123
Table 15. Pros and cons of the architectural design solutions .. 139
Table 16. Mapping of the patterns scope into FCL rule notation .. 141
Table 17. Annotated process description ... 147
Table 18. Mapping Elements from UMA to the Rule Set .. 148
Table 19. Mapping Elements from UML Diagram to a BPMN and Canonical Process 148
Table 20. Mapping Elements from UMA/UML Metamodel to the Compliance Check 150
Table 21. Compliance checking ... 154
Table 22. Ontology-based compliance management ... 160

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 10 of 185

Executive Summary

This deliverable (D6.3 - Design of the AMASS tools and methods for cross/intra-domain reuse (b)) is conceived

as an update3 of D6.2 - Design of the AMASS tools and methods for cross/intra-domain reuse (a) [18], which
was delivered as a confidential document. D6.3 is the final and public outcome of Task 6.2 Conceptual
Approach for Cross-Domain and Intra-Domain Reuse.

This deliverable presents the final design of the AMASS cross/intra-domain reuse vision, embracing three
dimensions: process, product, and assurance case. It also targets the final design of the strengthened vision
for compliance management.

The final design of both visions (cross/intra domain and compliance management) embraces functionalities
related to reuse assistance, semantics-based mapping of standards, specification of families of
processes/products/assurance cases, and logic-based automatic compliance checking. The final design is
conceived as an extension of the AMASS Reference Tool Architecture, initially specified in D2.2 [4], then in
D2.3 [5], and finally in D2.4 [6]. The design of both visions consists of the final specification of the architectural
solution and of the identification of the extension of the AMASS Common Assurance and Certification Meta-
model (CACM), to support the Scientific Technical Objective (STO) regarding Cross/Intra-Domain Reuse, STO4,
and compliance management.

Relations with D3.3 [10], D4.3 [13], and D5.3 [16] are explained, whenever reuse-related concerns involve
other work packages.

The solutions, presented in this deliverable, will guide the implementation of the third iteration of the AMASS
prototype, P2, in Task 6.3 (Implementation for cross/intra-domain reuse) for what regards the cross/intra-
domain reuse features of the AMASS platform as well as its strengthened compliance management features.

Finally, Task 6.4 (Methodological Guidance for cross/intra-domain reuse) will build upon the results identified
in this deliverable to provide methodological guidance to the AMASS end-users for the application of the
cross/intra-domain reuse solution.

3 The sections modified with respect to D6.2 have been marked with (*), then the details about the differences and
modifications are provided in Appendix C: Document changes with respect to D6.2 (*)

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 11 of 185

1. Introduction (*)

In the context of Cyber Physical Systems (CPSs), the pace of assurance and certification will be determined by
the ability of both industry and certification/assessment authorities to overcome technical, regulatory, and
operational challenges. A key regulatory-related challenge is faced when trying to reuse CPS products qualified
or certified for one application domain in another one. This challenge emerges because different domains are
constrained by different standards and the full assurance and certification process must be applied as if it were
a totally new product, thus reducing the return on investment of the reuse decisions. Similarly, reuse is often
hindered even within the same domain, when trying to reuse CPS products proven in use in one project in
another, where assumptions change (e.g., about the environment), and sometimes also the criticality level.
The increased connectivity of CPSs also contributes to hindering their reuse. Security-uninformed CPS
products, developed for non-connected safety-critical systems, require new solutions for enabling cross-
concern reuse when concern-specific regulations are in place and concern-specific threats impact CPSs’
dependability.

WP6 aims at addressing these challenges related to cross and intra-domain reuse as well as cross-concern
reuse. More specifically, this deliverable (D6.3) documents the work conducted in the scope of Task 6.2, which
mainly addresses the design of the AMASS tools and methods related to: Goal 2 (G2), the corresponding project
objective O3, and the project Scientific and Technical Objective STO4. G2, O3 and STO4 are recalled here to
make the deliverable self-contained.

G2 demonstrates a potential reuse of assurance results (formerly either qualified or certified), leading to 40%
of cost reductions for component/product (re)certification/qualification activities.

O3 consolidates a cross-domain and intra-domain assurance reuse approach to improve the mutual
recognition agreement of compliance approvals and to help assessing the return of investment of reuse
decisions.

STO4 focuses on Cross/Intra-Domain Reuse and is constituted of three sub-objectives:

• Semantics-based Standards Equivalence. This sub-objective is expected to solve or at least reduce the
terminological and semantic inconsistencies, which are present across different application domains

and which hinder an efficient reuse of assurance artefacts4.

• Mapping, Reuse Assistant (Cross/Intra Domain). This sub-objective is expected to ease the
understanding of the role played by each activity and artefact in the overall assurance effort.

• Product/Process/Assurance-Case Line Specification. This sub-objective is expected to ease variability
management within interconnected families of products (product lines), processes (process lines), and
Assurance Cases (assurance case lines).

WP6-Task 6.2 contributes to the achievement of these sub-objectives as follows:

• Regarding semantics-based Standards Equivalence Mapping, AMASS extends the OPENCOSS
functionality for mapping between standards by supporting ontology-based analysis for the creation
of the maps.

• Regarding the Reuse Assistant (Cross/Intra Domain), AMASS supports users in evaluating whether
reuse of the assurance assets is feasible (appropriate) or determining what further analysis is required
to justify claims of compliance. The Reuse Assistant will benefit from the compositional argument
approach, which was developed by SafeCer and OPENCOSS to achieve a characterization of pre-
existing argument modules in order to meet the intent of the applicable standards.

4 For sake of clarity, it is worth noting that in this document artifact and artefact co-exist. The AMASS documents are
written in UK English (artefact). However, OMG specifications make use of US English and the OMG SACM specification
contains the meta-class artifact.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 12 of 185

• Regarding Product/Process/Assurance Case Line Specification, AMASS develops a systematic
approach for dealing with software/hardware variability management, but also with process and
assurance case-related variability. The AMASS project focuses on extending and integrating the current
methods (developed within SafeCer) in order to manage, for instance, the ripple effects (i.e., the
impact) on processes as well as assurance cases, as results of changes in product requirements.

In addition, WP6-Task 6.2 is responsible for further developing the Compliance management building block,
which was delivered as part of the AMASS first prototype, called Core. In particular, the expected development
within T6.2 consists of elaborating solutions for enabling automatic process-based argumentation generation,
ontology-based compliance management, and compliance checking.

Based on the proposed solutions, a way forward, enabling the implementation of the AMASS visions regarding
compliance management and reuse, is given.

The rest of the deliverable is organized as follows:

• Chapter 2 gives a recap concerning industrial needs with respect to STO4.
• Chapter 3 gives the AMASS vision regarding cross/intra domain reuse.

• Chapter 4÷6 present the conceptual solution, the design solution, and the way forward for the
implementation solution regarding the AMASS vision for cross/intra domain reuse.

• Chapter 7 provides the AMASS extended vision regarding compliance management.
• Chapters 8÷11 develop such vision by presenting solutions at conceptual, design, and implementation

levels, focusing on semi-automatic compliance checking.

• Chapters 12÷13 further develop such vision by presenting solutions at conceptual, design, and
implementation levels, focusing on ontology-based solutions.

• Chapter 14 proposes a set of metrics aimed at measuring the advantage, which could be gained
through adoption/application of the proposed solution for cross/intra domain reuse.

• Finally, Chapter 15 draws some conclusions.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 13 of 185

2. Recap concerning industrial needs with respect to STO4 (*)

AMASS expected results will be benchmarked by eleven Case Studies:

• CS1: (Industrial Automation) Industrial and Automation Control Systems;

• CS2: (Automotive) Advanced driver assistance function with electric vehicle sub-system;

• CS3: (Automotive) Collaborative automated fleet of vehicles;

• CS4: (Space) Design and safety assessment of on-board software applications;

• CS5: (Railways) Platform Screen Doors Controller;

• CS6: (Railways) Automatic Train Control & Interlocking Formal Verification;

• CS7: (Avionics & Automotive) Safety assessment of multi-modal interactions in cockpits;

• CS8: (Automotive) Telematics function;

• CS9: (Air Traffic Management) Safety-Critical SW Life-cycle of a Monitoring System for Navigational Aid
(NavAid);

• CS10: (Space) Certification basis to boost the usage of Multiprocessor System-on-Chip (MPSoC)
architectures;

• CS11: (Space) Design and efficiency assessment of model-based Attitude and Orbit Control software
development.

All case studies except CS7 and CS2 are single-domain centred. Thus, their main interest is intra domain reuse.
CS7 focuses on avionics, however it presents scenarios related not only to intra domain reuse but also scenarios
related to the exploration of cross-domain reuse with focus on reuse of process-related information from
automotive to avionics regarding hardware COTS. Similarly, CS2 focuses on automotive, however it presents
also one scenario related to the exploration of cross-domain reuse with focus on reuse of product-related
information from avionics to automotive. This scenario however is not expected to be developed in detail. It
is only expected to be a very preliminary learning experience.

As it was initially elicited in D1.1 [1] and then refined (due to changes within the consortium), the above-listed
eleven case studies focus on the different dimensions of reuse. Table 1 summarizes the industrial needs with
respect to STO4.

Table 1. Summary of STO4-related Use Cases [D1.1], where y stands for low priority, Y stands for high priority and N/A
stands for Not Applicable (in the context of AMASS)

STO4 Intra Domain Reuse CS1 CS2 CS3 CS4 CS5 CS6 CS7 CS8 CS9 CS10 CS11

Product Y Y Y N/A N/A Y Y N/A y Y Y

Process y y Y N/A N/A Y y y y N/A Y

Assurance Case (Product) Y Y Y N/A N/A Y Y N/A y Y Y

Assurance Case (Process) y y Y N/A N/A Y N/A y y N/A Y

From Table 1, it emerges that nine CSs are related to STO4. Their specific needs with respect to the different
dimensions are recalled in the following subsections.

2.1 Industrial needs with respect to process engineering

This subsection recalls the industrial needs with respect to process engineering. More specifically, the following
bulleted list recalls the specific needs stemming from the following AMASS Case Studies (CSs), as taken from
former comprehensive list:

• CS1: Given the interest in product reuse and in compliance management, indirectly an interest in reuse
of process-related information emerges.

• CS3: Reuse or enhancement of current safety methods (HARA) for other concerns, such as cyber-

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 14 of 185

security (TARA).

• CS6: Reuse of compliance management artefacts, e.g. safety plans.

• CS8: Methodology for handling interplay between concerns and/or re-use between concerns for multi-
concern assurance and assessment for multiple standards.

• CS11: Reuse of process-based engineering and assurance artefacts.

In D6.1 [17], the reuse scenarios related to the process-dimension were identified. They are briefly recalled
here:

1. Regulatory jurisdiction: Critical systems may operate in places where different jurisdictions apply, for
example a plane landing in different countries. In this case, different jurisdictions apply to the same
product/component and the certification artefacts generated for one jurisdiction can be used in
order to achieve compliance with other jurisdiction(s). When components are expected to be used in
different countries, the different jurisdictions of each country shall be taken into account during the
component design.

2. Communities of practice: Reuse of the methodologies and practices related to one or more activities
mentioned in a standard and shared between different communities with the same objectives.

Based on D1.1 [1], none of the CSs focuses on regulatory jurisdictions. The main focus is on communities of
practice. Despite the absence of a specific CS focusing on regulatory jurisdictions, a brainstorming session was
held, during a meeting, to identify cases where regulatory jurisdictions may play a decisive role. Such a session
was held in order to challenge our design solutions and make them robust in case of additive or conflicting
requirements stemming from different jurisdictions. Specifically discussed was a hypothetic case of a Bi-
Standards ERTMS (European Rail Traffic Management System)/TVM (Transmission Voie-Machine, English:
track-to-train transmission, which is a form of in-cab signalling) on-board system that crosses French/Swiss
border. In this case, depending on the country, the on-board system is running two conflicting behaviours,
prescribed for the same system and appropriate context switching has to be guaranteed.

The Swiss national requirement - OFT (Office Fédéral des Transports): CH-TSI LOC&PAS-022 [113] is in conflict
with the French national requirement - EPSF (Établissement Public de Sécurité Ferroviaire): SAM S 706 [114].
To reduce time and cost while spotting inconsistencies, new means are needed. More specifically, specification
means, connecting requirements stemming from standards and architectural requirements, are essential. For
instance, the solution presented in Chapter 5.3.5 is expected to serve this purpose, where constraints can be
specified to limit the inclusion/exclusion of functionalities depending on specific choices (e.g., contextual
choices related to jurisdictions).

Essential might also be automatic compliance checking methods able to identify contradictions and support
standardization bodies to solve the issues at the source. For instance, the solution presented in Chapter 10 is
expected to serve this purpose.

2.2 Industrial needs with respect to product engineering

This subsection recalls the industrial needs with respect to product engineering. More specifically, the
following bulleted list recalls the specific needs stemming from the following AMASS Case Studies (CSs), as
taken from former comprehensive list:

• CS1: Reuse in the case of product upgrades and product families.

• CS2: Reuse of self-assessment artefacts when undergoing partial changes, be it a variant of a product
family or a change of components due to new suppliers.

• CS6: Reuse of product evidence such as formal proofs.

• CS7: Reuse of the existing artefacts (Automated safety assessment results, formal verification results)
within aerospace domain.

• CS8: Reuse of e.g. analysis and verification results between different concerns (e. g., safety and
security) in a multi-concern assurance case.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 15 of 185

• CS10 as well as CS11: Reuse of pre-qualified components, or components that have been certified in a
previous space mission.

In D6.1 [17], the reuse scenarios related to the product were identified. In this subsection, they are briefly
recalled:

1. (Same project) Upgrade – new feature: A component associated with a particular hardware and/or
software will include new features that the previous component did not have. There is a basic
component that will include a new feature in its next version.

2. (Same project) Upgrade – Enhance performance: A component associated with a particular hardware
and/or software will be modified as part of its maintenance and will keep the same functionalities as
the previous version but with enhanced performance.

3. Similar project: A component is reused and integrated into a new system with the same context and
domain as previously used. The functionalities needed in both projects are the same and so the
component can be straightforwardly reused.

4. Similar Project - Product Lines: A software product line is a set of software-intensive systems that
share a common, managed set of features satisfying the specific needs of a particular market segment
or mission and are developed from a common set of assets in a prescribed way.

5. Different project - same domain: A component developed for a specific project in a certain domain is

reused in another project with a different context5, but in the same domain. The operational
environments and/or systems in which the component is integrated might be different.

6. Different project - different domain: General-purpose components (e.g., operating systems) may be
reused not only in projects from the same domain but also in projects from different domains.

7. (C)OTS: In this case, the reuse is of a component described as “(Commercial) Off-The-Shelf”. COTS
components are usually general-purpose ones that can apply to different domains and purposes. OTS
(without leading “Commercial” in the term) are instead developed in house and may or may not cross
the original domain.

In the scientific literature, COTS6 (if software) are identified as Software of Unknown Pedigree (SOUP)
when it is not proven (documented) that their development has followed the best practices mandated
by the applicable domain standards. Components with a “pedigree” are for instance ISO 26262-
compliant SEooC (Safety Elements out of Context) [90].

2.3 Industrial needs with respect to assurance case engineering

This subsection recalls the industrial needs with respect to assurance case engineering. More specifically, the
following bulleted list recalls the specific needs stemming from the following AMASS Case Studies (CSs), as
taken from former comprehensive list:

• CS6: Reuse of assurance cases’ structure.

• CS7: Reuse of the existing artefacts (Safety assessment argumentation methods).

• CS9: Automatic generation of reports, checklists and evidences to support the certification. Automatic
check to verify that all the objectives, stated in the standards, have been satisfied.

• CS11: Systematic reuse of product-based assurance artefacts.

In D6.1 [17], the reuse scenarios related to the assurance case were identified. In what follows, they are briefly
recalled:

5 Note that the different contexts in which a differently configured component is deployed could to some extent be
addressed via product line techniques. The set of differently configured components may also be interpreted as a product
line and thus product line best practices can be used.

6 Note that a COTS could be addressed via product line best practices since a COTS could to some extent be seen as a set
of components with different configuration parameters.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 16 of 185

1. Argumentation – Patterns: Assurance case patterns are considered as one of the main approaches for
managing reuse of assurance. An assurance case pattern provides a means of explicitly and clearly
documenting the structure of common reasoning as found in assurance cases, and it promotes the
reuse of best practices for assurance.

2. Argumentation – Modules: Assurance case modules are parts of an overall assurance case containing
part of an argument and relevant citations of evidence.

For instance, when contributing to an argument aimed at showing process compliance, an assurance
case module may correspond to an interrelated set of assurance activities, scope of responsibilities of
a particular engineering organisation, or well-defined sub-system or equipment used within the overall
CPS platform.

Given the elicited needs, within D2.1 [3], high-level requirements where specified aimed at addressing such
needs. Table 2 recalls such requirements. Note that in the following chapters, at the end of each designed
solution, some tables detailing the covered requirements and their descriptions are presented.

Table 2. Summary of STO4-related high-level requirements and related CSs

 Requirement (as it was formulated in D2.1 [3]) Case Study (CS)

STO4
Intra Domain

Reuse

Intra-Domain, Intra standard, Reuse Assistance CS1, CS9

Intra-Domain, Cross version, Reuse Assistance CS1

Reusable off the shelf components CS1, CS11

Intra-Domain, Intra standard, Different Stakeholders, Reuse/Integration
Assistance

CS2, CS11, CS10

The AMASS tools must support variability management at process level CS3, CS7, CS11, CS8

The AMASS tools must support variability management at product level CS1, CS2, CS11

The AMASS tools must support variability management at assurance

case level

CS11

Semi-automatic generation of product arguments CS6, CS11, CS3

Semi-automatic generation of process arguments CS6, CS9

 Requirement (as it was formulated in D2.1 [3]) Case Study (CS)

STO4
Cross Domain

Reuse

Cross-Domain Reuse Assistance CS7, CS2

The AMASS tools must support variability management at process level CS7

The AMASS tools must support variability management at product level CS2

Semantics-based mapping of standards CS7

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 17 of 185

3. AMASS vision for cross/intra domain reuse

The vision of AMASS for cross/intra domain reuse is exemplified in Figure 1, which is composed of three sub-
figures (a, b, and c). The sub-figures are vertically placed and depict respectively the semantics-based standards
mapping, the reuse assistant, and the specification of families of processes/products/assurance cases.
Coherently with the envisioned way forward, which was sketched in D6.1 [17], this vision integrates and
extends the results achieved by OPENCOSS and SafeCer projects. This vision incorporates and cross-fertilizes
“from-scratch” reuse (reuse, which is not planned/enabled from concurrently engineered assets, part of the
same family) and not-from-scratch reuse (reuse, which, instead, is planned/enabled from concurrently
engineered assets, part of the same family).

More specifically, on the top of Figure 1 (subfigure (a)), from-scratch reuse is in focus. In particular, semantics-
based automatic identification of commonalities is proposed as a solution to identify reuse possibilities from
scratch. This solution builds on top of initial explorations, conducted in the framework of SafeCer and in this
document empowered by considering recent advances in the semantic web and in tools interoperability. For
sake of clarity, it should be noted that subfigure (a) is taken from [87] and was the underlying approach that
was already extensively recalled in D5.1 [14].

Once commonalities are identified, the reuse assistant (sub-figure (b)) is expected to exploit them in order to
perform a more powerful compliance gap analysis.

Moving on to the bottom of the Figure (subfigure (c)), systematic reuse is in focus. In this case, reuse is not
expected to be done from scratch or ad-hoc. Gathered experience is here systematized. Gathered experience
is expected to be derived from the left side of the figure. Systematization is conducted by properly engineering
the domain and then by deriving desired processes/products/assurance cases via valid configuration. For sake
of clarity, it should be noted that subfigure (a) is taken from [86] and was already included and extensively
explained in D6.1 [17].

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 18 of 185

Figure 1. AMASS Vision for Cross/Intra Domain Reuse

!

AMASS 3Event,	Location,	Month	Day,	Year

Open	
Services	for	
Lifecycle	

Collaboration

EN	50126	
Hazard	

identification

EN	50126	Risk	
Analysis	Phase

ISO	26262	
HARA	clause

ISO	26262
Hazard	

identification

ISO	26262
Safety	case

representation

EN	50126
Safety	case

representation

From	Scratch

Reuse Assistant

Compliance Gap Analysis

Not	from	Scratch

(a)

(b)

(c)

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 19 of 185

4. Conceptual solution

This chapter addresses the conceptual solution for intra and cross-domain reuse. To realise the vision
presented in Chapter 3, first of all it is necessary to identify which candidate reusable elements should be
targeted and at which granularity. As it was recalled in Chapter 2, various reuse scenarios are of interest in the
context of the AMASS Use Cases. These scenarios embrace three coarse grained macro elements: process,
product and assurance case.

However, the monolithic reuse of these coarse-grained macro elements is not feasible. The internal structure
of these elements needs to be revealed in order to identify more fine-grained reusable micro elements. Once
the macro and micro elements are conceptually identified, the intended AMASS conceptual and design
solutions, aimed at targeting reuse of specific elements or structures, are proposed.

4.1 Process-related reuse

This section explains the concepts and conceptual solutions that are needed to implement the cross and intra
domain reuse-related functionalities (Prototype P1 and P2), when process-related information is in focus.

4.1.1 Process-related macro and micro (reusable) elements (*)

To enable reuse of process-related information, first of all macro and micro reusable elements need to be
identified. Typically, a basic process structure is constituted of: a unit of work, (a set of) role(s), (a set of) work
product(s), (a set of) tool(s), and (a set of) guideline(s).

• Unit of work: indicates what should be done.

• Role: indicates who is responsible for the execution of the work.

• Work product: indicates the documents, more generally artefacts, which are expected to be produced
during the execution of the work or used as input information to be able to execute the work.

• Tool: indicates the application that should be used to automate/support the execution of the work.

• Guideline: indicates specific guidance, methods and principles that should be followed during the
execution of the work.

All these constituting elements can be considered as reusable micro elements. The above-given basic process
structure can be used to create more complex process structures: by chaining and/or by nesting. When an
entire basic structure or a more complex process structure can be reused, we are already addressing reusable
macro elements, called process patterns.

Note that the above listed concepts are part of the most widely used languages for process modelling. In
process engineering-related literature, various reference life-cycle models have been proposed for developing
systems (e.g., waterfall, V-model, etc.). In the context of safety-critical CPSs, the V-model is the one that is
frequently suggested within e.g. automotive standards.

Note that in the context of certification/self assessment it is fundamental to be able to model processes that
represent plans (as safety plans) as well as processes that represent the actual execution of the plans. In ISO
26262, Part 2, Clause 5.2.2, for instance, it is stated that “The key management tasks are to plan, coordinate
and track the activities related to functional safety”. The result of planning is a safety plan. The result of
coordination and tracking is the model of the executed plan (where the deviations are also highlighted).

More specifically, in ISO 26262, Part 2, Clause 5.4.2.2, it is also stated that the organization shall institute,
execute and maintain organization-specific rules and processes to comply with the requirements of ISO 26262.

Moreover, these models (the model of the plan and the model of the execution) should be tailored according
to the criticality level of the system under development as well as according to the recommended safety,
performance, protection or security level. Thus, these levels represent additional concepts that need to be
modelled to support the tailoring. In addition, since different domains have different notions for these levels,

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 20 of 185

ways to compare them, when possible, should also be considered.

Given this tailoring possibility, it becomes clear that a single process model does not fit all development needs.
One size does not fit all. An entire family of processes (process line) is embraced. Thus, additional concepts are
needed to enable the systematization of reusable process elements between family members. Such concepts
are:

• Process-related commonality: indicating the process elements that do not vary and that characterize
the family of processes.

• Process-related variability: indicating the process elements that vary and that characterize the
individuals within a family of processes.

• Process-related variation point: indicating points of variation where a process element may represent:
o Process-related options
o Process-related alternatives

Families of processes in the context of safety-critical systems engineering are called:

• Safety-oriented Process Line (SoPL) [53], when families are characterized by the processes derived
from safety-related standards.

• Security-informed Safety-oriented Process Line (SiSoPL) [52], when families are characterized by the
processes derived from safety-related and security-related standards, more generally, from multi-
concern standards.

The above-listed and discussed process-related macro and micro elements can be easily identified within the
current certification frameworks. It is however well known that there are ongoing initiatives e.g., in the US,
promoted by Federal Aviation Administration (FAA), as well as in Europe, developed within the RESSAC (Re-
Engineering and Streamlining the Standards for Avionics Certification) project, aimed at streamlining avionics
certification.

From what has been published so far [163], the goal of these initiatives is to move back to fundamentals and
identify a set of overarching properties. These identified properties are:

1. Intent – The defined intended behavior is correct and complete with respect to the desired behaviour.

2. Correctness – The implementation is correct with respect to its defined intended behavior, under
foreseeable operating conditions.

3. Acceptability – Any part of the implementation that is not required by the defined intended behavior
has no unacceptable safety impact.

Given these properties, which in turn are given at conceptual level and applicable at system/subsystem level,
the certification process to show them becomes less time consuming. However, also within this new approach,
a planning phase is defined and processes need to be defined and the executed.

More specifically, the requirements for processes that have been elaborated and documented in the initial
published results are:

• Identifies the aim of the process.

• Identifies the type of evidence to be produced.

• Defines the means of performing the process.

• Defines any limitations.

• Identifies the environment to be used for the process.

• Requires the identification of the artefacts used in the process be recorded.

• Requires the identification of any additional artefacts used for supporting the processes be recorded.

• Defines any additional constraints that should be satisfied to perform the process.

Thus, the AMASS approach, conceived within this chapter and designed in the next one, remains valid.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 21 of 185

4.1.2 Summary of previously conceived and validated conceptual solutions

Deliverable D2.2 [4], as well as its latest update D2.4 [6], contains the documentation related to the design
solutions for the management of process and standards’ information, including mapping between processes
and standards. To model processes representing plans, an UMA (Unified Method Architecture) meta-model-
based solution was proposed. It should be recalled, for sake of clarity, that UMA was initially introduced as an
evolution of the OMG (Object Management Group)’s SPEM 1.1 [116] specification and then it further evolved
to offer a certain coverage of the OMG’s SPEM2.0 [117] specification.

Figure 2 recalls the UMA-based solution that integrates the concepts presented in Section 4.1.1. In Figure 2,
the meta-classes representing roles, work products, units of work (e.g., tasks), as well as process patterns,
called in UMA as Capability patterns, can be easily recognized.

Figure 2. UMA-based solution partly supporting process reuse

To model the processes representing executed processes, a refactoring of CCL (Common Certification
Language), result of OPENCOSS, was proposed and developed within WP5. From the validation phase,
documented in D2.6 [5], it emerged that the modelling of the micro/macro reusable elements is satisfactory.

UMA however does not offer a flexible and powerful support for commonality and variability modelling.

4.2 Product-related reuse

This section first provides a recap regarding the challenges and needs associated to product reuse, and then it
explains the concepts and conceptual solutions that are needed to implement the cross and intra domain
reuse-related functionalities (Prototype P1 and P2), when product-related information is in focus.

4.2.1 Recap on challenges related to product reuse

4.2.1.1 Out of context/In-context

Product related reuse strives for building a component once and re-use it in different applications or products.
Since the scope of reuse is sometimes difficult to define, we speak in general of reusable assets, or, when it
comes to model-based design, of (model) elements. The elements may represent whole subsystems, i.e.,

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 22 of 185

composite components (HW, SW, both), or just parts of them (e.g. atomic components or components with
lowered functionalities), for example a SW component with only a subset of its functional capabilities.
Together with these design model elements a set of accompanying documentation is exchanged and reused,
e.g. (safety/security) requirements or certain parts of safety analysis such as FMEDA (Failure Modes, Effects
and Diagnostic Analysis) or FTA (Fault Tree Analysis) that analyse the failure behaviour and put it in relation to
a (sub-)system context.

In order to reuse a component, which has been designed, developed, and analysed with respect to functional
safety, an elaboration on these (system) context dependencies of the component itself is required. These
dependencies can be seen as interfaces and need to be taken into account to define a clear safety contract,
which is then reflected in the safety analyses. For example, component failure modes need to be re-visited and
their effects and causes can be assessed with various analyses such as FMEDA or FTA.

The dependencies of a component are multi-fold and exist on various levels regarding the development
process and the product context, for example:

• A hardware component has electrical and physical interfaces to the circuit it is integrated in.

• Software components have multiple interfaces to other SW components, but also to the
implementation platform (e.g. middleware, operating system, HW dependencies for memory and
interrupts, etc.).

• Components consisting of hardware and software might have configuration options to work in various
environments. Examples include microcontrollers with fixed HW interfaces but configurable
software/firmware/libraries, FPGA (Field Programmable Gate Array)s that can be adapted almost
freely to new contexts, complete ECU (Electronic Control Unit)s that support configurable software
and patching, etc.

• Physical stress (vibrations, mounting) as well as thermal energy flow, unwanted electrical interferences
or EMC disturbances between components and/or the physical/electrical environment are additional
interfaces that might be considered with respect to safety.

• The configuration on how a component is (re-)used is of importance for putting it into a new context,
e.g. which safety mechanisms are activated for use.

Allocated requirements – especially for safety and security – are the most important interface/dependency of
the component model that needs to be considered since they define the performance and characteristics of a
component. These design level, also known as model information, provides also the connection to the safety,
security, and simulation analyses.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 23 of 185

Figure 3. From out of context to in-context: the challenge of component reuse

Based on these considerations, reusing a model of a component requires also to reuse the associated analysis
artefacts such as FMEDA, FTA, Requirements, and others. These analysis models must be taken into the reuse
context and they need to be adapted, as shown in Figure 3. A component has all the interfaces/dependencies
described above (here depicted using the typical UML notation), which must be adapted to the target
application context. The figure shows for example a component model expressed in the SysML modelling
language and its related model information such as used libraries, mission profile with stress parameters, like
temperature, lifetime specification, maintenance, etc., relevant for failure rate determination, potential failure
causes and effects from/to connected components, and so on. The reusable component can be seen as a
“module” which comes as a model (i.e. the component definition itself) with a set of additional information
(e.g. configuration options, built-in safety mechanisms, safety requirements, etc.) which can be seen as meta-
data about the component itself. We use the term module because of lack of a better wording for this set of
related data. However, most of this data has to be processed by analysis (manual, automated) during the
integration of the component into the reuse context.

At the modelling level of a component, a formalization of the safety characteristics is required to enable reuse.
One formalization approach consists of the safety contracts described in D3.1 [8], D3.2 [9], and D3.3 [10]
deliverables of AMASS. Besides the compatibility that can be expressed there for runtime verification of safety
properties, the fault model is a design level model extension that is required to perform reliable and consistent
analysis for a reused component. One aspect here is the possible failure modes of a component and the safety
mechanisms which are built into the component or assumed from the context. This qualitative information,
together with the failure rate and use assumptions, is often a minimal set of required information for validating
how a component is affecting the context it is embedded into. Figure 4 shows some more details about these
implied interfaces of a component:

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 24 of 185

Figure 4. From out of context to in-context: focus on the interfaces

For example, a microcontroller that is reused might have been analysed and its failure characteristics might
have been assessed as a Safety Element out of Context (SEooC) or in a predecessor project context (“proven-
in-use”, same domain or different application domain). The analysis results can be represented as an extension
to the component models interface, failure properties depicted in red, safety mechanism and measures in
yellow and green. When reusing such an assessed component all this safety-related information has to be
adapted (i.e. connected) to the new context. This step has to be supported by the modelling capabilities and
the tools in an (semi-)automated manner.

The situation gets even more important when taking a deeper look at reuse and integration chains, e.g. for a
Tier 1 in the automotive domain. While the Tier 1 is an integrator for a set of hardware components developing
its own software, a lot of the hardware components are reused and the demand is there to reuse and adapt
the safety analyses of these components. The semiconductor companies supplying the HW parts are also
integrators of a number of (reusable) IP design information. Therefore, reuse is challenged along this
integration hierarchy to have a consistent set of analyses for the final safety case. Figure 5 shows an example
of an FMEDA hierarchy for this example case:

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 25 of 185

Figure 5. FMEDA hierarchy within the automotive domain

Each analysis level takes input data that comes ideally with the component model which is reused. An IP
provider might deliver a set of FMEDA (or at least failure modes/failure causes analysis) to the semiconductor
manufacturer, who in turn aggregates the chip level information for use in the Tier 1 context. While the first
two analyses at IP and semiconductor level might have incomplete information from the system context, the
Tier 1 might be able to complete the analysis, taking into consideration all the various configuration options
and environmental constraints.

4.2.1.2 Common components

The usage of common components represents a challenge. For example, there are several different function
implementations from different vendors, and they are reused from an open-source library:

Figure 6. Conceptual overview of common components from a vendor’s perspective

• Common component full internal access of the source code (total openness)

• Common component developed by third-party (closed)

• Common component developed as open-source (shared development)

Vendor
A

Vendor
B

Vendor
C Common component 1

Common component 2

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 26 of 185

In case of development, where total control of both products and processes exists, total openness of the
evolution of the product and its quality control process is fully manageable. In case of third-party involvement,
the component is more or less a black-box in this sense. The third case is relevant where the product’s internal
design is visible (source-code, etc.) but the process and strategy of the development is under control of a third-
party.

If there is full access to both the development process and its result, it is possible to address safety assurance
according to classic methods and tools. Using the AMASS platform may then focus on lowering the needed
effort and improving the quality of the assessment work. Even though there is full visibility in the development,
a large system project may have separated teams and software components. This may imply that the size of
the project will generate a more complex situation similar to the case of external ownerships of the
component.

4.2.1.3 Safety/Security Analyses Reuse together with component reuse

The reuse of the model of a component demands the reuse of the associated analysis artefacts. As long as the
component model introduces product-reuse aspects (configuration options, environmental constraints, etc.),
the analysis artefacts should also introduce built-in features to fit in. To some extent and for certain domains,
the coupling between safety and security is nowadays better understood. For instance, the European
standards ED-202A [101] and ED203 [103] provide guidelines and methodological support to integrate security
and safety in the development cycle of aeronautics systems. Industry and academy recognize that a joint
analysis is required to improve product confidence. This is particularly true for systems that were originally
designed and deployed to operate locally and mainly/only considering safety aspects. For instance, in the case
of Industrial Control Systems (ICS), security has progressively become a concern as long as ICS connectivity
increased, and new threats emerged. In addition, the evolution in systems engineering shows that, in the past,
safety and security analyses had been proposed and conducted independently and the need for a joint safety-
security analysis is relatively recent. Several efforts have been already conducted and implemented to address
this concern, e.g., IEC 63069 for industrial process automation [104]. Other similar initiatives, like ISO 26262
Edition 2 FDIS for the automotive domain, are currently in progress and their results are expected to be
released soon. In this context, the identification of commonalities and variabilities between safety and security
concepts and methods is an important work to achieve the joint consideration of safety-security aspects from
early stages of the design process. To render this consistent, the following aspects are considered:

• Regulation: the government policies, international or domestic standards, technical
recommendations, requirements, etc., issued to ensure or improve safety, security and, more
recently, safety-security.

• Methodologies: the works performed by industry and academia to propose methods to conduct
safety, security and safety-security analyses.

• Knowledge bases: the definition and evolution of knowledge bases that contain the concepts,
categories, types, patterns, etc., useful to specialize safety and security aspects, for instance,
according to the product domain or for cross-domain use.

• Frameworks and tool support: the development of languages, frameworks and tools to support and
automate as much as possible the analysis methods. Tool development is also concerned with the
integration of knowledge bases. To ensure seamless product reuse from design, a certain level of
tools/frameworks interoperability needs to be achieved.

The following items describe relevant variability aspects to be considered when targeting reusable elements
amenable for security and safety analyses:

• Analysis criteria: the typical safety criteria are related to product reliability, failure rate, and
robustness against natural or accidental use and failures. The typical security criteria are related to
product/system/data/exchanges integrity, availability, confidentiality, authenticity, freshness, non-
repudiation, controlled access, and privacy, within a hostile environment, intentionally exploiting
vulnerabilities by attacks.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 27 of 185

• Analysis goals: The safety and security goals are settled to ensure product/system trustworthiness
with respect to the associated criteria. The goals accomplishment depends upon the efficacy to elicit
appropriate requirements and their dependencies. In the context of AMASS, a joint analysis driven by
safety is proposed. It means that a security criterion is introduced as long as an impact on safety is
identified. Thus, the security criteria having negligible or no effect on safety are left out. The initial
security criteria that likely impact safety, in case of non-authorized access, are:

o Integrity

o Availability

o Confidentiality

• Product context: in a safety analysis, the context is often fully mapped into the component/system
model (hazardous events, failure conditions and propagations, component reliability, etc.). The
mapping finally yields classical outputs like Failure Mode, Effects and (Criticality) Analysis FME(C)A
tables, FTA diagrams, etc. The context in a security analysis is hostile, independent, and smart. An
attacker model is independent from the safety analysis, and it is modelled relying on several structures
like Attack Trees, Attack-Defence Trees, Threat Scenarios, Misuse Scenarios, and severity of impact
and efforts required for a successful attack, etc.

• Evaluation metrics: the risk is a metric used to evaluate both security and safety, but different for
safety and security context (IEC 61508 vs. IEC 62443). The risk (security) is measured in terms of the
likelihood of failures/attacks occurrence (which is not necessarily a probabilistic value in the
mathematical sense) and the severity of consequences (which is sometimes not known). In safety, the
risk is defined as combination of the probability of occurrence of harm (caused by a failure, therefore
the SIL are probabilistic terms) and severity of that harm [105]. In security, several metrics have been
proposed and used to evaluate risks. Indeed, whereas severity is commonly accepted and used to
evaluate attacks impact, several qualitative and quantitative metrics have been proposed to evaluate
attacks likelihood. As for qualitative metrics, we can mention the resources, skills, and complexity for
attack preparation and accomplishment. As for quantitative metrics, there exist some efforts to reuse
probability distributions so as to determine attack probability, e.g., [106], [107]. Even if some
standards like IEC 62443 [109] introduce principles for quantitative risk assessment, the existing
security methods still lack of quantitative metrics to adequately evaluate aspects like attacks difficulty,
probability of attack actions/paths, and realistic times for attack occurrence, and consequences,
which may not be only physical harm, but indirect operational harm, loss of property, etc. In addition,
the evaluation of countermeasures efficacy is conducted against an attacker model. The definition
and implementation of an attacker model should consider attacker categories, motivations,
resources, capabilities to search and exploit vulnerabilities, and variability. Building such model often
demands the integration of several methods, frameworks, and techniques.

4.2.1.4 Verification phases of the life-cycle maintenance of SEooC (*)

In the context of ISO 26262, verification of safety critical parts (focus on software elements out of context
(SEooC)) constitutes an important part of the product development project effort. Such effort is expected to
increase in the case of safety-critical parts that can be affected by security-related aspects. Cross-concern reuse
of verification results represents a challenge.

With the rapid growth of software in CPSs, there is a need to automate the verification of software as well as
enable reuse of verification results. The traditional model-based system engineering (MBSE) methods and
more specifically the available model-based verification methods do not seem to be adequate to enable (cross-
concern) reuse.

The challenges of software SEooC for high functional safety (and cybersecurity) systems are related to:

• The maintenance and regressions tests due to the needed efforts to keep the modelling in
synchronization with the software. This effort is needed in many development projects, where no

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 28 of 185

tight automatic connections exist between the system model and the code (i.e., no code generator is
implemented).

• The divergence in synchronization between the system models and the code, when automatically
generated code is patched.

• The test re-execution, which might be needed to fulfil ISO 26262 requirements to guarantee the
expected code coverage.

• The insufficiency of MBSE with manual inspections of models, when high-level safety integrity is
expected.

• To provide the inputs for software verification there needs to be exhaustive test drivers, as the SEooC
may have many different inputs in the different contexts.

• The reuse of the component requires that the components have been exhaustively verified for all
possible combinations of inputs.

Software testing generally consumes between 30 and 60 percent [146] of the overall development, therefore
it is of vital importance to address the testing aspect when developing the methods and tools for re-use in
CPSs:

In the waterfall development cycle, as referred in both ISO 26262 and IEC 61508, there is a large emphasis on
the right (ascending) side of the V-model in said waterfall development model.

WP6 is addressing the methods and tools for re-use in CPSs. The need for efficient testing is of vital importance,
due to the following reasoning:

• In large systems there will be a mixture of re-used and non-reused software components.
• When addressing a complex CPS, with possibly multi-concern, we need many test cases.
• The automated model-based testing (aMBT) is one of the strongest solutions to address this challenge

that grows with the complexity of the CPS.

Due to the complexity of testing, which is demanded by the highest integrity levels within the IEC 61508 and
ISO 26262 safety standards, the verification represents a significant effort of the total effort of CPSs
development.

For the higher ASIL (in ISO 26262), the verification phase is necessary to the complete system test according
to the current standards. The updating of the ISO 26262 standard in 2018 is expected to elaborate on the
software cycle but still the verifications phase will be a cornerstone in the product assurance.

The verification phase for the development and maintenance of complex cyber-physical systems (CPSs) for
safety critical applications can imply growing costs. In ISO 26262, the V-model for development has strict
requirements on the verifications for the safety-critical system – ISO 26262. To enable cost-reduction and
reduced time to market for safety-critical CPSs, there is a need for methods and tools for the regression tests
to support the intra-domain and cross-domain re-use of software components.

4.2.2 Product-related macro and micro (reusable) elements

To cope with the previously recalled challenges that hinder reuse, first of all macro and micro reusable
elements need to be identified. Typically, a basic architectural design is constituted of the following elements:
components (or blocks) including ports, contracts (classifiable e.g., into weak and strong), and connectors.
These elements constitute the micro reusable elements.

When micro elements are composed to build complex and reusable architectural models, such models are
called architectural patterns. Micro and macro elements were extensively explained in D3.2 [9].

Similar to processes, these elements may vary in critical systems based on their criticality. For instance, a
component may provide a specific service for the highest criticality level and no such service for lower criticality
levels. Given this tailoring possibility, it becomes clear that a single component model does not fit all
development needs. One size does not fit all. An entire family of products (product line, more specifically

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 29 of 185

design specification line) is embraced. Thus, additional concepts are needed to enable the systematization of
reusable architectural elements between family members:

• Product-related commonality: indicates the product elements that do not vary and that characterize
the family of products.

• Product-related variability: indicates the product elements that vary and that characterize the
individuals within a family of products.

• Product-related variation point: indicates points of variation where a product element may represent:
o Product-related options
o Product-related alternatives

4.2.3 Summary of previously conceived and validated conceptual solutions

Deliverable D2.2 [4], as well as its latest update D2.4 [6], contains the documentation related to the
implementation solutions for the management of system-and-component related information, including
modelling and reuse of architectural specifications. To model and reuse system-and-components (as well as
their associated evidence for assurance purposes), a domain specific language, conceived for modelling
contract-based component-based systems, was proposed in D3.2 [9]. Figure 7 recalls a subset of the meta-
model of such domain-specific language. In particular, Figure 7 emphasises the concepts presented in Section
4.2.2.

CHESSML [143], which sometimes is spelled CHESS-ML in the literature, is a modelling language compatible
with such domain specific language.

Figure 7. CHESSML-based solution partly supporting component reuse

4.3 Assurance case-related reuse

This section explains the concepts and the conceptual solutions that are needed to implement the cross and
intra domain reuse-related functionalities (Prototype P1), when assurance case-related information is in focus.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 30 of 185

4.3.1 Assurance case-related macro and micro (reusable) elements

As known, an assurance case is constituted of claims, contextual information, evidence, and reasoning
structures aimed at explaining why the claims are sufficiently supported by the evidence. Knowing that the
concepts for Evidence-reuse are already covered in previous sections (see 4.1 and 4.2), those macro and micro
reusable elements targeting reuse of arguments are identified in this subsection. These elements are:

• Module: self-contained, weakly coupled argumentation element.

• Reasoning structures: patterns; the concept of a safety (more broadly assurance) case patterns
represents “a means of documenting and reusing successful safety argument structures” (i.e., goal
structures in GSN terms).

Similar to processes and products, in critical systems, these elements may vary based on the criticality. Given
this tailoring possibility, it becomes clear that a single assurance case model does not fit all assurance needs.
One size does not fit all. An entire family of assurance cases is embraced. Thus, additional concepts are needed
to enable the systematization of reusable assurance-case-related modelling elements between family
members.

• Assurance case-related commonality: indicates the assurance case elements that do not vary and that
characterize the family of assurance cases.

• Assurance case-related variability: indicates the assurance case elements that vary and that
characterize the individuals within a family of assurance cases.

• Assurance case-related variation point: indicates points of variation where a product element may
represent:

o Assurance case-related options, when for instance an additional branch aimed at developing
the argument is not always needed due to optional requirements.

o Assurance case-related alternatives, when for instance alternative branches aimed at
developing the argument can be chosen, due to requirements that can be met in different
ways.

• Variability: Two kinds of variability might be identified within a set of assurance cases:

o Intrinsic: whenever there is more than one argumentation style to support the claims of a
particular product line instance (see, for instance, alternative)

o Extrinsic: whenever reusable assets (referenced in the assurance case and bound to concrete
assets within product-line models, such as the feature and reference architectural models)
vary.

Remark: Commonality as well as variabilities are both supported in GSN, but only in GSN.

4.3.2 Summary of previously conceived and validated conceptual solutions

Deliverable D2.2 [4] contains the documentation related to the implementation solutions for the management
of assurance case related information, including modelling of argumentation-related architectures. To model
and reuse assurance cases, a SACM-based solution was proposed. Figure 8 recalls the SACM-based solution
that integrates the concepts presented in Section 4.3.1.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 31 of 185

Figure 8. SACM-based assurance case metamodel

Figure 8, however, does not include meta-classes for modelling the management of commonality and
variability.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 32 of 185

5. Design Level Solution

In this chapter, we design the AMASS solution for cross and intra domain reuse. Our solution comprises three
main functionalities: the reuse discovery (explained in Section 5.1), the reuse assistance (explained in Section
5.2), and the management of families of processes, products and assurance cases (explained in Section 5.3),
including analysis of change impact on individual members of one family, due to changes in individual members
of other families. In addition to these main functionalities, other functionalities are part of our global solution,
i.e., functionalities enabling reuse of product-related artefacts (Sections 4÷7), change impact analysis via elastic
search methods (Section 5.8), as well as functionalities for automatic generation of process as well as product-
based arguments (Section 9÷10).

5.1 Reuse discovery

In the context of software engineering, reuse [119] [120] [124] is commonly defined as a process to
systematically specify, produce, classify, retrieve and adapt software artefacts for the purpose of using them
in a development process. In general, software reuse [120] [123] may have the potential of increasing
productivity of engineers, improve quality and create a cost-efficient development environment. However,
both technical and non-technical issues for a limited reuse can be found [121] [122]: 1) economical,
organizational, educational or psychological issues; and 2) lack of standards to represent artefacts, and lack of
reusable component libraries or appropriate tools for boosting reuse and interoperability among tools.

In the context of technical issues, systems and software engineering techniques have been widely studied to
support the classical principles of reuse [120] [125]: abstraction, selection, specialization and integration. More
specifically, abstraction (i.e. management of the intellectual complexity of a software artefact) can be
considered the essential feature for any reuse technique to specify when an artefact could be reused and how
to reuse it. Selection refers to the discovery of software artefacts, covering from the representation and
storage to the classification, location and comparison. Specialization consists of the set of parameters and
transformations required to reuse a software artefact, while integration refers to the capability of software
systems to communicate, collaborate and exchange data.

Thus, the reusability factor [124] [125] of system artefacts will directly depend on their abstract description,
on how they can be selected and specialized for reuse, and how they will integrate into a new software system.
Furthermore, a reuse approach implies that every artefact generated during the development lifecycle is not
any more an isolated requirement specification, model, piece of source code or test case, but a knowledge and
organizational asset. However, after a long time, reuse promises [128] [129] are still far from reaching the
major objective of optimizing the system development lifecycle efforts [126], even though tools, techniques,
methods and languages and the overall understanding of a system have dramatically changed since the NATO
Software Engineering Conference in 1968.

The emergence of Model-based Systems Engineering (MBSE7) as a complete methodology facilitates
addressing the challenge of unifying the techniques, methods and tools to support the whole specification
process of a system, including conceptual design, system requirements, design, analysis, verification or
validation. In the context of the well-known V lifecycle model, it means that there is “formalized application of
modelling” [131] to support the left-hand side of this system lifecycle implying that any process, task or activity
will generate different system artefacts but all of them are represented as a model. This approach is considered
a cornerstone for the improvement of the current practice in Systems Engineering since it is expected to cover
multiple modelling domains, to provide better results in terms of quality and productivity, lower risks and, in
general, to support the concept of continuous and collaborative engineering easing the interaction and
communication between people (engineers, project managers, quality managers). MBSE and reuse is currently
under study [132] [133] in which component models [130] are applied to enable reuse in MBSE. Furthermore,

7 INCOSE, “Systems Engineering Vision 2020,” INCOSE, Technical INCOSE-TP-2004-004-02, 2004.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 33 of 185

variability management techniques are also being explored [134] to link MBSE to product lines and, thus,
support the principles of specialization and integration.

However, abstraction and selection processes are not fully developed. Currently, existing interoperability
initiatives (such as ISO 10303-STEP or OASIS OSLC) are trying to boost reuse through data exchange or
referencing (linking), but there is much more at stake than the mere exchange of data. The first step to be able
to exchange (and reuse) data, information, and knowledge lies on the provision of a proper environment for
system artefacts retrieval that will be the first step to look up artefacts to finally exchange (and reuse) them
through the protocols and common data models mentioned before.

Existing platforms for the management of system engineering processes such as the Jazz Platform by IBM or
Papyrus (Eclipse CDO), offer a kind of central repository in which engineers can upload their systems artefacts
and perform tasks such as searching, traceability management [135], etc. These centralized repositories
represent artefacts as a set of metadata that are linked to a system artefact (content). Although in some cases,
the use of metadata can be useful to look up artefacts by filtering certain properties, it is considered too simple
to enable the proper reuse of the knowledge embedded in the system artefacts. As a motivating example, in
traditional information retrieval systems (text-based) if we are looking for documents (text) we will express
queries as text (or keywords), and the search engine will match documents according to the input query. In
any case, in all of them, the representation of information, the queries and the results, are working under the
same context: text. The same kind of behaviour can be found in the Google Image search service where we
can look up images by entering an image.

If the same principles are applied to the systems engineering discipline, we should be able to represent, index,
query, and retrieve any kind of system artefact depending on their type, increasing the reusability factor of
previous works. Moreover, and taking into account the plethora of tools, system artefacts and formats, an
advanced retrieval system for a MBSE platform should be able to represent, store, and retrieve any kind of
artefact by using as input query any kind of system artefact: a requirement, an architectural or a physical model
or event, just a text (that can be represented in a structured way).

Thus, information retrieval techniques will equip engineers with a method to support more complex processes
that require a holistic view of a system such as the traceability link recovery process as part of the verification
and validation technical processes. Some specific works can be also found in this area for retrieving physical
system models (e.g. Modelica RC circuits [136] or SysML models [137]). However, the notion of a complete,
semantic-based, retrieval system for system artefacts and MBSE platforms is still under development and
should enable the first step for a proper reuse environment: search and discovery.

5.1.1 Methodology to represent system artefacts

Ontologies are commonly used to model domain knowledge in some area using a particular syntax and logic
formalism. Some of the classical definitions [138] [139] describe an ontology as a specification of a
conceptualization; that is, as a set of concepts (classes), attributes and relationships aiming to share and reuse
knowledge. In the context of requirements authoring, the use of an ontology can help to restrict the concepts
that can be used to describe a requirement on all lexical, syntax and semantic/category levels, see Figure 9. In
general, a knowledge base built as an ontology can be layered as follows:

Controlled Vocabulary

Domain Thesaurus

POS elementsInvalid POS elements

Patterns Layer

Formalization Layer

Inference Layer

Figure 9. Layers of an ontology-driven approach to implement a Knowledge-Centric Systems Engineering strategy.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 34 of 185

• Controlled vocabulary layer contains all those concepts with a specific meaning in a domain.

o Part-of-Speech (POS) elements layer includes all those terms that are part of the speech and are
used to build domain-based terminology and concepts such as prepositions, conjunctions,
articles, etc.

o Invalid POS elements is the set of terms that should be avoided in textual requirements to reach
desirable quality characteristics.

• Domain thesaurus layer is comprised of those concepts and terms that have relevance in a domain but
include more sophisticated and particular relationships that can be defined either in a metamodel or
inherited from a typical thesaurus structure, such as hierarchical relationships (e.g. broader/narrower)
or composition (e.g. part-of/whole-part).

• Pattern layer defines the proper grammar to create pattern-based system artefacts. It makes use of the
existing definitions (concepts) by exploiting relationships such as the lexical and semantic ones (e.g.
synonymy or part-of).

• Formalization layer is the layer in charge of managing semantic relationships and exploiting the
underlying knowledge that has been formalized through concepts and relations.

• Inference layer represents the rules that can be used to infer new knowledge based on both the
underlying data model (e.g. a semantic graph) and a certain type of logics. In some contexts, such as
expert systems, this layer corresponds to the use of a semantic-based reasoner or a rule-based engine.

Some advantages of using formalized knowledge from ontologies in Systems Engineering processes can be
highlighted:

• With regards to system artefacts authoring:

a. Identify the domain concepts that are participating in some model or diagram.

b. Model and automatically process the structure (grammar) of any kind of system artefact based
on the restrictions established in a metamodel.

• Formalize, as a semantic graph, any kind of content. Since most of (static and structural) models can
be thought of as an underlying graph in which relationships connect nodes of different types, the
outcome of a common representation model would be represented by a semantic graph aligning all
concepts and relationships under the frame of an ontology. Thus, it is possible to calculate quality
metrics that can potentially have impact in the reusability factor of an artefact. Those quality metrics
must necessarily cover:

a. Knowledge for calculating correctness metrics (artefact level).

b. Knowledge for calculating consistency metrics (specification level).

c. Knowledge for calculating completeness (artefact and specification level).

Reuse discovery is then designed as a process exploiting the underlying semantics (concepts and relationships)
and used to describe the different system artefacts. In this case, the process is based on matching similar
underlying graphs (since every piece of knowledge is modelled as a semantic graph).

According to the previous introduction, a reuse discovery process based on the use of ontologies (semantics)
is designed as a function in which language descriptions are elevated to a concept-based representation,
exploiting the typology of concepts and relationships coming from a metamodel. This functionality can then

be defined as a function 𝑆 that for a given resource 𝑟𝑘
𝑖 , a target set of resources 𝑅𝑗 and a context 𝐶 (containing

information about natural language processing such as stop words, acronyms, etc. and metamodels) will

generate a set of results { (𝑟𝑘
𝑖 , 𝑟𝑘

𝑗 , 𝑐)} where the input resource and other resource 𝑟𝑘
𝑗 are matched together

under a certain value of confidence 𝑐 as the next equation shows:

𝑆: 𝑟𝑘
𝑖 × 𝑅𝑗 × 𝐶 → { (𝑟𝑘

𝑖 , 𝑟𝑘
𝑗
, 𝑐)} / 𝑟𝑘

𝑖 ∈ 𝑅𝑖 ∧ 𝑟𝑘
𝑗

 ∈ 𝑅𝑗 ∧ 𝑐 ∈ ℝ

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 35 of 185

This definition can be widespread and applied to the mapping process between two different sets of resources,
𝑅𝑖 𝑎𝑛𝑑 𝑅𝑗 as the next equation also shows:

𝑆: 𝑅𝑖 × 𝑅𝑗 × 𝐶 → { (𝑟𝑘
𝑖 , 𝑟𝑘

𝑗
, 𝑐)} / 𝑟𝑘

𝑖 ∈ 𝑅𝑖 ∧ 𝑟𝑘
𝑗

 ∈ 𝑅𝑗 ∧ 𝑐 ∈ ℝ

Given the two previous definitions, a reuse discovery process based on a semantic search function can be seen
as a mapping process in which two artefacts (resources), 𝑅𝑖 𝑎𝑛𝑑 𝑅𝑗 , are used as source and target sets of

resources. 𝑃 is the set of patterns (metamodel specification) that have been designed to serve us to design the
resources in both specifications using a set of domain vocabularies 𝑂: generally, one ontology will be enough
to represent the domain knowledge. The output of this function will be again a set of mappings

{ (𝑟𝑘
𝑖 , 𝑟𝑘

𝑗
, 𝑝𝑖 , 𝑝𝑗, 𝑐)} where:

• 𝑟𝑘
𝑖 represents a resource in the source specification, written following the pattern 𝑝𝑖.

• 𝑟𝑘
𝑗
 represents an artefact in the target specification, written following the pattern 𝑝𝑖; and

• 𝑐 is a value of confidence.

Thus, it is possible to discover similar artefacts by performing a matchmaking process based on the semantics
of the relationships defined at different levels: lexical (words), syntax (metamodel), and semantics (typology
of nodes and relationships).

Although this definition of a reuse discovery process allows us the possibility of elevating the meaning of text-
based and metadata resources to a semantic-based representation, the main and common drawback of this
approach lies in the necessity of human-validation to ensure that the mapping is 100% correct. However, the
possibility of suggesting matching resources by exploiting the semantic relationships in a domain ontology can
boost the reusability factor of any system artefact generated during the development lifecycle of a critical
system.

5.1.2 Architecture and Operations to support reuse discovery

The logical architecture for providing reuse operations is based on the interoperability layer defined in
deliverable D5.2 “Design of the AMASS tools and methods for seamless interoperability” [15]. In this context,
the following elements must be mentioned:

1. There are two main conceptual blocks:

a. The SKB (System Knowledge Base) that contains the “ontology” to drive the process of reuse
discovery based on the creation and exploitation of semantic relationships. This block mainly
comprises the system conceptual model covering: terminology, taxonomy, patterns and rules, as it
was previously outlined.

b. The SAS (Systems Assets Store) that contains the formal representation of system artefacts based
on the use of the concepts and relationships of the SKB.

2. The set of operations to manage both conceptual blocks provides a service layer based on the
extension of the OSLC Concepts “Delegated User Interface” and “Delegated Operation”. In this case,
any reuse operation is offered in terms of the OSLC resource shape defined for exchanging knowledge
and, following the deliverable D5.2, the resources shape is described as SRL (System Representation
Language). The resource shape, see also Figure 11, which provides the schema to define the
input/output interface of the reuse operations layer is based on the following class diagram. In this
manner, any input content and output artefact must be expressed following the entities represented
under this model and creating an underlying graph that is used to implement a search engine to
discover potential reusable assets.

Building on the previous principles, a system knowledge repository is created to support the representation,
storage, and retrieval of system artefacts as the next figure shows. Here, a System Knowledge Repository (SKR)

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 36 of 185

is composed of a knowledge base and a realization of this knowledge base through assets that are represented
in the SRL resource shape.

Figure 10. A system Knowledge Repository structure.

Thus, the building blocks of the architecture comprise two main aspects:

1. The services interoperability layer, where a component implementing the OSLC KM specification
(see D5.2 [15]) is offering services to external clients and delegating the real implementation of
operations to the CAKE (Computer-Aided Knowledge Environment) API provided within The Reuse
Company tools.

2. The CAKE API that provides the implementation of the reuse operations exploiting the information
available in the Knowledge Base and the formal representation of the assets that are stored in the
repository.

Once the architecture is defined by separating the specification from the implementation, a set of operations
are designed to support the main functionalities expected for delivering a reuse discovery mechanism. To do
so, Table 3 shows the main operations available to manage the System Knowledge Base.

Table 3. Common operations definition for the System Knowledge Base

Operation Description

Text
standardization
(Normalization)

When dealing with names of concepts and relationships presented in some model, it is
possible to find different lexical variations (e.g. number or gender). It is important to
unify such text descriptions to be able to link and compare different artefacts at a
conceptual level.

Validation When dealing with names of concepts and relationships presented in given model, some
of the terminology could be out of the domain. This operation ensures that only valid
names will be accepted for the purpose of reuse.

Preferred When having a term, there is a preferred term for that concept.

Related When having a term, concept or even a system artefact, a set of related resources can
be found by simply querying the metadata of such resource.

More specifically, a brief description of each operation is provided below:

• Core operations: Create, Retrieve, Update, and Delete operations for the elements comprising the SKB.

SKR

SKBSAS Term

SCM
Patterns

Rule

11

1
1

1

1

Generation Transformation Inference Textual Pattern Model PatternQuery

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 37 of 185

• Common operations: set of operations aimed at providing the unification and standardization of the
terminology that can be found in any asset.

• Retrieval operations: this mainly covers two functionalities for indexing and searching any kind of
artefact that is part of the SKB. In this case, elements of the SKB are also considered assets.

• Reuse operations: this set of operations covers the management of the SKB being able to copy one
knowledge base into another, merge two different knowledge bases and perform a delta operation
(DIFF) between two different knowledge bases.

Table 4. Operations for the management of the System Knowledge Base and the System Assets Store

Core
Operations

Common Operations
Retrieval

Operations
Reuse Operations

Operations for the management of the System Knowledge Base

Resource C R U D Text
Standar-
dization

Validation Preferred Related Index &
Search

CopyTo Merge Diff

Term x x x x x x x X x x x

SCM (relationships) x x

x x x

x x x

Pattern x x

x

x x x

Rule x x

x

x x x

Operations for the management of the System Assets Store

Artefact x x x x x x x X x x x x

5.1.3 Design of a research method to evaluate a reuse discovery process

To illustrate the approach for reuse discovery, a case study based on the comparison of precision and recall
measures of existing tools for the management of system artefacts and the semantic-based matchmaking
process must be defined in advance.

A reuse discovery process can be seen as a search system in which a query (a source system artefact or
resource) and a set of resources (a target system artefact) is given. It is necessary to find out which is the best
set of results (“mappings”) for the source system artefact in the target set. To do so, the following steps must
be carried out:

1. Design a domain-based vocabulary, 𝑂, to represent the concepts and relationships that will be used to
create the system artefacts. It will usually contain a glossary and the set of metamodels that are used
to describe the system artefacts.

2. Select the tools that are currently managing the system artefacts and establish the methods available
to discover similar system artefacts. Usually, these tools have not been designed to perform search
processes and they just include keyword-based or metadata-based search functionalities that are in
general quite simple and restricted for the purpose of reuse system artefacts.

3. Select and design a set of source system artefacts accomplishing with the selected vocabulary and

metamodels, 𝑆𝑅 = {𝑅
1 , 𝑅

2, . . , 𝑅
𝑘 , … , 𝑅

𝑚}, where #𝑅
𝑘 represents the number of system artefacts in

the specification 𝑅
𝑘 . This set of system artefacts will be used as “queries”.

4. Select and design a set of target system artefacts accomplishing with the selected vocabulary and

metamodels, 𝑇𝑅
𝑅

𝑘

= {𝑅

1, 𝑅
2 , . . , 𝑅

𝑘 , … , 𝑅
𝑚}, where #𝑇𝑅

𝑅
𝑘

represents the number of system

artefacts that are expected to be reused for the system artefact 𝑅
𝑘 . This set of system artefacts will

be used as repository.

5. Run the reuse discovery process implemented on top of the selected tools (depending on the search
capabilities) and the new implementation of the semantic-based matchmaking to discover the

matches between the system artefacts in 𝑇𝑅
𝑅

𝑘
 and 𝑆𝑅. For every system artefact in 𝑅

𝑘 searchfor the

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 38 of 185

best set of mappings in 𝑇𝑅
𝑅

𝑘
. To do so, two matching methods will be used: 1) text-based and 2)

concept-based.

6. Extract measures of precision (𝑃), recall (𝑅) and the F1 score (the harmonic mean of precision and

recall) making a comparison of the expected and generated results. Being 𝑃 =
𝑡𝑝

𝑡𝑝+𝑓𝑝
, 𝑅 =

𝑡𝑝

𝑡𝑝+𝑓𝑛
 and

, 𝐹1 =
2 𝑃∗𝑅

𝑃+𝑅
 where given a set of system artefacts, 𝑇𝑅

𝑅
𝑘

, and a query, a system artefact in 𝑅
𝑘 : 𝑡𝑝

(true positive) is “the number of system artefacts in 𝑇𝑅
𝑅

𝑘
 that have been retrieved and represent

correct mappings”, 𝑓𝑝 (false positive) is “the number of system artefacts in 𝑇𝑅
𝑅

𝑘
 that have been

retrieved and represent incorrect mappings”, 𝑡𝑛 (true negative) is “the number of system artefacts in

𝑇𝑅
𝑅

𝑘
that have not been retrieved and represent incorrect mappings” and 𝑓𝑛 (false negative) is “the

number of system artefacts in 𝑇𝑅
𝑅

𝑘
 that have not been retrieved and represent correct mappings”.

7. Check the robustness of the comparison by performing statistical hypothesis testing finding out which
of the available methods in the different tools has the best performance (in terms of the designated
measures, usually the F1 score).

5.1.4 The reuse discovery process in AMASS

Within AMASS, the reuse function shall support the semantics-based mapping of standards. That means that
the information available within a standard must be a candidate to be represented under the presented
paradigm. Queries (considering as a query any kind of artefact) must return the artefacts that match such
standard. To do so, it is necessary to represent the standard (terminology, relationships and patterns (if any))
according to the methodology for knowledge management. Once the standard is represented and indexed,
the standard is just another asset, a piece of information that can be retrieved through the interface. It is
important to emphasize that the alignment of a work product to a standard will again return a confidence
value providing a semi-automatic procedure to discover a mapping between any artefact and a standard. Thus,
two main approaches can be done:

• The semantic representation of a standard includes links to the required artefacts (typology), required
relationships between artefacts, etc. creating an underlying topology of the structure and contents
that an artefact must fulfil to be compliant with the requirements of a specific standard. Then, the
retrieval process is in charge of mapping an input artefact structure against the predefined structure
of the standard.

• A standard can also be used as the context for searching in two ways: 1) input filter of the relationships
that must be fulfilled by the artefacts (first filter restrictions and then search) or 2) output filter to
remove those system artefacts that are not fulfilling the requirements expressed in the standards (first
search just similar system artefacts, then filter out those that are not fulfilling the standard). It seems
that the first approach is more suitable if a standard is driving the reuse discovery process.

With regards to reuse discovery and, more specifically, use of standards as a mean to discover reusable assets,
these will represent the required structure (concepts and relationships) that an artefact must fulfil to be a
candidate for reuse against such standard. For instance, assuming a standard is represented and indexed
within the system, two different artefacts generated for different domains may match the standard description
under a certain value confidence. This does not mean automatic reuse but discovery of potential matches. It
must serve as an assistant, a recommendation engine, for the end-users.

5.1.5 Definition of an interface for reuse discovery (*)

As a result of previous studies, an evolution of the preliminary OSLC KM (Knowledge Management)
specification has been proposed to define a common shape for any type of system artefact (considered a
knowledge asset) that must be represented, stored, shared or exchanged between tools in a development
process. On the other hand, the OSLC initiative is making a strong commitment to apply the principles of Linked

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 39 of 185

Data, RDF (Resource Description Framework) and REST (Representational State Transfer) to boost
interoperability.

Specifications or, more precisely, data shapes, have already been defined to model metadata and content of
requirements, assets, test cases, changes and estimation and measurement metrics. In the same way, the OMG
group is working on the OSLC-MBSE specification to promote system models to Linked Data. However, there
are still some artefacts for which there is no shape, such as an element of a vocabulary, a requirement pattern
or a Dynamic System Model. Due to this fact a common strategy for knowledge management is hard to draw.
Moreover, some cross-cutting services such as indexing and retrieval processes are delegated in third-party
tools, preventing the implementation of one of the cornerstones of knowledge management for software
reuse: selection. Therefore, we present a data shape for any artefact generated during the development
lifecycle.

1. SRL: the language for representing the metadata and content of any artefact.
2. Knowledge MANAGER: the basic tool that provides the required services for the software knowledge

repository.
3. RDF data shape and OSLC interface: the SRL language is offered through an input/output OSLC interface,

satisfying the need of reusing standards in a web environment.

As it has been previously outlined, and in order to combine RDF and SRL, it is necessary to provide an
RDFS/OWL ontology, i.e. an RDF vocabulary, that defines the entities and relationships in the SRL
representation model to make this specification publicly available and to enable the expression of any piece
of knowledge using SRL. On the other hand, and since a huge amount of data, services and endpoints based
on RDF and the Linked Data principles are already publicly available, a mapping between any RDF vocabulary
and SRL is completely necessary to support backward compatibility and to be able to import any piece of RDF
data into RSHP. In this case, taking into account the guidelines and definitions of the OSLC Core specification,
the data shape for knowledge management will conform the next basic OSLC definitions:

1. “An OSLC Domain is one ALM (Application Lifecycle Management) or PLM (Product Lifecycle
Management) topic area”. Each domain defines a specification. In this case, a new domain has been
defined: Knowledge Management (KM).

2. “An OSLC Specification is comprised of a fixed set of OSLC Defined Resources”. The key concepts of the
SRL metamodel are the Artefact and Relationships classes.

An artefact is a container of relationships (RHSP) that can have metaproperties (authoring, versioning,
visualization features and, in general, provenance information) and attribute-value expressions (AOV).
If an artefact only represents the apparition of a term it will contain a reference to a term (element of
a controlled vocabulary or taxonomy). This term can have a grammatical category (Type) such as name,
pronoun, adverb or verb to cite just a few. In the same manner, a semantic category (Type)
represented by a term can be assigned to a term, for instance the semantics “negative”. Thus, different
terms can have different semantics. Finally, a relationship establishes a link between n artefacts and
semantics can be also attached to the link, e.g. “part-of”.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 40 of 185

Figure 11. UML Class Diagram of the OSLC Knowledge Management Resource Shape.

3. “An OSLC Defined Resource is an entity that is translated into an RDF class with a type”. Every resource
consists of a fixed set of defined properties whose values may be set when the resource is created or
updated.

In this case and following the previous design, a shape for every class has been defined. The next table
presents the resource shape links to the official definition (prefix:name, e.g. oslc_km:Artefact) and a
brief description of the resource.

Table 5. OSLC Resource Shapes for OSLC Defined Resources within the KM Domain

Class in Figure 11 OSLC Resource Shape Item Description

Artefact oslc_km:Artefact A container of relationships between concepts and
metaproperties to semantically describe any piece of
information. It is the basis for the creation of an underlying
semantic network.

Relationship oslc_km:Relationship A relationship represents a link between any set of resources.
It is possible to add semantics and it can contain any number
of elements representing binary, ternary or even n-ary
relationships.

Data oslc_km:Data An attribute-value expression that represents a property of the
artefact under description.

MetaData oslc_km:MetaData A tag-value attribute representing typical metadata
properties. Dublin Core is used here to represent such
information. Both can be any type of resource or, more
specifically, concepts.

Term oslc_km:Concept This concept follows the semantics and shape of a
skos:Concept [50].

More specifically: "the notion of a SKOS concept is useful when
describing the conceptual or intellectual structure of a
knowledge organization system, and when referring to specific
ideas or meanings established within a KOS (Knowledge
Organization System)”.

Type oslc_km:Concept Everything has a type and a type is a kind of concept coming
from a classification. E.g. The types of UML metamodel, such
as Class, Use Case, etc.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 41 of 185

Taking into account that the Linked Data Initiative has seen in recent times the creation of
methodologies, guidelines or recipes to publish RDF-encoded data, we have paid special attention to
follow a similar approach by reusing existing RDF-based vocabularies. More specifically, the following
rules have been applied to create the OSLC resource shapes:

• If there is an RDF-based vocabulary that is already a W3C recommendation or is promoted by
any other standards organization, it must be used as it is, by creating an OSCL Resource Shape.

• If there is an RDF-based vocabulary but it is just a de-facto standard, it should be used as it is,
by including minor changes in the creation of an OSCL Resource Shape.

• If there is not an RDF-based vocabulary, try to take advantage (reusing properties and classes)
of existing RDF-based vocabularies to create the OSLC Resource Shape.

In the case of knowledge management, we have selected the Simple Knowledge Organization System
(SKOS), a W3C recommendation, to define concepts, since it has been designed for promoting
controlled vocabularies, thesauri, taxonomies or even simple ontologies to the Linked Data initiative.
That is why, in our model, most of the entities can be considered as a skos:Concept and we have
created the shape of this standard definition of concept in the resource oslc_km:Term.

4. “An OSLC Defined Property is an entity that is translated into an RDF property”. It may define useful
information such as the type of the property, datatypes and values, domain, range, min. and max.
cardinality, representation (inline or reference) and readability.

The detailed description of all properties for every defined resource can be found in the public
deliverable “Interoperability Specification – V3” of the CRYSTAL project.

5. An OSLC Service Provider is a tool that offers data implementing an OSLC specification in a REST-
fashion.

It shall be able to process any kind of OSLC-based resource or even any piece of RDF by applying the
mappings described in the previous deliverable. Once the data is in the OSLC-KM processor, a
reasoning process can be launched to infer new RDF triples (if required). Afterwards, data is validated
and indexed into the system and software knowledge repository (SKR). On top of this repository,
services such as semantic search, naming, traceability, quality checking or visualization may be
provided, generating new OSLC KM Resources.

Delegated operations of the OSLC KM specification

The notion of delegated operation has been already introduced in Deliverable 5.3 [16] and it is recall here.
Although the OSLC approach is perfectly valid for exchanging data resources, there is a huge number of
interesting functionalities available in the different tools that should be considered as candidates to be reused
through interoperability-based services. As a motivating example, if a model has been created in Papyrus, the
engineer may want to check the quality of such model with the IBM Rhapsody capabilities, so the next
questions arises: how can we expose functionalities of existing tools in terms of OSLC concepts (enabling
operations)?

This is a topic that has been widely studied in the field of web services where standards such as WSDL (Web
Services Description Language) and SOAP (Simple Object Access Protocol) were defined to establish a standard
way to invoke functionalities via internet protocols (operation-oriented service). The success of web services
comes with a lot of APIs already available so an approach for reuse may consider the possibility of invoking
existing services but following the principles of an interoperable environment: a common and shared model
and a communication protocol.

In the first case, WSDL-based services define a metamodel of the data to be exchanged via an XML-Schema.
Each service defines their own XML-Schema so, in some cases, the concept of interoperability is hard to reach
because mappings between the data generated from the service and the model of the consumer must be
aligned. To ease this operation, also known as “grounding”, semantic web services emerged to provide a

https://www.eca-ios.org/mediawiki/index.php/Ios_km:Concept

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 42 of 185

common model, an ontology that would be translated into the specific providers. However, the reality showed
that the time and effort to transform an abstract model (the ontology) to a specific model (XML-Schema) was
not efficient. Furthermore, it has an implicit implication since this kind of transformation occurs under different
levels of knowledge representation (logics vs object models). Secondly, the SOAP protocol is basically an HTTP
Post request with attachments. In general, this is a standardized protocol that works perfectly. However, the
effort to create and consume requests is greater than the mere invocation of an URL via HTTP.

On the other hand, it is also possible to find the notion of “Delegated User Interface” (DUI) in the OSLC
specifications. The main objective of the DUI is to provide a better usability experience for third-party
consumers of OSLC services. When you must select or create a resource you can use the native interface of
the OSLC provider instead of creating a new one. The unique requirement is that the OSLC provider must have
an HTML-based interface. The way of accessing a DUI is natively specified in the OSLC Service description.

Considering the need of keeping backwards compatibility with existing WSDL-SOAP services (even others
under protocols such as JSON-RPC) and the notion of DUI in OSLC, we define here the concept of “Delegated
Operation”8 as a function that is exposed by an OSLC service in terms of OSLC resources. It represents a kind
of gateway between existing functionality and an OSLC-based environment (Linked Data+REST). In this way,
the proposed approach is a hybrid method to expose resource and operation-oriented services.

In the context of the OSLC KM specification, the delegated operations of an OSLC KM provider shall accomplish
the following requirements:

• The procedure/function shall be already available in a service provider.

• Generalization of the “Delegated User Interface” OSLC concept.

• A delegated operation shall describe its interface like a WSDL service.

• Host/Port

• Input parameters

• Output

• An OSLC KM provider shall implement a system knowledge repository (SKR) comprising a “System
Knowledge Base” (SKB) and a “System Assets Store” (SAS).

• A delegated operation shall receive as input an OSLC KM artifact.

• A delegated operation shall generate as output an OSLC KM artifact or a value with a simple data type.

• A delegated operation shall serialize data following the normative OSLC formats (RDF/XML and
RDF/JSON) and JSON.

Furthermore, it is necessary to define how to wrap existing operations as an OSLC service. If the operation is
available through a WSDL/SOAP interface, which means a host/port, input parameters and output, the
interoperable service shall be defined in terms of resources instead of operations. To do so, it is possible to
find approaches to create proxies between SOAP and REST services. For instance, this is the case of exposing
SOAP services as resources in the IBM Bluemix cloud platform9. However, here the focus is to redefine the
operation in terms of resources, being the operation by itself a kind of service provider that takes some input
parameters and returns some results. That is why it is necessary to make a mapping between the different
data types:

8 A formal definition of the delegated operation can be taken from the WSDL W3C Recommendation.
9
https://www.ibm.com/support/knowledgecenter/en/SSFS6T/com.ibm.apic.apionprem.doc/tutorial_apionprem_expose
_SOAP.html

https://www.ibm.com/support/knowledgecenter/en/SSFS6T/com.ibm.apic.apionprem.doc/tutorial_apionprem_expose_SOAP.html
https://www.ibm.com/support/knowledgecenter/en/SSFS6T/com.ibm.apic.apionprem.doc/tutorial_apionprem_expose_SOAP.html

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 43 of 185

Table 6. Mapping of WSDL/SOAP operations to OSLC concepts.

WSDL/SOAP primitive OSLC concept OSLC KM

Operation p in tool k returning an
OSLC resource

Service provider p within the
OSLC interface of tool k

Service provider p within the
OSLC KM interface of tool k

Output value o of type t OSLC resource of type t OSLC KM Artifact

Collection of output values oc of
type t

Collection of OSLC resources of
type t

Collection of OSLC KM Artifact

Input parameter pk of type t in
operation p

Filter pk of type t in operation p Filtered value or collection of
OSLC KM Artifact

In general, the decision tree of what type of resources should be used is presented in Figure 12. The main
objective is to reuse both existing operations and OSLC resources. However, if there is no OSLC resource
shaped defined for a type of artifact, the OSLC KM resource shaped can be used instead of enabling a better
reuse, since there is no need of defining new shapes (clients and providers), but just the mapping rules
between the source type of artifact and the OSLC KM Artifact.

Figure 12. Decision tree to expose existing operations in a REST-oriented fashion.

According to these logical mappings, let’s apply the mappings to an operation (“check”) available in a tool, IBM
Rhapsody, which receives as input parameter a model and the type of checking, for instance “deep” and
returns a set of quality metrics for such a model. This definition would be a function defined as follows:

check: model x configuration Q where Q is a set of key/values.

In terms of OSLC KM, the function would be defined as follows:

• “check” is a service provider that takes as an input an OSLC KM Artifact representing the model and

an OSLC KM Artifact representing the configuration or input parameters as metadata. The output will

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 44 of 185

be then an OSLC KM Artifact representing the result set Q as a set of data (key/value) within the

output Artifact.

In this specific case, it would be also possible to use OSLC KPI (Key Performance Indicators) as output results,
but for the shake of a better understanding we define the operation in terms of the OSLC KM resource shape.

Once the notion of delegated operation has been outlined, a set of reusable operations are defined for the
OSLC KM providers. More specifically, the next table presents the expected operations available in an OSLC
KM provider with support or management of system knowledge bases (SKB) and system assets store (SAS).
These operations are expected to ease the reuse of existing artefacts and their metamodels, by providing an
implementation for the classical reuse principles of abstraction and selection.

Table 7. Delegated operations for an OSLC KM provider (SKB).

Delegated operation in SKB

Base URI/prefix http://www.reusecompany.com/oslc/km/operations

Reuse <base_uri>/skr

Query params: operation = {diff, merge, copy}

Body params: content = {srl}

Index <base_uri>/skb/index

Query params: type={text | srl | table}

Body params: content={content}

Trace <base_uri>/skb/{id}/trace

Query params: type={trace type} to = {id}

Visualize <base_uri>/skb/{id}/visualize

Normalize* <base_uri>/skb/normalize

Query params: type={text | srl}

Body params: content={content}

Table 8. Delegated operations for an OSLC KM provider (SAS).

Delegated operation in SAS

Base URI/prefix
http://www.reusecompany.com/oslc/km/operations

Search artifact
<base_uri>/sas/search

Query params: query={text}

Body params: srl={srl content}

Filter
<base_uri>/sas/filter

-Similar to OSLC query capabilities

-Similar to Linkedin API to express filters on attributes:

{(key=value,)+}

Finally, Figure 13 depicts the elements of the whole functional architecture for an OSLC KM environment. More
specifically, the next building blocks and technologies are being used to implement this approach:

• Tool: It is the target tool from which artefacts and operations are expected to be exposed following
the OSLC Resource Shape defined for Knowledge Management.

• OSLC KM adapter: It is a wrapper on top of a target tool, toolk, which must implement the
transformation rules from the internal representation format to the OSLC KM resource shape.
Currently, there are some available implementations based on .Net, Java and XSLT.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 45 of 185

• OSLC KM Provider: It is an OSLC service provider that offers a Linked Data API (Application
Programming Interface) to access the artefacts available in toolk. Currently, there are two
implementations for .Net and Java.

• OSLC KM Client & Provider: It is an OSLC client and Provider for OSLC KM resources. There are again
two available implementations in .Net and Java.

• CAKE (Computer-Aided Knowledge Environment): It is an API on top of the Knowledge Manager (KM)
tool and a repository that offers natural language processing techniques and ontology management
capabilities to promote any kind of resource to a semantic-based representation creating an
underlying knowledge graph. The CAKE v18 has been used to implement this functional block.

• KM: It is the acronym of the Knowledge Manager10 v18, a commercial tool developed by The Reuse
Company, that offers capabilities to design ontologies and a semantic-based retrieval engine based on
graph-matching techniques.

• Common services: Once any piece of data and information is stored in the repository as a graph, it is
possible to reuse some of the operations available in the KM tool such as naming, traceability recovery,
quality checking or semantic retrieval.

One relevant implication of this architecture is that the reuse of a new type of system artefact or operation
only requires the implementation of an OSLC KM adapter and all common services, including reuse operations,
will be already available.

Figure 13. Building blocks of the functional architecture and technology for an OSLC KM environment.

5.2 Reuse assistance (*)

The reuse assistance functionality concerns intra and cross-domain reuse of assurance and certification assets.
AMASS will support users to understand whether reuse of the assurance assets is reasonable or determine
what further assurance activities (engineering, V&V, or compliance activities) are required to justify
compliance in the new scenario.

The concrete scenarios of reuse include (see Figure 14):

• Cross-systems reuse (intra standard or intra domain product upgrade): reuse of assurance assets
when a product or system evolves in terms of functionality or technology e.g. product upgrade.
Product upgrade corresponds to a development scenario in which an already-assessed system is
modified and thus a new assessment (e.g., re-certification) is required. For example, a new system can
be developed on the basis of an existing one. Such a new system can include, for instance, some new
components. We assume that the reusable assurance assets were compliant with the same standards
we target in the new scenario.

10 https://www.reusecompany.com/knowledge-manager

https://www.reusecompany.com/knowledge-manager

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 46 of 185

• Cross-standard reuse (cross-concern or cross-domain): reuse of assurance assets from a project that
was completed in compliance with a different dependability concern (e.g., security-compliant
assurance project reused from a safety-compliant assurance project) or different domain (e.g. avionics-
compliant assurance project reused from an automotive compliant assurance project). The second
standard could correspond to a new standard, a new version of a standard, or a different interpretation
of a standard (e.g., by a different certification authority).

In the AMASS Prototype P2, the Reuse Assistant does not cover other reuse scenarios such as COTS or SEooC-
like reuse.

Figure 14. Reuse Assistant: Scope of Reuse in Assurance and Certification

Also, the AMASS Prototype P2 focuses on the reuse of the following assurance assets:

• Compliance checks: any information related to the accomplishment of industry standards (i.e.,
information of level of compliance, compliance justification, traceability to claims or evidence).

• Artefacts: characterization of evidential artefacts (e.g., evidence attributes, evaluations, versions, and
link to concrete artefact resources).

• Argumentations: complete argumentations or argumentation fragments.

• Activities: any information of activities executed as part of a reusable assurance project.

We exclude more product-based assets such as requirements, design artefacts or code.

The reuse assistant tooling will build on top of other functionalities such as reuse discovery, impact analysis,
traceability, ontology-based mapping, and assets management.

Figure 15 shows two different approaches for AMASS tooling used in the two scenarios mentioned above.

Reusable Assets Tooling NeedsReuse Scenarios

Traceability

Impact

Analysis

Product

Upgrade

Cross-Concern

Cross-Domain

Cross-Systems

(SEooC-like)

Artifacts

Design

Arguments

Assets

Management

Reuse

Assistant

Reuse

Discovery

Requirements

Compliance

Checks

Code

Cross-Systems

(COTS)

Activities

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 47 of 185

Figure 15. Reuse Assistant: Proposed Reuse Approaches

The decomposition is done at two levels:

(a) Layered Decomposition of Tool Services

As a technology-driven decision, we distinguish three tool component layers:

• Data Management, including data storage and change management services. This is managed by
the CDO technologies in OpenCert.

• Core Components, covering the main functionality of OpenCert tool components, and;

• GUI Client components, which intend to disaggregate services that can be at some point distributed
in separate computing nodes (e.g., when using Web services to access the AMASS platform).

(b) Functional Decomposition of Tool Services

The Reuse Assistant is supported on functionalities for:

• Standards mapping, which manages the equivalence mapping between standards models.

• Reuse discovery, which uses impact analysis and traceability management of any AMASS
information asset (e.g. argumentation, evidence, or process-related assets).

• Compliance gap analysis, which provides functionalities to understand the compliance gaps of a
given baseline.

There are two approaches for cross-standard reuse. The reuse assistant supports the “from scratch” approach,
explained in section 5.2.2, while the “variants” approach is supported by the families/lines approach explained
in section 5.3.

Figure 16 provides more details about the OpenCert architecture that supports the Reuse Assistant
functionality. The modules in green support the Reuse Assistant functionalities described in the previous
figure.

Product

Upgrade

Cross-Concern

Cross-Domain

Assets

Management

<<assets>>

Traceability

<<analyze>>

Impact

Analysis

Reuse

Discovery

<<effect>>

Reuse

Assistant

<<collection>>

<<apply>>

Variants / SPL From Scratch

Reuse

Assistant

Standards

Equivalence

Mapping

Compliance

Gap Analysis

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 48 of 185

Figure 16. Reuse Assistant: Architecture of new functionalities (in green) in OpenCert tooling

Following deliverable D2.3 [5], which provides a first approach at a high-level of the functional decomposition
of the Reuse Assistant module, see Figure 17, we provide a more detailed component architecture as follows.

Figure 17. Reuse Assistant: Components decomposition of Reuse Assistant

5.2.1 Cross-system reuse scenario

The first functionality relates to the cross-systems reuse (product upgrade) scenario in which both source and
target assurance projects must be compliant to the same standard or set of standards. This is managed by the
Cross-Systems Reuse Assistant component.

Project Editor

Artefacts API Process API

Storage Provider

Data Storage

Data Versioning

Argumentation Editor

Components Integration

Compliance Estimation

Metrics

Standards Editor

Standards Mapper

Baseline

Assets

Project Mgmt

Reference Framework Editor Argumentation Editor Artefacts Editor Process Editor

Evidence Characterization

Traceability

Analysis (Gap, Inconsistency)

Impact Analysis

Evidence Evaluation

Process Tools
- Definition
- Execution

Evidence Tools

Administration

UI Clients - Visualization

Business Logic –

Client Technology **Independent**

Data Access - Server

External Tools layer

OP Clients

OP

Server

or

Client

OP Server

External Tools

Tailoring

Project

Assets

Compliance

Mapping

Data
Repository

Compliance Reports

Equivalence

Mapping

Storage Provider API to be used by *ALL* modules

v

Vocabulary

Reuse Assistant

Reuse Discovering

Compliance Gap
Analysis

Cross/Intra Domain Reuse

Reuse Assistance

Assets Reuse
Copier

Cross-Systems
Reuse Assistant

Standards
Equivalence
Discover

Cross-Standards
Reuse Assistant

IEquivalenceInfo

Elastic Search
Reuse Discovery

Reusable
Assets

Compliance Editor

IStandardsInfo

IProcessInfo

IUserMappingInfo

IComponentInfo

IArgumentInfo

IEvidenceInfo

IContractInfo

IComplianceInfo

KM-Reuse
Discovery

Impact Analysis

IImpactAnalysisInfo

User Query

UserMappingInfo

OSLC-KM

SAS Operations

SKB Operations

Interoperability Layer

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 49 of 185

To perform cross-system reuse, we use the assets management module. In AMASS, the assets management
functionality is provided by CDO as tool for data versioning and storage (see Figure 16).

In this scenario, it is possible to use two reuse discovery approaches. One approach is related to KM module
with OSLC technology, as explained in section 5.1, and the second approach is related to elastic search
explained in section 5.8. The reuse assistant should use the exposed API, as given by these components, to
provide them the query introduced by the user and to show to the user the reusable assets which comply with
the specific criteria introduced by a user. The reuse assistant will work with at least one of the approaches (if
possible with both).

A possible Reuse assistant interface is shown in the Figure 18, with context menus to let the user select the
assets discovery engine and showing the results in a Traffic light way.

• In green. The assets selected by the user are good candidate for reusing.

• In red. The assets selected by the user shouldn’t be reused.

• In orange. The asset not selected by the user are good candidate for reusing.

Figure 18. Reuse Assistant mock-up: Cross-system reuse scenario

Once the actor selects the assurance assets to be reused, the reuse operation itself can be executed by the
Assets Reuse Copier module. The impact analysis functionality (Impact Analysis component, documented in
AMASS deliverable D5.2 [15] and in section 5.8) is involved in this scenario in order to understand the
consequences of the reuse operation and to identify the set of assurance assets that may be affected when
executing the reuse operation.

5.2.2 Cross-standard reuse scenario

The second functionality relates to the reuse of assurance assets of one assurance project in another project,
when they relate to either different industrial domains, or have different dependability concerns, or different
industry-related standards. This is managed by the Cross-Standards Reuse Assistant component.

18

Reuse Discovery

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 50 of 185

To perform cross-standard reuse, an equivalence map model must be created between the source and the
target standard models. This current manual operation could be replaced or assisted by the ontology-based
mapping solution, as explained in Chapter 12. This mapping feature is managed by the Compliance Editor
component and it will be integrated with the ontology base mappings solution. A module for compliance gap
analysis allows AMASS users to look at the reuse post-conditions identified in the equivalence map model.

The reuse assistant will help the user in the generation of equivalence maps between standards, showing the
data provided by the OSLC-KM module in a Traffic light way, as done in the previous scenario.

• Highlighted in green. The target standard concepts (concepts from Standard B in the tree view on the
top right of Figure 19) checked by the user, map (totally or partially) with the selected source standard
concept (concept highlighted in grey from Standard A in the left three view on the left of Figure 19)
selected by the user.

• Highlighted in red. The target standard concepts (concepts from Standard B in the tree view on the top
right side of Figure 19) checked by the user that do not map with the selected source standard concept
(concept highlighted in grey from Standard A).

• Highlighted in orange. The target standard concepts not selected by the user (concepts from Standard
B in the tree view on the top right side of Figure 19) that do not map (totally or partially) with the
source standard concept (concept highlighted in grey from Standard A).

Figure 19. Reuse Assistant mock-up: Supporting equivalence mapping process

The Compliance Editor provides information on the reuse opportunities as result of the analysis of the
equivalence and compliance maps relationships between the assurance projects involved in the reuse
operation, highlighting in green the good candidate assurance assets to be reused (Figure 20).

Once the user selects the assurance assets to be reused, the reuse operation itself can be executed by the
Assets Reuse Copier, but the Impact Analysis component is not used for this scenario.

Concept from Standard A (“from”) to

be Mapped

Concepts from Standard B (“to”) to

be Mapped

Map Justification

Map Postconditions (Compliance Gaps)

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 51 of 185

Figure 20. Reuse Assistant: Showing reuse opportunities based on equivalence relations

Equiv. Maps created at standard level in previous stage (see previous Fig.)

Assurance Assets Created

as a Result of the Reuse

Reusable Assurance Assets

Map Postconditions

(Compliance Gaps)

Reuse Assitant Window

Assurance

Project

based on

Standard A
Assurance

Project

based on

Standard B

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 52 of 185

5.3 Management of families/lines

To manage families/lines, it is necessary to have at disposal modelling means for systematizing commonalities
and variabilities. These means might be provided as either a specific solution targeting a single type of family
(e.g., a process line), or as an orthogonal solution applicable to any type of family. As already and extensively
documented in D6.1 [17] as well as in [25], both approaches have been explored in the literature. However, in
the context of AMASS, BVR (Base Variability Resolution) turned out to be a promising, feasible, and technically
advantageous solution. Thus, in what follows, the essential information regarding BVR is first recalled and then
its role in AMASS, for the management of the different families that characterize our problem space, is
explained.

5.3.1 Base Variability Resolution

BVR (Base Variability Resolution) [38] is a language built on top of CVL (Common Variability Language) [32] to
enable variability modelling in the context of the engineering of families of safety-critical systems. BVR is a
result of the VARIES project [33]. The specification of the BVR meta-model is given in VARIES D4.2 [42].

BVR enables orthogonal variability management for any model (called Base model) instance of a Meta-Object
Facility (MOF)-compliant metamodel. BVR supports the modelling of: feature diagrams, resolution, realization
and derivation of specific family members, as well as their analysis. Variability engineers create three kinds of
models:

• VSpec models are an evolution of the Feature-Oriented Domain Analysis (FODA) [34]. More
specifically, VSpec extends FODA by including additional concepts such as variables, references and
multiplicities. Constraints by using the Basic Constraint Language (BCL) can also be added to specify
cross-cutting constraints that limit inclusion/exclusion within a subtree based on choices on other
subtrees. The grammar of BCL is given in Appendix A.

• Resolution models, which specify the desired inclusion/exclusion choices for the specific
configuration/resolution. Note that to confirm whether the resolution corresponds to the VSpec
model, a validation process might be executed. The Software Product Line Covering Array (SPLCA) tool
is integrated with the BVR bundle for checking constraints and structural consistency of the resolution
[24].

• Realization models, which specify the placements11 and replacements within the fragment
substitutions. A Fragment substitution is an operation that, if executed, substitutes a model fragment
(placement fragment) with another (replacement fragment). A theoretical exemplification of a
fragment substitution is given in Figure 21.

Figure 21. Fragment substitutions exemplification, taken from [40]

11 A placement fragment is a set of elements forming a conceptual hole in a base model, which may be replaced by a
replacement fragment [40].

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 53 of 185

Some relevant design decisions, presented in [118], pertaining to the implementation of the BVR Tool, are also
recalled.

The three different models are supported by three different editors (named VSpec Editor, Resolution Editor,
and Realization Editor), each of which reflecting a single underlying variability model. Thus, a variability
engineer should be able to resolve, in a resolution editor, a feature just added in a VSpec editor. In addition,
the three editors contain views of the model, which should be notified about the model change to keep their
content consistent with the model state. Thus, all the editors should share the model resource. Therefore, the
editors observe a resource change. Each editor implements the Observer pattern where the resource is a
subject. Figure 22 sketches the architecture of the editors in the BVR tool bundle.

In Figure 22, only the VSpec editor (called MVC VSpec editor) is shown. Figure 22 shows that each editor should
register itself with a corresponding subject. The subject updates all registered editors when a resource listener
notifies about any change to the resource. The editors extend the EditorPart class of the Eclipse UI framework.
Therefore, Eclipse treats our editors as its own. Each editor contains a view which is a heavy-weight Swing
component and renders the underlying variability model. This approach allows us to seamlessly integrate
different editors by registering them with a subject that expects a notification from a resource listener. At the
same time, the editors can work on their own in Eclipse without any special set up.

Figure 22. Editors' architecture

In order to define substitution fragments, an engineer has to select elements in a base model. The base model
is typically defined and modified in editors of the target language. To perform selections, the BVR tool has to
communicate to the editors of the target language. Therefore, the realization editor is capable of interfacing
third-party editors via IBVREnabledEditor interface. Thus, editors of the target language have to implement
this interface or provide adapters to establish a link between the BVR bundle and targeted editor, see Figure
23. By default, the BVR tool- chain provides integration with any EMF based tree editors and Papyrus UML.

The suggested architecture allows integrating different editors seamlessly. It decouples different components
which can be run as stand-alone plug-ins.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 54 of 185

Figure 23. Third party integration

5.3.2 Process-related reuse via management of process lines

5.3.2.1 Empowering SPEM2.0/UMA to enable management of process variability

In the context of AMASS, SPEM2.0/UMA has been selected to model those processes that represent plans.
Models that represent execution of plans are, instead, modelled in CCL. Both SPEM2.0/UMA and CCL, however,
do not offer any support for managing variability as needed for the AMASS purposes.

To be able to automatically reuse the UMA-given representations of the process elements, which have been
presented in 4.1.1, it is necessary to empower SPEM2.0/UMA by offering means for variability management.
To do that, the AMASS solution is BVR. However, seamless integration between the tools that implement UMA
(EPF Composer) and BVR (BVR Tool) is not given for granted, and some challenges have to be overcome. The
specific challenges and the work conducted to overcome them is extensively documented in D6.5 [20] and
partly in [153]. In this deliverable, only the design of the plugin necessary to enable the seamless integration
between EPF Composer and BVR Tool is provided. Figure 24 depicts the architecture of the conceived plugin
(Seamless integrator) and it also recalls the architecture of EPF Composer (detailed in [44]) and BVR Tool
(detailed in [42], page 50). As it can be seen from Figure 24, Seamless integrator is expected to import all
necessary information (Library) from EPF Composer to enable the communication with BVR Tool. It also
includes XMI handler to handle specific challenges related to XMI files (more details can be found in D6.5). In
addition, a functionality enabling the variation resolution is also conceived. Finally, the export back to the EPF
Composer is included.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 55 of 185

Figure 24. Architecture of the seamless integrator plugin enabling process-related variability management

Figure 25 depicts the interplay of the different models needed to manage process variability via integration of
UMA and BVR. In particular, process engineers jointly with variability engineers should provide four models:

• a Base Model (an UMA-compliant model), to model the single process to made vary,

• a VSpec Model, to model the feature diagram associated to the process model,

• a Resolution Model, to model the process configuration, and

• a Realization model, to model placements and replacements.

The interplay of these models is then processed/elaborated to produce a resolved model where substitutions
have been executed.

Summarizing, BVR provides advanced support for managing families (security-informed safety-oriented
process lines, product lines, etc., depending on the specific choice of the base model).

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 56 of 185

Figure 25. Models interplay enabling management of process lines

5.3.2.2 Intra-domain variability management: an aerospace SoPL

In this subsubsection, as a running example, a portion of ECSS-E-ST-40C [37] is considered. Thus, first some
essential information is recalled.

ECSS-E-ST-40C is one of the series of ECSS Standards intended to be applied together for the management,
engineering and product assurance in space projects and applications. ECSS-E-ST-40C targets software
development. More specifically, it covers all aspects of space system software engineering, including
requirements definition, design, production, verification and validation, transfer, operations and maintenance.
Similarly to other standards, it represents in effect a “standard for making standards”, the idea being that this
permits suppliers to use their own standards, provided that they comply with the requirements of ECSS-E-40C
or some tailoring of it defined (or at least agreed) by the customer [39]. Tailoring support is thus a strategic
ability for enabling customers as well as suppliers to perform valid customizations. Different customizations,
performed by the different customers, can be seen as variants within a family of processes. Predefined tailoring
rules are provided in a specific annex of the ECSS Standard, Annex R (normative), based on software criticality,
which ranges from A (most critical) to D (less critical). Different tailoring choices may also be defined with
criteria different from criticality, mainly according to the level of risk which is taken by not performing given
engineering activities.

ECSS-E-ST-40C, Section 5 (Software design and implementation engineering process) is constituted of a series
of phases (Design of software items, Coding and testing, Integration), each of which containing various
activities, which in turn contain various tasks. The phase Integration is composed of two activities: Software
integration test plan development and Software units and software component integration and testing.
According to Annex R, for instance, the Software integration test plan is applicable (Y) for levels A-B, and is also
applicable (Y) for level C except SUITP K.9 and K10. Finally, it is not applicable for level D. This limited process
portion exemplifies what is typically required in terms of process engineering, i.e., complying with the
requirements while tailoring. Thus, enabling valid tailoring is fundamental.

An UMA-compliant base model of this process description is given in Figure 26.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 57 of 185

Figure 26. UMA-based model of the ECSS process fragment

Figure 27, Figure 28, and Figure 29 depict respectively the VSpec model, the Resolution model and the
Realization model. More specifically, Figure 27 depicts the feature model associated to the process fragment
depicted in Figure 26.

As it can be seen, the process element software_design_and_implementation_engineering_process has three
mandatory sub-features (depicted as rounded rectangles and representing selectable entities, where a choice
can take place), one of which is Integration. This sub-feature in turn has 2 mandatory sub-features, which are
further developed but at the same time are constrained (note that parallelograms denote constraints). Note
that constraints are given by using Basic Constraint Language (BCL), which is an OCL [50] subset (see Appendix
A). The understanding of the constraints is out of scope. Specific guidelines will be offered in the user manual.
What instead is relevant is understanding that these constraints may represent cross-cutting dependencies
(one choice in one sub-branch constrains the choice in a different sub-branch).

Figure 27. VSpec model regarding a portion of ECSS-E-ST-40C

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 58 of 185

Figure 28. Resolution model

Figure 29. Realization model

Once the replacements (red text) and placements (light-blue text) are defined (see Figure 29) and substitutions
are performed, the original UMA-model is replaced by the new tailored model, as depicted in Figure 30.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 59 of 185

Figure 30. Backward propagation of the changes onto the original model

It should be noted that a similar set of models could be obtained to manage ECSS requirements variability. This
means that a feature diagram could be associated to represent the requirements variability due to
requirements evolution in time, whenever new ECSS-versions are released.

5.3.2.3 Cross-domain variability management: towards an automotive-avionics SoPL

Commercial off-the-shelf (COTS) components are very often used in avionic systems. Airborne electronic
hardware is composed of simple components like resistors up to highly complex integrated circuits like
microcontrollers. The design and development process of these parts does often not follow the recommended
guidance DO-254 (Design assurance guidance for airborne electronic hardware) of aviation. Furthermore, the
design data of the COTS components is often confidential and usually not available for a review.

The certification process in aviation does not address individual parts or components because these COTS are
addressed when the function they belong to is verified. This differs from other domains where individual parts
themselves have to be qualified for usage.

However, DO-254 section 11.2 states that the basis for using COTS components in aviation is the use of an
Electronic Component Management Process (ECMP), which supports the design and development of airborne
electronic hardware. The ECMP of the airborne electronic hardware designer should take care that several
aspects of DO-254 are covered and satisfied, independent of the manufacturer of the COTS components. These
aspects mainly address the quality, reliability and suitability of the COTS components. Using an ECMP is
essential for establishing the pedigree and authenticity of all COTS components that are used.

EASA Document EASA CM – SWCEH -001, section 9 provides additional guidance how to handle DO-254 for
certification aspects associated with the use of COTS. Depending on the complexity of the COTS and the
assurance level to achieve, different activities have to be performed. For example, a classification of the COTS
components has to be done and product and production data have to be collected.

In the context of AMASS UC7, IFX and LAN are concentrating their attention on using automotive
semiconductor integrated circuits for aviation. The designer and manufacturer of automotive integrated
circuits have several standards to fulfil: AEC Q100 [110], which defines robustness and stress tests to qualify a
component; IATF 16949-2016 [111], which is a specification of a quality management system issued by the
International Automotive Taskforce; and ISO 9001-2015 [112], which describes requirements for a quality
management system. The processes and activities mandated by these standards generate documents and
artefacts, which could be reused in the aviation domain to fulfil the DO-254 requirements for using COTS.

Despite the relevance of ISO 26262, Part 5, in the context of WP6, IFX and LAN have decided to limit the
investigation to the above-mentioned set of standards.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 60 of 185

IFX and LAN have investigated what activities are meaningful, in order to use highly complex microcontrollers
designed for automotive applications as COTS components in aviation. The study compared requirements of
both domains and identified several actions to provide artefacts for the ECMP aspects of DO-254. Table 9
summarizes the procedure.

Table 9. Mapping between avionics and automotive regulations

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 61 of 185

5.3.2.4 Cross-concern variability management: an automotive SiSoPL (*)

In this subsection, the usage of EPF-Composer (EPF-C) and the BVR tool to model an automotive Security-
informed Safety-oriented Process Line (SiSoPL) [53] is explained. A SiSoPL model related to functional safety
(ISO 26262) and cybersecurity (SAE J3061) is defined. Via the SiSoPL model, engineers are able to reuse
processes or process elements, even if they vary within defined boundaries. The presented solution uses the
integration of EPF-C and BVR-tool, first to model the base model and then to manage variability aspects. A
general tool description concerning BVR and EPF-C is already available from MDH (see 5.3.1 Base Variability
Resolution).

Figure 31 shows a simplified version of the recommendation tables’ template that guide the applicant towards
the usage of the ISO 26262 recommended methods. As it can be seen, this template contains two variability
points (ASIL and Recommendation Level (RecL)). It is a company or project specific decision which
recommendation level is considered (e.g. for ASIL B the methods with RecL “+” are executed, see Figure 32).
For system design analysis, for instance, within ISO 26262, Part 4, Method-1 and Method-2 are two consecutive
entries and correspond to Deductive analysis (e.g., FTA) and Inductive analysis (e.g., FMEA) and their
recommendation levels are: (o, +, ++, ++) and (++, ++, ++, ++).

Figure 31. Recommendation table from ISO 26262-4

As a first step, during the SiSoPL engineering, the scoping of the family has to take place. Thus, standards and
regulations to be taken into consideration are selected, see [52] and [53].

In a second step, a base process model is created. It contains all activities, which can possibly be part of the
development process and which may be needed for any ASIL and any Security Risk Level (SRL). This model is
directly related to the underlying standards and additional company specific activities. This model is defined
in the EPF-Composer.

Step three is tailoring the project specific process. This means that we remove unwanted activities and add
new project specific ones. If we consider for instance the concept phase, safety integrity levels (ASIL) and SRL
are determined. These variable levels represent the type of variability that will be modelled with the BVR tool.
ASIL and SRL vary depending on the item that will be developed. If the development process should be
available for various items, it has to deal with variability because different items and even different functions
of an item may have different ASILs. This means we need a mechanism to change activities and methods
according to different ASIL and SRL. In the presented application we define activities, which consider safety
and security. We deal with a cross concern methodology and we have to change some terms, which come from
SiSoPL mainly used in a single concern/cross domain perspective.

Activities in the actual cross concern application, which have to be executed in any case, are called safety
security co-engineering activities (instead of the single concern “commonality”). The intention is to “maximize”
co-engineering activities and deal with variability in a way that makes processes reusable. We have to make
sure that co-engineering guarantees interaction between safety and security related activities. They have to
use co-engineering capable methods, which can deal with both areas. In addition, we have safety and security
specific activities, which depend on ASIL and SecL.

To demonstrate the approach, we define and model a short example in EPF-Composer concerning the concept
phase of the safety and security lifecycle. The integrated process considers safety and security aspects. An

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 62 of 185

activity “risk analysis”, which contains safety and security analysis, is defined. We consider risk analysis in this
case as a co-engineering activity, because it has always to be performed by safety and security considerations.
The risk analysis activity includes specific methods, in this case HARA for safety- and TARA for security-related
analysis. The output of the risk analysis may lead to different safety and security risk levels. This fact leads to
process variability, because the outputs of the analysis are safety- and security-goals and corresponding
requirements. The identified safety and security requirements have to be allocated to the available customer
requirements. HARA leads to a safety integrity level, whereas TARA, which identifies the highest risk potential
threats, leads to a security risk level (SRL). For this reason, the process model needs to support that kind of
variability. This means that activities demanded by specified criticality levels (ASIL/SRL) have to be changed
specifically.

Figure 32. Variability management, ASIL B and Recommendation level “+” are determined, SecL is not defined

Modelling of the variability in the example is done with the BVR-tool in the Eclipse environment. Based on the
EPF-C model, which contains all available activities without any criticality level, we have to define a VSpec
model that covers the variability concerns. This VSpec model contains only varying activities, which are related
to ASIL, SRL, and RecL. This means that only alternatives (XOR) and optionalities (0/1) are part of the model.
This is shown in the Resolution diagram Figure 35 which is nearly identical to the VSpec diagram (see Figure
33). A detailed description concerning VSpec- Resolution- and Realization diagram can be found in section
5.3.2.2.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 63 of 185

Figure 33. VSpec diagram: Concept phase of an integrated safety and security process (ASIL:=B)

The variability choice parameters ASIL, SRL and RecL decide whether specific methods have to be executed or
not. The model contains for each level a choice (Rectangles with rounded edges in the diagrams are called
“Choice”). In the BVR-tool, constraints decide which activities have to be part of the model. Constraints based
on the Basic Constraint Language are used to replicate the standards' varying requirements in the model.
Constraints are evaluated if the BVR-function "Validate" is selected. This validation makes sure that the created
model complies with the defined constraints. The example shows how constraints are used to deal with a
model that combines two standards. From the available ASIL- and RecL-values, one of each has to be selected.
The example deals only with ASIL and RecL because the standards do not define the SRL. It has to be defined
as project-specific.

RecL is equivalent to tables from ISO 26262. Figure 31 shows a method table template concerning analysis
methods considered in the example. The recommendation level “+” (recommended) is in the example
represented by “P” and “++” (highly recommended) is represented by “PP”. With the help of recommendations
added to the constraints, process designers have the opportunity to select which recommendation level should
be part of the process model. These decisions are based on the company’s guiding principles.

In the BVR-model “RecL” is only linked with ASIL-depending methods because SAE J3061 provides no
recommendations in its current release. Generally, security related recommendations can be part of a project
specific model and will be a topic for the upcoming automotive security standards.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 64 of 185

Figure 34. Resolution diagram: Concept phase of an integrated safety and security process (ASIL:=B)

The result of the evaluation of the constraints, done in the “Resolution diagram”, is either "true" or "false".
The result “true” means that the “Resolution diagram” is in accordance with its constraints. A choice, an activity
in the example, is going to be replaced according to the Realization diagram if its status is “true” (e.g. FTA =
true).

Figure 35. Realization diagram and imported EPF-C model (Placement for Fragment Substitution in red)

The “Realization diagram” is used to define "Placements" and "Replacements". Detailed description can be
found in section 5.3.1 Base Variability Resolution. A placement defines the set of elements that is to be
replaced. The replacement is the new set that is put to the placements position. In our example, the
replacement is always "null" because the intention is to remove elements from the process (see Figure 35).

The definition of the placement is done in the imported EPF-C model, where we select activities, which are
candidates for the replacement (red highlighted elements in Figure 35).

The next step is to connect placement and replacement with the “Resolution diagram”. This is done with the
"FragmentSubstitution" in the “Realization diagram”. In the example, the placement "FTA" and the
replacement "Null" are connected to the choice "FTA" in the “Resolution-” and the “VSpec diagram”. As a

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 65 of 185

consequence, the placement in the “VSpec diagram” is replaced with "null" if the boolean value of the element
defined in the "FragmentSubstitution" is "true".

The last step is the export of the changed process model. This means that we use the "execution" function of
the “Resolution diagram” to export the final process model back to an EPF-C processable XMI format. Figure
36 shows a comparison between the EPF-C base process model (left side) and the changed BVR export process
model (right side).

Figure 36. EPF-C model before (left) and after replacement of FTA (right)

Up to now, no requirements concerning security recommendation levels and security risk levels are available
in SAE J3061. In the automotive domain, they are only determined by experienced company specific security
processes. A proposal for security risk levels in the automotive domain is in elaboration in the security
standardization work. Standards for automation in the industrial domain already define security levels and also
provide recommendations, e.g. IEC 62443 [101].

The exported realization from the BVR-tool represents an input for WEFACT. WEFACT covers process
management and execution.

Figure 37. Process for verification in WEFACT

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 66 of 185

Before the EPF-C model can be executed, it has to be exported from EPF-C to an XML file and subsequently
imported to WEFACT. In the next step requirements, input- and output files are linked to the process. Before
the execution is performed, workflow tools have to be defined and associated with the process. These tools
use the available input files and produce output files according to the process specification. The appearance
of a new output file indicates that the process was executed successfully. The status of the activity in WEFACT
changes to "successfully". WEFACT supports process execution activities, makes sure that requirements are
fulfilled, related processes are executed properly and all work products are available. The generated work
product files are used as evidence in the assurance case.

A more detailed description concerning the process execution in WEFACT is available in the deliverable D4.3
[13].

5.3.3 Product-related reuse via management of product lines (*)

To be able to automatically reuse the elements that were presented in 4.2.1, it is necessary to model them
with a tool-supported language.

In the context of AMASS, CHESSML has been selected to model the systems. CHESSML, however, does not
offer any support for managing variability as needed for our purposes. BVR represents a feasible and
technically advantageous solution also in this case. The interplay of the models needed to manage systems
variability is similar to the case of process variability management.

Figure 38 depicts the interplay of the different models needed to manage process variability via integration of
CHESSML and BVR. In particular, designers jointly with variability engineers should provide four models: a Base
Model (a CHESSML compliant model) regarding the single product (component model); a VSpec Model to
model the feature diagram associated to the component model, a Resolution Model to model the component
configuration, and a Realization Model to model the placements and replacements. The interplay of these
models is then processed to produce a resolved model where substitutions have been executed.

Figure 38. Models interplay enabling management of product lines

As it can be seen from Figure 39, IBVREnabledEditor is expected to interact with the CHESSBVREditor in order
to highlight/select modelling elements to be placed/replaced as well as to exportTailoredProducts.

Variability Model

(VSpec Editor)

Base Model

(CHESSML Editor)

Realization Model

(Editor)

Resolution Models

(Editor)

Resolved

Models

E
x
ec

u
te

 F
ra

g
m

en
t

S
u
b
st

it
u
ti

on
s

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 67 of 185

Figure 39. Architecture of the seamless integrator plugin enabling product-related variability management

5.3.3.1 Intra-domain variability management: an aerospace SPL

In this subsubsection, as a running example, the attitude orbit controller system (part of AMASS CS11 and
extensively described in [142]) is used. Thus, first some essential information is recalled. Then, the system is
modelled using CHESSML. Finally, the model is used as Base Model within BVR Tool.

5.3.3.1.1 Running Use Case: Attitude Control Systems (ACSs), taken from [142]

Attitude Control Systems (ACSs) play an important role within satellites. More specifically, ACSs contribute to
maintaining a certain attitude (i.e., orientation of the satellite in three-dimensional space). Controlling the
attitude is necessary to enable satellites (spacecrafts, which, typically, orbit earth) to accomplish their mission
including the fulfilment of their pointing requirements, often referred to as pointing modes. ACSs control the
satellite’s attitude. This control-related functionality is relative to a frame of reference depending upon the
pointing requirement, which is either mission mode or safe-hold mode. The former refers to the main objective
of the satellite and latter contributes to fail safe. For instance, a sun pointing mode could be a safe hold mode
for a satellite pointing its solar arrays towards the sun to power the critical parts of the satellite. In sun pointing
mode, the attitude of a satellite, relative to the sun, is maintained by controlling the torques applied to the
satellite by actuator thrusters. A sun sensor measures the angle of the sun beam, in sensor’s reference frame,
when the beam hits the sensor. The direction of the sun is acquired from this angle and fed into the control
system as an input. The control system calculates the torque based on minimizing the pointing error function.

Typically, an ACS (focus on software) is a composite component composed of the following four software
components: (1) PDController takes the Sun direction and angular velocity of the satellite in three axes as an
input, computes the pointing error and calculates proportional and derivative torques; (2) SteerController also
computes the proportional torque by minimizing the pointing error. But, the objective is to compute relatively
greater torques for faster convergence to target pointing position. This is important in cases when the satellite
is significantly diverging from the desired position e.g., when it is upside down; (3) FeedforwController
computes additional torques to more quickly achieve the equilibrium state and stabilize the satellite body. A
satellite in the space is subject to disturbance torques coming from outside of the boundary of the satellite
itself. For example, the Sun radiation pressure, the gravitational pull of the celestial bodies, the earth
atmospheric pressure, etc. FeedforwController takes these torques as an input and calculates a
complementary torque to counteract the disturbance. Typically, these disturbance-related torques are
calculated by the angular rates of the satellite, as measured a gyroscope sensor; and (4) TorqueSelector takes
the torques computed by the above-mentioned controllers, and, based on the current attitude of the satellite,
allows a specific torque to be applied on the satellite through the thrusters. If the satellite is oriented 180
degrees opposite to the desired pointing direction, a rapid change in attitude is required. Hence, relatively

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 68 of 185

greater torques, which are computed by SteerController, are applied. On the other hand, when the satellite is
closer to the desired pointing direction, rather a seamless convergence and stabilization is of interest.
Therefore, smaller torques and stabilization torques, computed by PDController and FeedforwController
respectively, are applied to satellite.

5.3.3.1.2 Modelling of ACS in CHESSML

Figure 40 shows the composite given in CHESSML. This composite represents the ACS.

Figure 40. ACS component model given in CHESSML

Figure 41, Figure 42, and Figure 43 show respectively: the VSpec model, the Resolution model, and the
Realization model regarding the Attitude Control System (ACS), part of the Attitude Orbit Control System.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 69 of 185

Figure 41. VSpec Model regarding Attitude Control System (ACS)

Figure 42. Resolution Model regarding Attitude Control System (ACS)

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 70 of 185

Figure 43. Realization Model regarding Attitude Control System (ACS)

5.3.3.1.3 Running Use Case: Attitude Orbit Control Systems (AOCSs) -extension (*)

This section focuses on the family of AOCSs. The family presented in this section represents a still simplified
but richer example with respect to the one presented in Section 5.3.3.1.1. This family is obtained by making
vary one family member, initially modeled in CHESSML. Figure 44 shows the modelling of the different views
(requirement, system, component, deployment, analysis, and PSM views), created for one AOCS.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 71 of 185

Figure 44. CHESS Views

These views constitute base models, which can be made vary via the integration with BVR Tool in order to
obtain four different variants/configurations: (i) Sun Sensors THrusters (SSTH); (ii) Sun Sensors Reaction
Wheels (SSRW); (iii) Star Tracker THrusters (STTH); and (iv) Star Tracker Reaction Wheels (STRW).

These variants (which focus on the component view) are illustrated in Figure 45-48 (note that expanded
version of these figures are available in Appendix B). These variants are configured based on the different
allowed combinations of: sensors, actuators, as well as the associated functional software modules. These
combinations are informally specified in Figure 49.

In the context of sensing principles, Sun Sensors are used as primary sensors in combination with
magnetometer, or otherwise Star Tracker is used as a primary attitude sensor. The Sun Sensors, together with
magnetometer, are used in SSTH and SSRW variants to provide full attitude determination capability. However,
the STTH and STRW variants focus on Star Tracker which itself is able to provide 3-axis attitude measurements.
In all variants, the attitude is estimated using a kinematic (Kalman) attitude estimation filter for which Gyro
measurements are an exogenous input.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 72 of 185

In the context of actuation principles, the spacecraft attitude is modified using a Thruster actuation system;
otherwise, the attitude is primarily controlled using Reaction Wheels. In SSTH and STTH variants, the spacecraft
attitude is modified using a Thruster actuation system, which is able to provide a control torque in any
direction. This results in a zero-momentum system. In SSRW and STRW variants, the spacecraft attitude is
primarily controlled using Reaction Wheels. These are momentum storage devices (3 rotating masses in e.g. a
perpendicular configuration) that are able to provide a reaction torque in any direction. Since the reaction
wheels are not able to alter the system’s angular momentum, Thrusters are occasionally used to reduce the
system angular momentum in order to keep this bounded over long term.

The functional software modules are classified into different functional groups: 1) sensor processing
(responsible of converting raw sensor measurements into engineering values expressed in spacecraft
coordinates); 2) estimation (responsible of estimating physical quantities such as spacecraft attitude, rate and
the angular momentum); 3) guidance (responsible of providing the spacecraft attitude and angular momentum
as commanded from the ground); 4) control (responsible of controlling attitude and angular momentum); and
5) command distribution (responsible of converting the desired control torques expressed in spacecraft
coordinates to individual raw actuator commands). In general, the functional software modules are
architecturally and functionally the same when used in different variants, even though they will need dedicated
tuning (values of their parameterization) for each variant.

Figure 45. SSTH (Sun SensorsTHrusters)

Figure 46. SSRW (Sun Sensors Reaction Wheels)

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 73 of 185

Figure 47. STTH (Star Tracker THrusters)

Figure 48. STRW (Star Tracker Reaction Wheels)

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 74 of 185

Figure 49. SSTH, SSRW, STTH and STRW Configurations

Establishment of Intra-Domain Product Line

This section focuses on the engineering of AOCSs-family (product line) via the exploitation of the seamless
integration between CHESS Tool and Base Variability Resolution (BVR) Tool, which was explained in Section
5.3.3.

Based on Figure 49, AOCS-family is informally engineered. More specifically, the domain engineering:
identification of commonalities and variabilities to concurrently engineer a set of products is done by observing
which actuators/sensors/functional software modules have to be present in all AOCS and which ones instead
only in some of them.

The achievement of single AOCSs, application engineering, is based on the selection and composition of
commonalities and variabilities. To enable the engineering of the AOCS-family systemtically, BVR Tool is used.

The generation of the targeted configurations for the AOCS variants modelled in CHESSML are performed with
VSpec, Resolution, and Realization editors.

As explained in Section 5.3.3, a VSpec model has to be created. To do that, the sensors, actuators and
associated software functional modules are modeled with the VSpec editor. The obtained VSpec model, shown
in Figure 50, shows the tree structure representing the systematization of the commonalities and the variability
within a formal. The logical constraints, which define cross-cutting inclusion/exclusion dependencies, can be
automatically checked during the resolution, within the Resolution editor.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 75 of 185

Once again it is recalled that solid lines indicate that the particular feature applies to all variants (e.g., Thrusters,
under actuators), whereas the dashed lines represent the variation points. The whole tree cannot be visualized
due to space limitations; therefore, the minimize option (+) is used for hiding the features. The varying modules
are marked as optional. The constraints have been applied, in which logical operators such as implication,
alternative, negation might be used. Thus, valid tailoring is guaranteed if the constraints are properly specified.
For instance, the constraint “SunSensor implies (Magnetometer and (not StarTracker))” (modelled in Figure
50) enforces inclusion of Magnetometer, but also exclusion of StarTracker.

Figure 50. Intra-Domain Variability Modelling

The resolution models are automatically generated from the VSpec model except for the choices (expressing
what needs to be included or excluded for individual products). The user takes the decisions at the variation
points (by setting true to the feature to be included), as shown in Figure 51. Once a resolution model is finalized
it can be checked for consistency to ensure that the configuration is allowed.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 76 of 185

Figure 51. Intra-Domain Variability Resolution

At this point, everything that is needed, to make vary a CHESSML-compliant component model representing a
specific AOCS, is at disposal. The final step is the realization, which involves the substitutions (in which
elements of a placement fragment are removed and elements of a replacement are injected), as shown in
Figure 52.

Figure 52. Intra-Domain Variability Realization

5.3.3.2 Cross-domain variability management: an automotive/avionics product line (*)

In this section, a cross-domain product line is engineered from two different domain-specific products (an
automotive unit and an avionics unit). First the automotive unit by Infineon is textually described; then the
avionics unit by Lange is textually described. Finally, CHESSML and BVR are used to model the cross-domain
product line and show how a CHESSML-compliant component model representing the architecture of one unit

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 77 of 185

can be made vary via BVR Tool to obtain the CHESSML-compliant component model representing the
architecture of the other unit.

The purpose of this section is not to engineer an in-depth cross-domain product line constituted of central and
electronic controlling/computing units. The purpose is limited to illustrate how the designed solution could
serve the purpose. A more in-depth engineering is expected to be documented within WP1 deliverables.

5.3.3.2.1 Automotive Electronic Computing Unit

As depicted in Figure 53, Infineon automotive Electronic Control Unit (ECU) model is composed of six
components: Ethernet Transceiver, FlexRay Transceiver, CAN Transceiver, Safety Power Supply and AURIX
Microcontroller (e.g. AURIX TC39x). These components are briefly explained below:

1. Ethernet Transceiver

- Interface between the physical bus layer and the Ethernet protocol controller, drives the signals

to the bus and protects the microcontroller against interferences generated within the network

- Qualified for -40°C to +125°C ambient operating temperature

2. FlexRay Transceiver

- Interface between the physical bus layer and the Ethernet protocol controller, drives the signals

to the bus and protects the microcontroller against interferences generated within the network

- FlexRay Electrical Physical Layer Specification, version 3.0.1 and ISO 17458

- Optimized for time-triggered in-vehicle networks with data transmission rates from 1 Mbit/s up

to 10 Mbit/s

- Very low electromagnetic emission (EME), supporting large networks and complex bus

topologies

- Very high level of ESD robustness, 11 kV according to IEC-61000-4-2

- Automatic voltage adaptation on the digital interface pins

- High current digital outputs, optimized to drive long wires and high capacitive loads

- Qualified for -40°C to +125°C ambient operating temperature

- Digital I/O levels compatible with 3.3 V and 5 V microcontrollers

3. LIN Transceiver

- Interface between the physical bus layer and the Ethernet protocol controller, drives the signals

to the bus and protects the microcontroller against interferences generated within the network

- Single-wire LIN transceiver for transmission rates up to 20 kbps

- Compliant to ISO 17987-4, LIN Specification 2.2A and SAE J2602

- Very low current consumption in Sleep mode with wake-up capability

- Over temperature protection and supply under voltage detection

- Very high ESD robustness, ± 10 kV according to IEC61000-4-2

- Optimized for high electromagnetic compatibility (EMC)

- Very low emission and high immunity to interference

- The TLE7258 operate as a bus driver between the protocol controller and the physical bus of the

LIN network.

4. CAN Transceiver

- Interface between the physical bus layer and the Ethernet protocol controller, drives the signals

to the bus and protects the microcontroller against interferences generated within the network

- Fully compliant to ISO11898-2/-5

- Wide common mode range for electromagnetic immunity (EMI)

- Very low electromagnetic emission (EME)

- Excellent ESD robustness

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 78 of 185

- Guaranteed loop delay symmetry to support CAN FD data frames up to 2 MBit/s

- V IO input for voltage adaption to the microcontroller supply

- Extended supply range on V CC and V IO supply

- CAN short circuit proof to ground, battery and V CC

- TxD time-out function

- Low CAN bus leakage current in power-down state

- Over-temperature protection

- Protected against automotive transients

- Stand-by mode with remote wake-up function

- Wake-up indication on the RxD output

- Transmitter supply V CC can be turned off in stand-by mode

- Green Product (RoHS compliant)

- Two package variants: PG-TSON-8 and PG-DSO-8

- AEC Qualified

5. Safety Power Supply

- Wide operation range up to 45 V

- Low dropout voltage

- Wide temperature range: -40°C up to +150°C

- Short-circuit protection

- Reverse polarity protection as option

- Overload protection

- Over-temperature protection

6. AURIX Microcontroller (e.g. AURIX TC39x)

- Up to 6 cores

- Flash memory sizes of up to 16 Mbyte and more than 6 Mbyte integrated RAM

- Cores with each a full clock frequency of 300 MHz

- Four of the six cores feature additional lockstep cores,

- Enabling a new level of ISO26262 functional safe computational power on a single integrated

device.

- Gigabit Ethernet interface

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 79 of 185

Figure 53. Infineon Automotive Electronic Computing Unit Model

5.3.3.2.2 Aviation Central Computing Unit

As depicted in Figure 54, Lange aviation Central Computing (CCU) unit model is composed of eight components:
SUB-D Power Connector, Safety Power Supply, MCU-Aurix, CAN Transceiver (0, 1, 2), ETH PHY, PCB Heating,
CAN SUB-D Connector and ETH SUB-D Connector. These components are explained below:

1. SUB-D Power Connector
- Aviation-grade certified SUB-D connector, MIL-DTL-24308 certified, -55°C to +125°C

2. Safety Power Supply
- Accept power supply voltage in the range of 9v-36v DC, compatible to both 14V DC and 28V DC

aviation power networks
- Provides 3.3V power to MCU and all the peripheral devices, provides watchdog interface to Aurix

MCU

3. MCU-Aurix
- Aurix based microcontroller, supporting lockstep core, communication with safety power supply,

providing digital I/O (PWM), 3 CAN controllers and 1 Ethernet interface

4. CAN Tranceiver 0, 1, 2
- Automotive CAN transceiver providing CAN 2.0B ISO 11898-2 physical layer
- Several CAN lines are used to achieve redundant communication to sensors and actuators

5. ETH PHY
- 100 Base T copper automotive Ethernet Phy according to IEEE802.3
- Ethernet is used is AFDX connection to the flight control system

6. PCB Heating

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 80 of 185

- Redundant PCB heating circuit. Uses external 9-36V power supply. Controlled by the digital Output
from Aurix MCU (PWM)

- Allows operation under -40°C (limitation of automotive components) down to -55°C

7. CAN SUB-D Connector
- Aviation-grade certified SUB-D connector, MIL-DTL-24308 certified, -55°C to +125°C

8. ETH SUB-D Connector
- Aviation-grade certified SUB-D connector, MIL-DTL-24308 certified, -55°C to +125°C

Figure 54. Lange Aviation Central Computing Unit Model

5.3.3.2.3 Establishment of Cross-Domain Product Line

Reuse is possible, both ECU and CCU share the same HW architecture (which is represented at conceptual level
via a VSpec model, see Figure 55. Several components constitute a commonality. However, the pure
automotive components, such as LIN Transceiver, cannot be re-used for aviation.

The identified reusable components from automotive to aviation domain are: AURIX MCU, Safety Power
Supply, automotive CAN Transceiver (several CAN are used, Aurix provides up to 6 CAN) and automotive
Ethernet Transceiver.

Besides the common components, the additional aviation-only components are required. For example, PCB
Heating (required for -55°C environment qualification) is reuse enabler, without PCB Heating no reuse of
specified components is possible. The connectors of ECU shall also be replaced with the aviation grade SUB-D
connectors in CCU.

Similar to the intra-domain product line configuration, the engineering of the targeted configurations for cross-
domain is performed with VSpec, Resolution, and Realization editors, as shown in Figure 55-57. For instance,
the configuration of the ECU is obtained via choosing the avionics-specific components (e.g., FlexRay and LIN

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 81 of 185

transceivers) in Figure 56 and then in the Realization editor by substituting the fragments. For instance, Figure
57, the fragment representing the avionics-specific connector (SUB-D Power Connector) is removed.

Figure 55. VSpec representing the cross-domain product line

Figure 56. Variability Resolution for Automotive

Figure 57. Automotive ECU realization

5.3.4 Assurance case-related reuse via management of case lines (*)

To be able to automatically reuse the elements that were presented in 4.3.1, it is necessary to model them
with a tool-supported language. In the context of AMASS, a SACM2.0-like metamodel has been selected to
model the assurance cases. This metamodel, however, does not offer any support for managing variability as
needed for our purposes. BVR represents a feasible and technically advantageous solution also in this case.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 82 of 185

Figure 58 depicts the interplay of the different models needed to manage process variability via integration of
the SACM2.0-like metamodel, i.e., CACM (portion focused on Argumentation), and BVR. In particular,
assurance managers jointly with variability engineers should provide four models: a Base Model (a CACM (focus
on argumentation)-compliant model) regarding the single assurance case; a VSpec Model to model the feature
diagram associated to the assurance case model; a Resolution Model to model the assurance case
configuration; and a Realization Model to model the placements and replacements. The interplay of these
models is then processed/elaborated to produce a resolved model where substitutions have been executed.

Figure 58. Models interplay enabling management of assurance case lines

5.3.4.1 Intra-domain variability management at assurance case level: an automotive assurance
case line (*)

In this section, the aim is not to present the management of the variability of a complete automotive safety
case line, but only a simple example to illustrate the solution. Thus, first an example is presented and then it
is made vary by using the integration of BVR Tool and OpenCert.

In particular, the example consists of a fragment of an automotive safety case, adapted from [158]. This
fragment is presented in Figure 59. More specifically, Figure 59 shows a fragment modelled by using the
assurance case editor of OpenCert. The argument fragment starts by instantiating the hazard avoidance
pattern. It thus claims (G1) that each FLEDS (Fuel Level Estimation and Display System) is acceptably safe, given
a definition of “acceptably safe”. G1 is then refined into G2, by using the strategy S1 (i.e. by arguing and
claiming that all the identified hazards have been addressed). G2 is then broken down into G3 and G4. G4 is
directly supported by the solution E1. G3 is refined into G5, which is supported by direct evidence E2.

In [158], G3 is instead broken down either into G5 or into G6, depending on the filter type (Kalman or not),
which in turn depends on the usage context (vehicle type) variation point (where a constraint constrains that
in case of vehicle=truck, G5 has to be selected as sub-argument). Finally, G5 and G6 are supported by direct
evidence (E2 and E3). In [158], a dialect of GSN was used to represent a family of safety cases (constituted of
two possible configurations).

Figure 59, thus, represents one configuration of the family. This configuration (Base model) can be made vary
via the designed integration of OpenCert and BVR Tool.

Variability Model

(VSpec Editor)

Base Model

(Argumentation/

Evidence Editor)

Realization Model

(Editor)

Resolution Models

(Editor)

Resolved

Models

E
x
ec

u
te

 F
ra

g
m

en
t

S
u
b
st

it
u
ti

on
s

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 83 of 185

Figure 59. Argumentation for FLEDS in OpenCert

The VSpec model is shown in Figure 60. It presents the tree structure with logical constraints to be checked
during the resolution. G5 and G6 represent alternative argumentation fragments. For instance, the constraint
“Truck implies G5” indicates that the choice G5 must be included in the resolution for Truck.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 84 of 185

Figure 60. VSpec model regarding FLEDS

The resolution models, shown in Figure 61, represent the two possible argumentation configurations (one in
case of Truck and the other in case of vehicle type different from Truck (Other)).

Figure 61. Resolution models regarding FLEDS

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 85 of 185

Figure 62 represents the Realization model. In this realization, the other configuration of the argumentation is
realised. Based on the choices set within the resolution model, substitutions are specified and executed. Based
on the specified substitutions, left part of Figure 62, elements of a placement fragment are removed and
elements of a replacement are injected. The placements are visualized in red. The re-configured model and
diagram are updated in the assurance case editor of OpenCert. The new configuration, where G6 is present
instead of G5, is given in Appendix B, Figure 131.

Figure 62. Realization model regarding FLEDS

5.3.5 Anti-Sisyphus: (3+1)-D Reuse and Impact Analysis via UMA, CHESSML, CACM,
and BVR (*)

Previous subsections have presented how to systematize commonalities and variabilities within each quadrant
of the 3-dimensional line, constituted of: process line, product line, and assurance case line. Besides these
three dimensions, a fourth one can be considered and handled in a similar manner via the integration of EPF
Composer and BVR Tool: the standard line, i.e., the set of standards belonging to the same family because of
small changes from one version to the next (ISO 26262-2011 and ISO 26262 2018); because of cross-concern
overlapping requirements (ISO 26262 (functional safety), AutomotiveSPICE (quality)); etc.

In this subsection, we further discuss how the different VSpec/Resolution/Realization models pertaining to the
different dimensions could be linked to enable impact analysis and increased reduction of unnecessary
repetitive actions.

If, for instance, a user with knowledge/expertise on both process and product information, wants to manage
the variability regarding process and product, (s)he can create a single project, register the different editors
and work for instance on a common VSpec (Figure 63) or Resolution (Figure 64) models, here minimized for
space reasons but available in their expanded version in Appendix B. However, the execution of the changes
regarding the different parts (process/product) can only be done sequentially, since BVR-tool executes the
changes onto one Base model at the time.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 86 of 185

Figure 63. VSpec Model regarding ECSS-related SW Development Process and Attitude Control System (ACS)

Figure 64. Resolution Model regarding ECSS-related SW Development Process and Attitude Control System (ACS)

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 87 of 185

To enable process engineers working on process lines, separately from designers and assurance managers, an
additional functionality should be at disposal, aimed at notifying related roles about the impact of the changes
performed. More specifically, whenever a process engineer changes the configuration of the process in a way
that can affect the designers and/or assurance engineers, impact analysis results should be performed.

This additional functionality permits to move from a mono Base-model-based BVR-Tool version to a multi Base-
model-based version, where one editor is fully aware about the others involved.

Figure 65. Models interplay enabling management of process product and assurance case lines

The process, product, and assurance case variability might be specified in the combined or otherwise individual
models, as shown in Figure 66. In the combined models, the individual branches might be taken into
consideration for the process, product, and assurance case variability. In order to characterize the structure, a
possibility is VType, in which unchanged structures might be defined; the nested elements cannot be retrieved
at the resolution and realization levels. The constraints have been enforced over the model elements, for which
their names are considered. It is therefore important to avoid duplicates; the occurrences could also be
defined. Previously, the constraints were only supported for current model elements.

The idea with the individual models is separation of concerns, so that the process engineers, product designers
and safety engineers work on their respective models. Therefore, the interactions between process, product,
and argument models have to be supported; the logical operators such as implication, alternative, and
negation might be used in the cross-cutting constraints. It is a convenient way to enforce the process, product,
and assurance case relationships. There is also a need to support the occurrence specification between the
variability models in a project.

The presence of the mentioned elements is first checked in the current model. If the elements are not
detected, the search is extended to other models in a project. In case the elements are detected in another
model, the dialogue window pops up to inform the existence in specific model. The user, however, needs to
authenticate the enforcement of specific constraint or occurrence.

The support for error checking and validation of resolutions is incorporated for the combined models, but the
individual process, product, and assurance case resolutions needs to be linked. The join option is incorporated
for the process, product, and assurance case resolutions. In order to support the cross-dimension change
propagation, the execution of variation fragments is simultaneously supported for UMA, CHESSML and CACM
compliant models. The results have been propagated back to the EPF Composer, CHESS and OpenCert.
Therefore, the cross-cutting constraints between the process, product, and assurance case dimensions via
inter-model communication and cross-dimension change propagation are supported.

Variability Model

(VSpec Editor)

Base Model (UMA-

Compliant Editor)

Realization Model

(Editor)

Resolution Models

(Editor)

Resolved

Models

E
x
ec

u
te

 F
ra

gm
en

t

S
u
b
st

it
u
ti

on
s

Base Model

(CHESSML Editor)

Base Model

(Argumentation/

Evidence Editor)

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 88 of 185

Figure 66. Impact analysis and change propagation in families/lines

5.4 Product-related reuse via MDE and meta-modelling: focus on
analysis artefacts

To enable product reuse, tools outside the ARTA (AMASS Reference Tool Architecture), e.g., tools for
performing safety/security analysis, may take a different approach to face the challenge related to reuse of
analysis-related artefacts. This approach may be based on:

• Model Driven Engineering (MDE): MDE is proposed to achieve seamless product reuse from design.
Indeed, design can take advantage of certain MDE approaches and languages like expressiveness,
extensibility, usability, etc. in order to tackle the difficulties of product reuse w.r.t. to analysis notions,
artefacts, methods, etc. In particular, the use of Model Based Systems Engineering (MBSE) is
considered. More precisely, the commonalities and variabilities for safety and security analyses are
also targeted. Indeed, the use of standardized non-proprietary languages like SysML and UML provides
a basis upon which the different concepts related to regulation, methodologies, and knowledge bases
can be modelled and coherently integrated and maintained.

• Modelling and analysis support: SysML and UML provide extension mechanisms that allow the
specialization of existing stereotypes and the definition of new ones. Additional support is foreseen to
improve automation of the following design process activities:

o Standard/regulations capture and modelling (as processes)

o Product/system modelling

o Requirements management: specification, traceability, quality metrics and evaluation,
validation & verification

o Joint safety-security modelling and analysis

o Knowledge bases import and export

• Management of commonalities and variabilities: a consistent management of commonalities and
variabilities can be performed at meta-model level:

o Identification of commonalities at product/system and analysis levels

o Specialization of meta-models according to identified variabilities

o Definition of associations to ensure elements traceability and consistency

• Hostile context modelling: The extension mechanisms of UML/SysML allow specializing existing
diagrams in order to support modelling of Attack Trees, Attack-Defence Trees, Threat Scenarios,
Misuse Scenarios, etc. Typical MDE frameworks can also be plugged to environments including an

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 89 of 185

attacker model that allows the validation of requirements and countermeasures efficacy. The use of
referred frameworks, integrating attacker model(s) validation, can be shown in the context of the
AMASS project [162].

As an instance of a framework exhibiting some of the features listed in previous items, we introduce the tool
named Sophia. Sophia is a modular – for now, proprietary - tool developed and maintained by the CEA and is
based upon Papyrus [108]. As shown in Figure 67, Sophia mainly supports system design from early phases of
systems conception (left part of the V-cycle).

Figure 67. MDE-based seamless safety-security analysis targeting reusable products design

The framework is adequate to independently conduct safety and security analyses. The fundamental notions
and methods, upon which the analyses rely, are mainly inherited from standards. As for safety-related
standards, Sophia is based upon IEC 61508 (functional safety of E/E/EP systems), ISO/DIS 13482 (personal-care
robots), ISO 26262 (safety of road vehicles), ARP 4754/4761 (safety of aerospace systems). As for security-
related standards, Sophia is currently aligned with ISO 27001/27005 series. The Sophia modules allow
conducting typical safety analyses like PHA, FMEA, and FTA. In addition, the security framework supports
security risk, attack trees, and threats detection analyses. Such features allow the reuse of system models
when both safety and security aspects need to be explored. However, further efforts are still necessary – and
are currently in progress – in order to identify commonalities in safety and security analyses that can be
integrated so as to ease product reuse.

5.5 Product-related reuse: focus on safety and security analysis artefacts
(*)

Context. The major interest of system attributes analysis tools, such as safety or security analysis tool, is to
make the analysis easier. However, when a system model has progressed/modified, it can demand a huge
amount of time to be analyzed again. In order to avoid this issue, the reuse features, such as Diff/Merge can
compare and merge sets of model elements to prevent data loss and enforce model consistency during merge.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 90 of 185

The Diff/Merge feature has been implemented in Safety Architect tool to merge two versions of the same
model with functional elements (system components and component ports) in order to reuse Safety or Security
analysis artefacts, such as failure modes, malicious events logical gates, and propagation links contained in the
version already analyzed.

Principle of the solution. The solution implemented in Safety Architect is the EMF Diff/Merge12. The usage
process is illustrated in Figure 68.

Figure 68. EMF Diff/Merge Principle

First, a comparison is created based on the models to compare. The differences between those models are
computed according to given policies. Then, as long as differences remain, any subset of these differences can
be selected for merging. Every time, predefined consistency rules and user-defined policies are used to
compute the minimal superset of differences that must be merged to preserve consistency. The user may
decide whether to confirm or cancel the merge of the whole set of differences.

Diff/Merge implementation in Safety Architect. The main idea of the implementation is to allow a user to
enrich functional elements of a new version of Safety Architect model with dysfunctional elements added in
an older version already analyzed into Safety Architect.

Figure 69. Diff/Merge implementation in Safety Architect

Merge of two Safety Architect Models. Thanks to this implementation (see Figure 69), the user can reference
the name of the “reference model” (the Safety Architect model including dysfunctional elements), the name
of the “target model” (the new version of Capella model) and the name of the “destination model” where the
merge operations will be applied.

12 http://wiki.eclipse.org/EMF_DiffMerge

http://wiki.eclipse.org/EMF_DiffMerge

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 91 of 185

Figure 70. Merge of two Safety Architect models

Finally, the user can choose among several types of merging. For example, with Dysfunctional substitution (see
Figure 70) all the dysfunctional analysis of the target model is substituted by the ones of the reference model.
With the Manual merging, the user can see all the differences between the two models and can manually
choose the ones to be applied, as illustrated below.

Figure 71. Differences between two models

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 92 of 185

Application in AMASS platform. AMASS platform includes among other the CHESS tool, and an interface is
developed between CHESS and Safety Architect to import CHESS model as illustrated in figure below.

Figure 72. Import from CHESS to Safety Architect

The Diff/Merge reuse mechanism can be exploited during the re-import from AMASS platform - Chess tool to
Safety Architect tool. Indeed, if there is at least one existing project (imported from the CHESS) into the SA
workspace, the user can apply the merge operation during the re-import of the same model. One of the
scenarios can be:

• Import a CHESS model to Safety Architect

• Perform Safety or Security Analysis in Safety Architect on the model

• When the same CHESS model is modified, Re-Import the model by applying this Diff/Merger

5.6 Conceptual approach on product reuse (*)

In chapter 4.2.11, an approach and aspects on “product reuse” where presented, aspects of component
development (hardware or software) that can be built once and reused in other contexts. We emphasized the
accompanying (safety) analyses and related documents which define the context in which the component has
been developed. Conceptually, one can distinguish two cases:

1. Product development in a system context. In this case the environment of a component and its
application context is fully known. During design, development, and verification all safety integrity
requirements can be verified or validated.

2. Safety Element out of Context (SEooC) development. Designing a product needs to assume a certain
system context, interfaces, environmental conditions, usage scenario, and application.

From a technical point of view these two cases are not much different, since a component has always
dependencies to its surrounding system (and the system to the component, otherwise the component would
not be required). The only difference is when exactly the final verification can take place, and more specifically,
the time when the component can be configured to fit into a certain system context. For example, an

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 93 of 185

Electrically Assisted Power Steering (EPS) controller might be developed and analyzed with assumptions about
a number of system characteristics:

● mechanical connectivity, such as steering column, mounting requirements, sensor placement, etc.

● electrical and communication interfaces, such as power plugs, CAN/FlexRay interfaces/messaging,
wiring, etc.

● system parameters, such as vehicle size/weight, wheel characteristics, speed data/acceleration
parameters, etc.

● Thermal and physical stresses, such as temperature, vibration, humidity, mechanical forces, etc.

If the development takes place in a system context, i.e. for a specific OEM and vehicle type, then most of the
parameters are known during design/development time or, at the latest, during installation for certain
calibrations (e.g. steering wheel return, “zero positioning”). If the development takes place out of context, all
the interfaces and system context parameters need to be assumed and can only be validated (and to a certain
extent verified) during application development. Similarly, the same applies if smaller components are
developed - e.g. integrated circuits - or whole (sub-)systems, e.g. motor controller platform, ADAS functions
such as lane keeping assistant, parking assistant, etc.13

In conclusion, at the core of any product reuse we see three important steps that need to be considered for
safety critical reuse:

1. Definition of the dependencies of the component/subsystem that shall be reused. As outlined, this
includes all related information possibly spread over several analyses, work products, etc.

2. Encapsulation of the component and its related data (“export”). This means to precisely determine the
scope of information that needs to be exchanged with the component and extract it. All related data
can be seen as the extended interface of a component ranging from safety requirements to loosely
linked information, e.g. system parameters that impact the component, arguments in a safety case,
assumptions or use, etc.

3. Embedding the component and the related data into the new context. This involves consistent
adaptation and checking of all the encapsulated data and establishing the connections to the new
context.

These three steps can be best manifested using a model-based and integrated approach to safety analysis and
safety assurance. Our vision is that a safety tool or platform offer means to export parts of a safety project
(merely reusable parts of a safety analysis) so that others can use the exported analysis in their project. We
develop the concepts in the next section, along (re-)use examples outlined in section 4.2.11, namely FMEDA
and FTA.

5.6.1 Reuse using a Model-based Integrated Safety Analysis Approach

As a pre-condition to our reuse approach is the definition of all related data using (object-oriented)
metamodels. This has been conceptually described in previous deliverables for the AMASS platform (e.g. D3.3
[10] and others). Metamodels precisely define the structure of models (abstract syntax) including their
relationship and, optionally, textual or graphical syntax as well as behavior [150].

The challenge is to define the dependencies of the component and its work products. Note that here we refer
to development-related information. While safety contracts define the interface dependencies of the
component in the system context (i.e. during runtime), we need to specify the relationships between work
products such as safety concept (safety requirements and safety mechanisms), failure cause/effect relations,
prevention/detection measures during design/testing/installation, and so on. In order to maximize the
alignment of the safety aspects with the system model and to ease the dependency resolution, we propose to

13 Of course, we simplify here some of the complexity of real-world system and component dependencies and influence
of technology choices as well as implementation strategies (e.g. Software) for the sake of developing the concepts and
design of our reuse approach

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 94 of 185

integrate the safety-related information to a large extent into the system models. Besides what has been the
state of the art in safety tools such as Medini Analyze (see [151]), we would follow up on work and ideas of
Kaiser et.al in [152] on “CFT2.0” and integrate the essential parts for the safety analysis into the component
model in SysML. If the complete fault model is captured within the design model and can be configured and
checked by means of semi-formal (system) context parameters, it’s ready for reuse and can be systematically
transferred into a new application/product context with tool support. All remaining related information, such
as safety requirements and finally the safety case, need to be transferred on a case by case basis.

The conceptual extensions for integration into a SysML (or similar component) model should be the following,
besides the functional and physical interfaces of a component/sub-system:

I. Intrinsic and extrinsic failure (modes) of components and its parts. The failures should be attached first
of all to structural elements such as blocks, ports, connections, signals, but also to certain behavioral
concepts, e.g. state transitions or actions/activities.

II. Failure rates that can be parameterized by a mission profile and distributed over the failures and/or
internal component structure. A mission profile should consist of all data that is used for the safety and
reliability characteristics (e.g. temperature cycles, expected system lifetime)

III. Safety mechanism (SM) built into the design. Thereby, safety mechanisms can exist as integral part of a
component (e.g. ECC/EDC in a memory component) or external to a component, e.g. allocated software
or surrounding hardware (e.g. watchdog).

IV. Diagnostic coverage (DC) provided by a safety mechanism and its relation to which kind of failures are
covered - potentially with refined values for different activation states of the component (e.g. startup,
operation, standby, degradation modes, etc.)

V. Failure relations:

A. Fault propagation should be modelled within a component and to/from its interfaces as well
as how failures can be detected by means of SMs.

B. Failure effect hierarchy, i.e. across abstraction levels of the design up to potential
hazards/failure conditions at system level

C. Activation of safety mechanisms and relations to the fault propagation

Note that we see different possibilities to express these relations, CFT being one option, extended failure
net models being another.

VI. Safety contract that is implemented by the component and/or supported at its interface. This should
cover most of the semantics part for runtime safety

VII. Design Controls for Prevention and Detection, generally referred to as safety measures e.g. as identified
during an FMEA that address systematic failure causes.

VIII. Requirements (especially safety) for the component addressing implementation, development,
production, maintenance, etc. for the reused component. This could be anything that can’t be
formalized within a design model. Assumptions of use, safety goals/safety objectives, reliability and
availability requirements are subsumed under this point.

All this needs to be modelled and is captured specifically in safety analysis such as FMEDA and FTA which are
important to be “interpreted” but also customized in a new system context.

5.6.2 Implementation Approach and Use Cases

Regarding the state of the art, the exchange of safety results, of hardware metrics of reusable assets for
composed safety cases is not tool-supported nowadays, due to missing standard formats for safety analysis,
but also sometimes due to IP problems or legal issues. We will investigate in the next phase on the modelling
of the aspects listed in the previous section along an exemplified reuse of a configurable component at
hardware level, namely an IC.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 95 of 185

Our vision starts basically with semiconductors, onto which (according to the upcoming ISO 26262 standard
v2) hardware safety analysis has to be performed. Such analysis is in turn required at integration level by their
customers. The crucial points are as follows:

• (Re-)Use does not necessarily mean “import”, it is more important that customers can see the analysis
result but also configure (i.e. adapt) the semiconductors to their specific system environment,
specifically important for SEooC, i.e. usage of a certain IC in an ICU, software safety mechanisms, etc.

• The vision is that the export allows the semiconductor to hide its IP, its detailed analysis methods, the
real formulas behind quantitative results, but still give the customer enough flexibility to adapt the
usage of the chip, IC or whatever hardware in their design. But we exclude any further legal objectives
since they can hardly be covered in the remaining period of the AMASS project.

For example, the semiconductor supplier may define a set of safety mechanisms that CAN be applied and that
are OPTIONALLY available in the chip, the customer may do so and switch on/off certain mechanisms without
the need to know how the switching on/off impacts the hardware metrics while still the calculation of the
overall Hardware Architectural metrics (SPF/LF Metrics) of part 5 of ISO 26262 for the system is affected by
the configurations.

5.7 Model Based Testing for exploring the benefits of re-use of
development cycles (*)

Model based testing is a relatively new process in software engineering. Current praxis in the industry is to
handcraft tests to achieve a desired level of coverage. The coverage is calculated as described in the section
on coverage. The problem is that handcrafting test to achieve a certain coverage can be time consuming and
thus costly to write. Furthermore, achieving a certain coverage does not necessarily mean that the software is
free of errors, having 70%-line coverage speaks nothing to the quality of the tests [144][145].

While model-based testing has not yet penetrated the industry sufficiently, it has been subject of research,
and plenty of tools are now available to help developers. The goal of model-based testing is to generate tests
automatically based on a model of the System Under test (SUT). While the number of generated tests can be
infinite, developers can use rules to limit the generated tests. The greatest boon is gained from coupling
automatic test generation with automatic testing, i.e. some type of framework which can run the generated
tests automatically. The main problem with generating tests is that the model needs to be correct, if the
developer writes an incorrect model the generated tests are most likely wrong. Despite this, model-based
testing shows great potential in reducing test-time and simplifying test development while improving test
efficiency, for instance, when developing a SUT, manual tests would need to be rewritten while the model-
based method only requires an update to the model which then generates tests.

5.7.1 Automated Model Based Testing (*)

Extended Farkle is a tool which provides test generation combined with test execution. In order to achieve
this, Farkle is built upon third party tools and tools developed by Alten. It has been fine-tuned over many years,
increasingly adding functionality to the tool. Using a Model of the system under test and the safety
requirements of the software to be tested, also known as the SUT (System Under Test), extended Farkle
generates a test suite along with "views" of the code, these views are for instance UML models. A Python
interpreter executes the test suite on the SUT and outputs the results into a verdict log. This verdict log can be
used as a fingerprint of sorts, when the SUT is rebuilt the same test suite can be executed and the differences
of the results, the verdict delta, can be used to determine if the functionality of the SUT has been changed by
the underlying changes to the code.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 96 of 185

Figure 73. Overview of the Farkle implementation of model-based testing

5.8 Approach on impact analysis and delta analysis based on data indices
using Elasticsearch (*)

“Impact analysis”, “Assisted reuse”, “Delta safety case” and even the application of a “Safety Element out of
Context”, all these aspects have in common that they need to search and query a huge set of data to provide
answers. Criteria and problem scope are similar, as this example from practice shows:

A truck vendor has successfully accessed an E/E component for its standard short-haul truck, based on
several assumptions, for example the overall truck length and the height of the driver cabin. The vendor
plans to develop a special custom variant of the truck with a shorter length and wants to judge the impact
on the safety case. In another scenario, the vendor needs a decision whether or not he can reuse the same
E/E system in a garbage truck which typically has different driver cabin formats. Different questions in detail,
but similar in general.

In a model-based environment with different underlying technologies and availability of data, it is as with other
data mining approaches, key data are best indexed into separate optimized databases that are designed for
large scaled and fast searches and queries. In WP5, the usage of Elasticsearch – an open source index and

search database14 – and Kibana – a graphical visualization and dashboard authoring system based on

Elasticsearch15 has been investigated for data mining and visualization with success. Consequently, building
rich tool features, such as “Reuse Assistants” or any kind of “Impact Analysis” based on the same technology,
is an option at hand.

14 https://www.elastic.co/products/elasticsearch
15 https://www.elastic.co/products/kibana

https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/kibana

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 97 of 185

Figure 74. Elasticsearch overview

Figure 74 envisions two additional layers on top of the standard Elasticsearch API. The first (lower) one just
“enriches” the basic Elasticsearch API by offering ways to map simple semantic queries to more complex
Elasticsearch search requests and vice versa, i.e. combine and “refurbish” search results to pass simpler and
less results to the caller.

The higher-level API is the one that offers discovery and analysis functions to higher level features (which are
not further analyzed here). That API uses the lower level API but itself abstracts completely from Elasticsearch
if possible. It can be treated as a reference implementation of such an API on Elasticsearch instead.

5.8.1 Achievements in P1

In Prototype P1, an Elasticsearch based index and search component has been developed. The heart of the
component is a generic index feature for EMF based models. Based on the EMF Ecore metamodels, the indexer
can index arbitrary an EMF object and structures into Elasticsearch by analyzing their metamodels, thus in a
complete reflective way. The indexing is limited to be manual and actively executed in the prototype working
on a set of selected elements, whereas it is independent on where these objects are located, whether they
reside in the file system or on a CDO server does not matter. All indexed data can be directly searched and
visualized using the Kibana dashboard software that accompanies Elasticsearch.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 98 of 185

Figure 75. Interaction between P1 indexing tool, search app and Kibana dashboard

In addition to that, a sample web-based search application is available that - google like - allows a more user
friendly and focused search then the Kibana dashboard, which is rather a data mining tool then a search app.
The search app offers a set of exemplary filters to at least demonstrate the possibilities of semantic filters in
the app. Having a separate filter, “Storage” was added simply to show that also aggregated metadata can be
indexed and later used to improve the search result if necessary.

5.8.2 Challenges

There are several challenges in the envisioned approach but also in the results and lessons learned from the
component developed in WP5 that was mentioned above.

The generic EMF indexer showed that it is in principle possible to develop a generic and reflective indexing for
EMF models. However, metamodels are typically not “rich” enough to support the indexing process. So is it for
example possible to annotate, at meta classes, which attribute shall be used as the “id” of an object, or whether
certain attributes are volatile or transient, all information that may be used at indexing time. And there are a
few further possible annotations to enrich the Ecore with more semantics. Typically, this information is not
well maintained in all Ecore models.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 99 of 185

In addition, the indexer just works on “metaclass level” so on a granularity that grants each object the same
way. That means that the indexer maps objects to Elasticsearch documents one to one. Each object is stored
in Elasticsearch as a single document, more coarse grain structures are not considered because they cannot
be derived from the metamodel directly.

The key challenge however is to be able to map (or translate) the semantics of “an impact” - which is what
upstream functions as impact analysis or reuse assistance are all about - to “search and match” - which is what
Elasticsearch offers. So, the capability to start a query to Elasticsearch in a way that the result of the query not
just gives a “text-based match”.

Last but not least, Elasticsearch itself introduces a number of challenges. The advantages - powerful search
engine and match logic - is countered by a number of disadvantages. First of all, most Elasticsearch documents
are “flat” documents, at least that is the preferred and advised way to store data in Elasticsearch to gain the
best performance. Consequently, there are no relationships, data of related elements have to be
“denormalized” at index time. Figure 76 gives an idea on how relationships can be denormalized into
documents.

Figure 76. Relationships denormalization

In order to make reliable answers on impact requests, the data of the component must be enriched by a set
of attributes that can be searched, compared and joined to make a decision on impact or reuse capabilities. A
“reuse” answer here is treated as a “match” of a reuse request on the existing data. Referring to the above
truck vendor example, it must be possible to express a query asking for the impact on changing the truck length
or having or not having a cabin. It also must be possible to know the relationships of the mentioned properties
(truck length, cabin presence) to safety critical functions in the component, for example as assumptions. So
already when indexing any safety case data into Elasticsearch, this information must be resolved and added to
the stored “safety case” document. The challenge is the way to express an assumption or a property of the
safety case, a general concept is required to express this kind of attributes and in contrast to WP3 this requires
a solution to be expressed in simple textual form.

5.8.3 Way forward / next step

The approach is promising although a number of challenges are already identified. There are basically three
major areas that can be approached next and independent of each other.

Firstly, the way how data are extracted from models and indexed into Elasticsearch must be improved. A pure
reflective approach is not sufficient. For specific types other means have to be found to introduce special
navigation of data structures or collection of data from referred objects and models. Remember that
“denormalization” is key here, so all safety case related attributes and assumptions have to be indexed in a
flat manner. And they have to be somehow marked as special attributes to be later used during match and
impact requests. Technically, certain extension points can be introduced for example to drive the indexing and
navigation for dedicated meta class, as process or argumentation models for example.

A second important issue is the mentioned way to bridge the gap between the typical Elasticsearch text-based
match approach to a rather “impact”-centric approach. Elasticsearch uses a defined built-in set of so called
“Analyzers”, basically logic that basically is tokenizing a block of text into individual terms suitable for use in

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 100 of 185

an inverted index. To underpin the problem to cope with, just an example. An assumption may be given as
plain text like the following:

> “The length of the truck is 18m”

The standard analyzer is the default analyzer that Elasticsearch uses. It is the best general choice for any text,
in any language. It splits the text on word boundaries and removes most punctuation. Finally, it lowercases all
terms. That would produce:

> “the, length, of, the, truck, is, 18m”

This is good for search performance but not sufficient for what we want to achieve. There are more default
built-in analyzers (e.g. for different languages) but they do not change the general picture on how Elasticsearch
works. By default, Elasticsearch configures text fields as “full-text” and applies the mentioned standard set of
analyzers. Fortunately, custom analyzers and field types can be configured in a custom mapping - for example
to index the exact value passed in, without any analysis, such as a string user ID or an internal status field or
tag. The same mechanisms could be used to configure own analyzers to deal with the mentioned special
attributes, such as assumptions or contractual attributes, later required to help in the impact analysis request.

Another point, not yet considered, is the fact that in an impact analysis often a quantitative result is of interest,
so not only that there is an impact but also how high the impact is. To achieve such a quantitative result,
somehow numbers have to be associated with a document and/or its attributes so that a “match” is not only
qualitative but also quantitative. Fortunately, Elasticsearch comes with an internal scoring and relevance
system anyway (score, as depicted in Figure 77, is returned as metadata of the search result).

Figure 77. Score information as meta-data

There is a lot of theory behind, but generally speaking: there should be a way to utilize that scoring system to
quantify search results.

Last but not least, the high-level API that sits atop the bare bone Elasticsearch query and search API, and that
can be used by any of the mentioned impact (at all) features and any assistance above, needs discussion with
the use case owners. The API needs to be driven forward to requirements and needs of the feature themselves
while considering the capabilities of (1) the approach and (2) the Elasticsearch capabilities and limitations.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 101 of 185

Figure 78. Utilization of Elasticsearch based APIs

At the end the approach to serve multiple different use cases, from impact analysis to reuse via a single API
and mapped to Elasticsearch, must be proven right.

5.9 Automatic generation of process-based arguments

This section provides the design solution for the automatic generation of process-based arguments within
AMASS. The solution embraces both phases of the certification liaison process (which is explicitly defined
within DO-178C and implicitly in place in all certification/qualification frameworks): the planning (see Section
5.9.1) and the execution (see Section 5.9.2) phase.

5.9.1 Generating Process-based Argumentation Representing Plans (*)

As depicted in Figure 79, during the planning phase, a specific process plan is derived from the family of
processes (managed by EPF-C & BVR Tool), then an argument is automatically generated by following
MDSafeCer [29] principles and visualized via the Assurance Case Editor.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 102 of 185

Figure 79. Process-based arguments generation (Planning Phase)

Process-based argumentations argue that a safety-critical system has been developed in compliance with the
development process defined in the standards and provide the evidence for certification of compliance.
However, the process-based argumentations cannot ensure that the evidences are sufficient to support the
claim. In particular, inappropriate, incomplete or inherently faulty reasoning about the evidence introduces
the defects in safety argumentations, namely called fallacies. These fallacies could lead to overconfidence in a
system and tolerate certain faults which in turn contribute to safety-related failures of the system. This risk
also affects process-based argumentation. For example, a process-based argumentation, supported by the
evidence of personnel competence in performing the model checking task, is weakened in detecting all faults
in design because underlying proof attributable to a lack of training in formal methods. The undetected design
faults during the development process might lead to the failure of a safety system when it is deployed.
Therefore, it is necessary to prevent or detect fallacies in the process-based argumentations. In this context, a
plugin will be developed that validates the process models, and prevents the occurrence of fallacy, specifically,
omission of key evidence in process-based arguments. If fallacies are detected in the process models, the
approach develops the recommendations to resolve them; afterwards the process and/or safety engineers
modify the process models based on the provided recommendations. Finally, the safety arguments from the
modified process model will be generated using the Generation plugin [174]. The overall workflow of the
method is shown in Figure 80, specifically the solid lines show the extended step of MDSafeCer.

Figure 80. Overview of the proposed method

Process-based	arguments	
Generation	(Planning	Phase)

Argument-
fragment	
Generator
(MDSafeCer)

Assurance	
Case	Editor

IArgumentInfo

IArgumentInfo

WEFACT	
Process	
executor

Requirements
Generator IReqInfo IReqInfo

IProcessPlanInfo

IProcessPlanInfo

EPF-C	&	BVR	
Tool

IProcessPlanInfo

IProcessPlantInfo

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 103 of 185

5.9.1.1 Types of fallacy (*)

As discussed above, an argumentation fallacy is a mistake or flaw in the reasoning of an argument. In safety
arguments, fallacies exist in different forms. Greenwell et al. presented a taxonomy of common fallacies in
safety arguments and organized them into three categories namely, relevance, acceptability and sufficiency
fallacies [148], described as follows:

• Relevance fallacies add no value to an argument and provide irrelevant evidence. The existence of a
relevance fallacy in an argument cannot contribute to a failure; rather, these fallacies might
mislead/distract the developer or reviewer into accepting an insufficient argument, which, in turn, may
contribute to a system failure.

• Acceptability fallacies are those in which an argument provides unacceptable, contradictory or
inconsistent evidence to support the claims, for example, an argument contains the evidence that is
only the restatement of the claim.

• Sufficiency fallacies are those in which arguments can fail to provide sufficient evidence to support the
claims, either providing little or no evidence, biased or weak evidence, or omitting crucial types of
evidence. Within the context of AMASS the sufficiency fallacies have been considered. More
specifically, omission of key evidence in which arguments fail to provide key evidence that is crucial to
support the claim. Omission of key evidence fallacies, within the context of process argumentation,
are the flaws or defects in which arguments can fail to provide sufficient evidence (e.g., staff
competency) to support the process claim (e.g., claim about designer who is responsible for the design
task, which deals with the production of design-related work products).

5.9.1.2 Modelling of Safety Processes (*)

As shown in Figure 80, the first step involves modelling of a safety process in EPF-C according to the best
practices as well as according to the standard(s). There are two possible ways of modelling requirements in
EPF Composer. First, the requirements and associated process life-cycle can be modelled by following the IBM
approach. However, EPF Composer does not support the definition of a user-defined type. Therefore, the
guidance type Practice has been customized with an icon and variability relationships, as shown in Figure 81.
The associated process elements (e.g., tasks, work products and roles) are modelled under the Method
Content package and development life-cycle under Processes in the process-lifecycle plugin. The detailed
guidelines are provided in the user manual.

Second, ECSS-E-ST-40C standard requirements can automatically be imported into the EPF Composer. For this,
ECSS Applicability Requirement Matrix (EARM)—ECSS in MS Excel format (i.e., EARM_ECSS_exportDOORS-
v0.5Statistics.xlsx has been parsed and the set of requirements has been filtered. The instructions for
converting excel file to xml format compatible with EPF Composer has been described in AMASS D1.4 [147].

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 104 of 185

Figure 81. Requirements and Process modelling in EPF Composer

5.9.1.3 Detecting Fallacies in Process Models (*)

This subsection explains the algorithmic design solution for detecting fallacies, more specifically, omission of
key evidence fallacies, in process models. The approach validates whether the safety process contains
sufficient information corresponding to the key evidence for supporting the specific requirement. Algorithm
starts by searching the process model (i.e., top-level element) and considers the (decomposed) linked
elements such as phases, activities, tasks and so on. In particular, it follows the Work Breakdown Structure, as
shown in Algorithm 1. The function getTopLevelElements() returns a set of top-level elements of the process.
Given a certain element e, its linked element le can be achieved by using the function getLinkedElements().
Once the link between the supporting elements has been established, the premises/details related to
evidences are parsed and stored in an array. In a similar way, the requirements p and sub-requirements sp,
modelled as practices, are extracted from requirements plugin, as shown in Algorithm 2.

Algorithm 3 illustrates the detecting fallacies procedure. In this context, the requirements (briefDescription)
related to a specific element (e.g., role) are matched with the provided information details (e.g., Skills or
MainDescription). If the evidence details are omitted or the rationale is not provided, it means that process
contains the omission of key evidence fallacies. The approach provides validation results including the list of

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 105 of 185

elements containing sufficient and insufficient information (i.e., detected fallacies). In addition, the
appropriate recommendations to resolve the specific deviations are presented. These results can be printed
on the console, or otherwise the validation reports are generated in the selected folder. Figure 82 shows the
process model and the validation result, including the list of roles containing sufficient information (enclosed
in green box), omitted details of evidences, and recommendations (enclosed in red box). The results have been
printed on the console, or otherwise the fallacies reports would have been generated.

Process engineers and/or safety engineers then modify the process by providing required evidences or
rationale for omitted information, the revised version will be revalidated again. Therefore, it ensures that the
final argumentation that will be generated from the process (which is specified in the next step) is valid. Once
fallacies are eliminated, by modifying the process models, and rerunning the checking process yields no further
flaws, the process-based arguments are generated from the modified models.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 106 of 185

Figure 82. Result after detecting omission of key evidence fallacies

5.9.1.4 Mapping between process elements and argumentation elements (*)

To perform the generation of process-based arguments, the process models are described according to the
UMA metamodel in EPF-C, whereas the argumentation models should be compliant to the CACM metamodel
in OpenCert and should be rendered via a concrete syntax, e.g. GSN. The main mapping between these
metamodels is described in Table 10. This mapping is coherent with what was initially conceived in the context
of SafeCer project and published in [29].

In particular, within AMASS, the mapping is as follows: the ProcessComponent that contains the information
of the process is mapped into a Case, whereas the Planning Phases are mapped into the Claims stating that
the planned process is in compliance with the required standard-level. Specifically, the mapping is focused on
the Work Breakdown Structure of processes in EPF Composer. These Claims are decomposed into Sub-claims
by showing that all the Activities have been planned, in turn, for each Activity all the Tasks/TaskDescriptors
have been planned are mapped into Claims in CACM (represented by Goal in GSN). ArgumentReasoning
elements (aka GSN strategies) are created in order to divide the Claim into Sub-claims. The crucial process
elements associated to a TaskDescriptor, namely requirements related to RoleDescriptors,
WorkProductDescriptors, Guidelines, ToolMentors and Tools, Checklist, and Example are mapped to the Sub-
claims. In case WorkProductDescriptor has been planned as expected output of a task, it would be mapped
into undeveloped Claim. The property of the claim toBeSupported = “true” means that it requires further
development. Evidences associated to these elements are mapped into InformationElementCitation typed
“solutions” showing that the particular goals have been achieved. The rationale related to element (e.g., tool
qualification is not needed since source code is fully tested) is mapped into InformationElementCitation typed
“justification”. The “purpose” attribute of the process is used to show that the process is compliant with the
standard, which is mapped to InformationElementCitation “context”.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 107 of 185

The relationship AssertedInference (SolvedBy in GSN) links the TaskDescriptor (source) to a target element,
which is not a solution, whereas AssertedEvidence (SolvedBy in GSN) links the source to a target element (i.e.,
solution). Finally, a relationship Asserted (inContextOf in GSN) relates the sub-goal related to the task with a
piece of contextual information related to the standard to be considered.

Table 10. Mapping between process model, argumentation model and GSN

UMA Metamodel CACM (Argumentation Metamodel) GSN Concept

ProcessComponent Case

Phase Claim Goal

Activity Claim Goal

TaskDescriptor Claim Goal

Process purpose (Standard) InformationElementCitation
Property type = “context”

Context

A set of RoleDescriptors

WorkProductDescriptors

Guidelines

ToolMentors and Tools

Checklist

Example

ArgumentReasoning

Strategy

WorkProductDescriptor
(expected output) has been
planned

Claim Property toBeSupported= “true” Undeveloped goal

Guidelines should be followed
Claim Property toBeSupported= “true” Undeveloped goal

Evidences associated to:

WorkProductDescriptor

RoleDescriptor

Guideline

ToolMentor and Tool

Checklist

Example

InformationElementCitation
Property type = “solution”

Solution

Rationale related to
RoleDescriptor/Tool Qualification

InformationElementCitation
Property type = “justification”

Justification

Relationships (between a
TaskDescriptor and a role/tool/…)

AssertedInference (target is not a
solution)

SolvedBy

Relationships (between a
TaskDescriptor and
WorkProductDescriptor)

AssertedEvidence (target is solution)

SolvedBy

Relationships (for Context) Asserted InTheContextOf

The mapping is implemented by using Epsilon Transformation Language (ETL). ETL is a hybrid, rule-based
model-to-model transformation language and provides the enhanced flexibility to transform many input to
many output models. A plugin has been implemented in the AMASS Prototype P1 [20], which automatically

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 108 of 185

transforms the process model into safety argument fragments (i.e., model and diagram) using ETL. The
generated argumentation model and diagram are visualized via the assurance editor in OpenCert. In
deliverable, the mapping is enhanced. Figure 83 shows the generated argumentation model and the
corresponding diagram, compliant to the CACM metamodel that are visualized in assurance case editor in
OpenCert. The generated process-based arguments are free from the fallacies and provide valid justification
that the evidences are sufficient to meet the standard’s requirements.

Figure 83. Generated argumentation model and diagram

5.9.2 Generating Process-based Argumentation Representing Executed Processes
(*)

During the execution phase, the design is slightly different. As depicted in Figure 84, based on a specific model
regarding an executed process (managed by WEFACT), an argument is expected to be automatically generated
by following MDSafeCer principles and visualized via the Assurance Case Editor. To perform such generation,
a mapping similar to the one presented in Table 10 is proposed in what follows.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 109 of 185

Figure 84. Process-based arguments generation (Execution Phase)

In the automatic generation of process-based arguments, arguing about compliance of executed processes,
WEFACT will be used as a workflow tool for generating the evidences for the requirements from the applicable
Security and Functional Safety Standards, and for delivering the respective input for the MDSafeCer Argument
Fragment Generator.

Cross-domain re-use is possible between the argument fragments as well as the evidences in those cases
where the similarity of the requirements from the standards allows their similar treatment in the
argumentation.

The entire workflow of the Process-based argument generation runs as follows:

By means of the tool EPF-C, together with the BVR (Base Variability Resolution) tool, the process model for the
applicable Security and Functional Safety standards of the domains under consideration is created and
instantiated towards the company practices and the specific needs of the individual project. The resulting
process model instantiation (IProcessPlanInfo) is stored in SPEM2.0 format and subsequently imported into
WEFACT.

In WEFACT, the necessary steps, for delivering the evidences (also known as GSN solutions) for the process-
based requirements, are created. This is done manually by assigning adequate processes for verifying the
process requirements – with the option to automate this process as far as possible in a later project phase.

In addition, WEFACT creates the data for the argument generation (IProcessExInfo), which is linked to the
aforementioned V-Plans and evidences. This data is the input for the Argument Fragment Generator
(MDSafeCer), which creates the argument fragments corresponding to the process activities under
consideration. The generation is performed via a model transformation that transforms the modelling
elements in WEFACT into modelling elements of the argumentation.

The generation of arguments is done in the following 4-step workflow:

1. WEFACT reads the UMA file (possibly generated with EPF Composer) with the following assumptions:

• The UMA file contains both (standards) requirements and processes for proving them.

• The requirements-related text contains (before the first blank) the number of the respective clause
in the standard.

2. The user defines the activities with the associated tools and the input/output directories in WEFACT.
Note that this information is not directly represented in the AMASS metamodel but is later used by
WEFACT for

• executing the processes in order to generate the evidences (step 3), and

• generating the argument fragments by composing the GSN argumentation elements (step 4).

Process-based	arguments	
Generation	(Execution	Phase)

Argument-
fragment	
Generator
(MDSafeCer)

Assurance	
Case	Editor

IArgumentInfo

IArgumentInfo

EPF-C	&	BVR	
Tool

IProcessPlanInfo

IProcessExInfo

IProcessExInfo

WEFACT	
Process	executorIProcessPlanInfo

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 110 of 185

3. Then, the processes are executed within WEFACT and evidences are generated.

4. Finally, WEFACT creates the arguments and the evidences by iterating all processes.

• Arguments are written into an xml file in CACM-conformant format using data elements from
WEFACT plus additional text. Due to the assumed 1:1 relation between them, both requirements
and processes become GOALs. The STRATEGY is derived from the assigned tool, the JUSTIFCATION
is composed of Users, Roles, the Tool Description and the Rationale of the Requirement. Finally,
the SOLUTION is derived from the input/output Work products.

• As foreseen by the CACM metamodel, the evidences are not assigned to individual solutions but
all evidences are assigned to the Assurance Cases as a whole.

The resulting xml file is imported in OpenCert to become part of the AMASS metamodel instances.

The following table gives an overview on the mapping between WEFACT and OpenCert model elements.

Table 11. Mapping between WEFACT and OpenCert model elements

Wefact Model CACM (Argumentation Metamodel) GSN Concept

Project Case

Process Claim Goal

Requirement Claim Goal

Tools ArgumentReasoning Strategy

Link between Requirement
and Process

AssertedEvidence SolvedBy

Users / Roles InformationElementCitation
Property type= “justification”

Justification

Description of Tool /
Rationale of Requirement

InformationElementCitation
Property type= “justification”

Justification

WorkflowStatus InformationElementCitation
Property type=”solution”

Solution

Artefacts (Input/Output files)
 Work product

InformationElementCitation
Property type=”solution”

Solution

In WEFACT, the project itself represents what corresponds to the “Case” in CACM.

A clause number is specified at the beginning of the description of a requirement to identify its reference in a
specific standard. The new function parses the text and identifies this clause number. The outputs of processes
linked to a requirement represent a work product, so that several outputs can be combined to form one single
work product. This is represented as “InformationElementCitation solution” in the table. Process and
requirement are treated as “Claim”. Consequently, the Link between Requirement and Process represents the
“AssertedEvidence” mentioned above, which serves as a reference to the corresponding work product. As the
WEFACT workflow supports a many-to-many relation between requirements and processes, this can become
complex for creating an argument fragment. To stay conformant to the OpenCert platform, one process per
requirement is used for the proof of concept. Every argument fragment corresponds to exactly one process.

Additionally, for each process, a data record identifying how the fulfillment has been proven is given (Tools).
This corresponds to “ArgumentReasoning” in the CACM Model.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 111 of 185

To justify any actions, the tool description and the rationale of a requirement execution are mapped to
“InformationElementCitation justification”. In the current concept for implementing the approach, it is
assumed that the status is set by a responsible human user.

The WorkflowStatus is transformed into Evidence model element instances. As output, WEFACT creates a
CACM-conformant xml file. This file is imported by an existing standard importer, which can be started by
clicking a button in the OpenCert editor.

5.10 Automatic generation of product-based arguments

This section provides the design solution for the automatic generation of product-based arguments. This
solution represents a further development of what was presented in [51]. To perform the generation of
argument fragments from component contracts, first the contracts (weak and strong) have been enriched with
argumentation information, namely: context statements, claims and evidence artefacts. This information is
provided by the contract and traceability editor. As documented in D3.2 [9]/D3.3 [10], and D3.5 [11], the status
of the weak contracts is validated and used as the input to the argument generation. The Argument-fragment
generator creates the argument-fragments in the corresponding assurance case project where they can be
viewed in the assurance case editor. The generator uses a pre-existing argument pattern for the generation.
The generated argument-fragments include only those contracts whose assumptions are validated, hence only
those artefacts related to the validated contracts.

Figure 85. Product-based argument generation

This design solution has been further developed and presented at AdaEurope-2018 [156].

5.10.1 Argument-fragment generation at the architectural pattern level (*)

Architectural patterns are used to capture the reusable reasoning regarding a design solution to a particular
problem. The design solution exhibits certain properties that guarantee to address the targeted problem.
Capturing the information about architectural patterns in assumption-guarantee contracts, by using the design
pattern template detailed in D3.3 [10], can serve as the basis for assuring that the application of the
architectural pattern adequately addresses the problem that it is trying to solve. The architectural patterns can
be modelled in CHESS using the component type element, and the design pattern template information can
be captured using the component type assumption-guarantee contracts and the related assurance information
elements.

To automate the argument-fragment generation, we developed the assurance pattern for assurance of
architectural pattern application, which utilises the design pattern template information that can be captured
in the CHESS model. The assurance pattern is detailed in D3.3 [10].

AMASS ©	AMASS	– Presentation	to	MINETUR,	Feb	3,	2016 2

Con2SAF

Argument-

fragment

Generator

Assurance

Case Editor

ITraceInfo IArgumentInfo

IArgumentInfo

IRequirementInfo Component

Editor & BVR

Tool

Contract

Editor &

BVR Tool
IContractInfo

IContractInfo
IRequirementInfo

Traceability

Editor

ITraceInfo

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 112 of 185

The generation is done in the similar way as for the OCRA contracts using the Con2SAF component. The
Argument-fragment Generator is extended to use the assurance pattern specific to architectural pattern
application when the type of contracts specified in the CHESS model corresponds to design pattern contracts.
With this extension, the Argument-fragment Generator supports argument-fragment generation for both
OCRA and design pattern contracts, where the first are formal, and the latter are informal contracts.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 113 of 185

6. Implementation Solution for Cross/intra domain reuse: a way
forward

In this chapter, a way forward concerning the implementation is proposed. The real implementation is
expected to be given in D6.6 [21], output of Task 6.3. Table 12 and Table 13 provide details concerning the
three main functionalities for the AMASS Cross/Intra Domain Vision.

Table 12. STO4-Reuse Assistant as well as Product/Process/Assurance Case Line Specification + semi-automatic
generation of arguments

ID Short Description Description Prototype
Nº

Priority Elaborated in
section

WP6_RA_001 Intra-Domain, Intra
standard, Reuse
Assistance

The AMASS tools shall enable partial reuse
of compliance artefacts when transiting
from one project to another (different
criticality level, etc.).
The commonality that characterizes the
different projects should be recognized and
proposed as reusable process structure.

P1 Shall 5.2
as well as

5.3.2

WP6_RA_002 Intra-Domain, Cross
standards, Reuse
Assistance

The AMASS tools shall enable partial reuse
of compliance artefacts when transiting
from one project to another
(different/same criticality level, if
applicable, but different standards (e.g.,
AutomotiveSPICE, ISO 26262).)
The commonality that characterizes the
different projects should be recognized and
proposed as a reusable process structure.

P1 Shall 5.2
as well as

5.3.2

WP6_RA_003 Intra-Domain, Cross
versions, Reuse
Assistance

The AMASS tools shall enable partial reuse
of compliance artefacts when transiting
from one project to another
(different/same criticality level, if
applicable, but different standards (e.g.,
ISO 26262-2011, ISO 26262-2018).)
The commonality that characterizes the
different projects should be recognized and
proposed as reusable process structure.

P1 Shall 5.2
as well as

5.3.2

WP6_RA_004 Cross-Domain Reuse
Assistance

The AMASS tools shall enable partial reuse
of compliance artefacts when transiting
from one project to another belonging to
different domains (e.g., from automotive
to avionics).
The commonality that characterizes the
different projects should be recognized and
proposed as reusable process structure.

P1 Shall 5.2
as well as

5.3.2

WP6_RA_005 Intra-Domain, Intra
standard, Different
Stakeholders,
Reuse/Integration
Assistance

The AMASS tools shall enable partial reuse
of compliance artefacts during the
integration (manufacturer/supplier).
Assumed process requirements vs. actual
process requirements.

P1 Shall 5.2
as well as

5.3.2

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 114 of 185

Table 13. STO4-Product/Process/Assurance Case Line Specification + semi-automatic generation of arguments

ID Short Description Description Prototyp
e Nº

Priority Elaborated in
section

WP6_PPA_001 The AMASS tools
must support
variability
management at
process level

The system shall enable users to
specify what varies (and what
remains unchanged) from one
process and its family members.

P1 Shall 5.3.2

WP6_PPA_004 The AMASS tools
must support
specification of
variability at the
component level

The system shall enable users to
specify what varies (and what
remains unchanged) from one
component and its family members
(e.g., its evolved versions at
component level).

P1 Shall 5.3.3

WP6_PPA_005 The AMASS tools
must support
variability
management at the
assurance case level

The system shall enable users to
specify what varies (and what
remains unchanged) from one
assurance case and its family
members.

P2 Shall 5.3.4

WP6_PPA_002 Semi-automatic
generation of product
arguments

The system should reduce efforts of
manual creation of product-based
assurance case arguments. This could
be done by enabling semi-automatic
generation of product-based
arguments-fragments.

P1 Shall 5.9

WP6_PPA_003 Semi-automatic
generation of process
arguments

The system shall reduce efforts of
manual creation of process-based
assurance case arguments. This could
be done by enabling semi-automatic
generation of process-based
arguments-fragments.

P1 Shall 5.10

WP6_RA_003 Reusable off the shelf
components

The system shall provide the
capability for reuse of pre-developed
components and their accompanying
artefacts.

P1 Shall Included in
D3.2 [9] and

D3.3 [10]

The requirements regarding metrics (WP6_RA_007, WP6_RA_008 and WP6_RA_009) do not require an
implementation and are addressed in Chapter 14.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 115 of 185

7. AMASS vision for compliance management (*)

Compliance management deals with the provision of evidence and justification regarding conformance to
requirements coming from the standards. For instance, a development plan represents the evidence that a
plan has been conceived and documented in compliance with the requirements. To ease the communication
between the applicant and the certification body, the evidence alone is not enough. A justification in terms of
either a checklist (concise compliance report given in a tabular format), or an argument, or some proof (e.g. a
verification report) should also be provided to show/argue/prove that the plans comply with the requirements.

To manage compliance, it is necessary to: 1) properly interpret and model the requirements coming from the
standards, 2) provide the evidence expected to substantiate such requirements, and 3) provide the relation
between requirements and evidence. The vision of AMASS for compliance management is exemplified in
Figure 86. As this figure depicts, compliance management is meant as management of the activities aimed at
fulfilling the normative requirements and in charge of delivering justifications of compliance, where a
justification of compliance may take different forms: a mapping table indicating which process elements act
as evidence for the satisfaction of the requirements coming from the standards; an argument explaining why
certain evidence is linked to certain requirements; a formal proof, proving that a certain process trace satisfies
a certain set of formalized requirements; or an ontology linking together standard-related concepts with
process-related concepts.

Thus, four different or complementary methods are developed/enhanced and integrated. These four methods
are all expected to compare the normative space with the process space:

• Compliance table generation, as it was presented in D6.1 [17], constitutes an OPENCOSS result that
has been integrated in the first release of the AMASS platform (see D2.2 [4] for architectural details).
Compliance table generation consists of the generation of a table representing a checklist.

Compliance tables, however, as explained in [155], can be modelled also in EPF Composer.

• (Generation of) argumentation about compliance, as it was presented in D6.1, constitutes a SafeCer
conceptual result, which was initially implemented as a proof of concepts within the WEFACT tool
(see [29]). Within AMASS, the generation of arguments targeting compliance has been implemented
and integrated within P1 (the second iteration of the AMASS prototype), based on the designed
solution provided in Section 5.4 of this document. As explained in Section 5.9, such functionality has
been empowered by designing the fallacy-free generation of process-based argumentation to be
implemented for P2. (Generation of) argumentation about compliance consists of the generation of
(counter) arguments explaining why compliance is or is not achieved.

• (Automatic) compliance checking represents a novelty. None of the previous projects have considered
this opportunity. (Automatic) compliance checking is aimed at offering increased efficiency and
confidence via the adoption of logic-based reasoning for checking compliance.

• Ontology-based mapping, as it was presented in D6.1 [17], constitutes a SafeCer conceptual result,
which was initially implemented as a proof of concepts. Within AMASS, the principles of this method
have been incorporated, but its design has been slightly changed since a different language for
representing the ontology has been selected. The re-designed method is expected to be implemented
and integrated within P2 (the third iteration of the AMASS prototype), based on the designed solution
provided in Chapter 12.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 116 of 185

Figure 86. Compliance Management Vision, adapted from [155].

Chapters 8÷11 presents the method regarding compliance checking. First, the conceptual solution is provided
(Chapter 8), then, possible design solutions are discussed and compared (Chapter 9); then the AMASS vision
for compliance checking in AMASS is designed (Chapter 10). Finally, the way forward for the implementation
is sketched (Chapter 11).

Chapter 12 develops the method regarding ontology-based mapping and Chapter 13 explains the
corresponding way forward for its implementation.

AMASS 3

Formalization

Normative Space

Argumentation about

compliance (P1)

Process Space

Process Model(s)

Norm(s)
Compliance checking

(P2)

Mapping tables (Core)

Ontology-based

mapping (P2)

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 117 of 185

8. Conceptual solution for compliance checking

In this chapter, the conceptual solution for the compliance checking vision is elaborated. This conceptual
solution is built on top of the state-of-the-art theoretical foundation. Thus, in Section 8.1, some essential
background information is provided. Then, in Section 8.2, initial manual explorations of its usefulness in the
AMASS context are documented. Finally, in Section 8.3, the needed modelling and analysis capabilities for
enabling compliance checking are identified.

8.1 Essential Background information

This section is structured as follows. In Section 8.1.1, Defeasible logic is presented. In Section 8.1.2, Formal
Contract Logic is presented. Finally, in Section 8.1.3, Regorous Process Designer is presented.

8.1.1 Defeasible Logic

This subsection is structured as follows. In Section 8.1.1.1 the basis of defeasible logic is given. In Section
8.1.1.2., a defeasible logic derivation called defeasible deontic logic is presented.

8.1.1.1 Defeasible logic: the basis

Defeasible Logic is a non-monotonic formalism proposed by Nute [54]. Non-monotonic reasoning [55] is an
approach able to capture different and sometimes incompatible facets of reasoning, where a larger set of
initial “assumptions” does not necessarily imply a larger set of “consequences”. The understood notion is that
the derived conclusions are tentative and can be retracted once new information is available. However, logics
created for non-monotonic reasoning have high computational complexity, i.e., default logic [56], which
proposes a compact representation of information, in which default prevails where more information is
required for decision-making. Some derivations of default logic are justified: default logic [57], disjunctive
default logic [58] [59], contrived default logic [60], and rational default logic [61]. Other non-monotonic logics
are auto-epistemic logic [62], which permits the representation of agent’s beliefs allowing the drawing of some
conclusions based on these beliefs, and circumscription logic [63], which represents common sense reasoning
to draw conclusions of a theory by minimizing its models to those that have minimal extensions in the universe
of models. Defeasible Logic is an alternative for non-monotonic reasoning and it is considered a logic that is
“tunable” to the environment. Defeasible logic also preserves low computational complexity [64]. The
underlying notational convention for defeasible logic is as follows:

• There is a set of proposition literals.

• If q is a literal, ∽q is its complement.
o If q is a positive literal p, then ∽q is ¬p.
o If q is a negative literal ¬p, then ∽q is p.

• There is a set of modal operators.

• Rules are defined over a language (or signature) Σ.

• There is a set of propositions (atoms).

• There are labels that may be used in the rule.

The base knowledge in defeasible logic is called defeasible theory. It is represented by the triple (F, R, >), where
[65]:

• F and R are finite sets of facts and rules.

• > is a superiority relation of R.

Facts are logical statements describing indisputable statements representing the state of affairs or actions that
have to be performed. A fact is considered always true. Rules are binary relations between a set of literals (the
antecedent A(r), which can be empty) and a literal (the consequent C(r)). Formally,

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 118 of 185

 𝒓: 𝑨(𝒓) ↪ 𝑪(𝒓)
where

• r: is a unique identifier of the rule.

• A(r) = 𝑎1, … , 𝑎𝑛 is the antecedent of the rule.

• ↪∶ {→, ⟹, 𝑎𝑛𝑑 ↝}, representing strict, defeasible and defeater rules.

• 𝑪(𝒓): the consequent (or conclusion) of the rule.

Defeasible logic supports three kinds of rules:

a) Strict rules: rules in the classical sense, whenever the premises are indisputable, so is the conclusion.
b) Defeasible rules: rules that can be defeated by contrary evidence; defeasible rules with empty

antecedent can be considered as a presumption.
c) Defeaters: are special kind of rules. They are used to prevent conclusions, not to support them.

Strict rules with empty antecedent are a way to model facts. Facts are more likely to be used to describe
contextual information while strict rules are more likely to be used to model the reasoning underlying the
context. Defeasible logic is a skeptical logic, i.e., it does not support contradictory conclusions. Additionally,
defeasible logic seeks to resolve conflicts. The complete proof theory for DL is sketched in [65].

8.1.1.2 Defeasible Deontic Logic

Defeasible deontic logic is a derivation of defeasible logic that addresses deontic modes [66] by extending
deontic logic. Deontic modes or modes of obligations [67] are concepts such as the obligatory (that we ought
to do), the permitted (that we are allowed to do), and the forbidden (that we must not do). Deontic Logic
extends first-order logic with the deontic operators (O for obligations, P for permissions, and F for
prohibitions). Defeasible deontic logic [68] supports deontic operators in the modelling of norms by satisfying
the following equivalence relations:

𝑶𝑨 ≡ ¬𝑷¬𝑨 ¬𝑶¬𝑨 ≡ 𝑷𝑨 𝑶¬𝑷 ≡ 𝑭𝑨 ¬𝑷𝑨 ≡ 𝑭𝑨

The following relation 𝑂𝐴 → 𝑃𝐴 is also supported, and it means that if A is obligatory, then A is permitted. In
addition, there are cases in which breaches of norms can be supported by the normative system with the use
of special secondary norms. These special norms are policies that are included to express the respective
obligations for the actors to compensate the mentioned breaches. In deontic logic, this type of expression,
namely, the activation of certain obligations in case of other obligations have been violated is referred to as
contrary-to-duty obligations (CDT) [69]. A CDT is not a usual conflicting obligation, which overrides a primary
obligation. CDT norms can be logically thought of as a special exception of primary obligations. For modelling
a CDT rule, the symbol ⊗ (which is called the reparational connector) is used. In this sense, a norm with an
exception can be represented as:

𝑶𝑨 ⟹ 𝑶𝑩 ⊗ 𝑶𝑪

The previous expression is called “reparation chain”. The meaning of a reparation chain is that B is obligatory,
given the obligation of A, but if the obligation of B is violated, i.e. we have not B, then the violation is
compensated by C (which is then obligatory).

8.1.2 Formal Contract Logic

In this section, Formal Contract Logic (FCL) is presented. In Section 8.1.2.1, the basis of FLC is given. In Section
8.1.2.2 the types of rules used in FCL are presented.

8.1.2.1 FCL: the basis

FCL [68] is a formal representation language designed in the context of business management to formalize the
information that is present in contracts. FCL has also been used for analysing the compliance of business
processes against regulatory requirements. FCL underlying logic is constituted by the combination of

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 119 of 185

defeasible logic (introduced in Section 8.1.1.1) and defeasible deontic logic (Introduced in 8.1.1.2). In FCL a
norm is represented by a rule:

𝒂𝟏, … , 𝒂𝒏 ⟹ 𝒄
Where:

𝒂𝟏, … 𝒂𝒏: Conditions of applicability of the norm/rule.
c: Normative effect of the norm/rule.

FCL differentiates two normative effects i.e. the definition of a new term and the triggering of deontic notions.
Deontic notions, as seen in Section 8.1.1.2, are the obligations, permissions and prohibitions. Obligations and
prohibitions are constraints that limit the space of action of a process. The difference from other types of
constraints is that they can be violated, but a violation does not imply an inconsistence if the violation can be
compensated. Process with compensated violations is still compliant [71]. Permissions cannot be violated.
Thus, permissions do not play a direct role in compliance. Permissions can be used to determine that there are
neither obligations nor prohibitions to the contrary or to derive other deontic effects. Legal reasoning and legal
theory typically assume a strong relationship between obligations and prohibitions [72]: the prohibition of 𝐴
is the obligation of ¬𝐴 (the opposite of A), and then if 𝐴 is obligatory, then ¬𝐴 is prohibited. For this reason,
both terms, obligations and prohibitions, are subsumed under the term obligations. Compensations of
violations are implemented based on the notion of reparation chain [69], which has an expression of the form:

𝑶𝟏𝒄𝟏 ⊗ 𝑶𝟐𝒄𝟐 ⊗ … ⊗ 𝑶𝒏𝒄𝒏

Where:
𝑶𝒊: is an obligation

𝒄𝒊: is the content of the obligation

FCL is equipped with a binary relation over rules that allow handling rules with conflicting conclusions. A
conflicting conclusion appears when there is a rule r that sets a general prohibition and a second rule r’ that
derogates the prohibition, permitting the conclusion. This type of situations is common in legal reasoning and
can be modelled by saying that r’ is “stronger” than r:

𝒓′ > 𝒓

If both rules apply, the superiority relation > defines that r’ defeats r, and there is not conflict any more. An
obligation [O]p is derivable if:

• [O]p is given as one of the facts

• There is a rule:
𝒓: 𝒂𝟏, … 𝒂𝒏 ⟹ [𝑶𝟏]𝒑𝟏 ⊗ … ⊗ [𝑶𝒎]𝒑𝒎

 Such that:

a) For all 1 ≤ 𝑖 ≤ 𝑛, 𝑎1is provable, and

b) For all 1 ≤ 𝑗 ≤ 𝑚, [𝑂𝑗]𝑝𝑗 𝑎𝑛𝑑 ¬𝑝𝑗 are provable, and

c) For all rules
𝐬: 𝐛𝟏, … 𝐛𝐤 ⟹ [𝐃𝟏]𝐪𝟏 ⊗ … ⊗ [𝐃𝐥]𝐪𝐥 ⊗ [𝐃]𝐩′

 Such that p’ is the negation of p, either:

i. Exist 1 ≤ 𝑖 ≤ 𝑘 such that 𝑏𝑖 is not provable, or
ii. Exist 1 ≤ 𝑗 ≤ 𝑙 such that either [𝐷1]𝑞1 or ¬𝑞𝑗is not provable, or

iii. r defeats s

The idea is that there must be a rule that fires (firing rules are rules that provides the conditions for triggering
other rules [161]), so all the elements in the antecedent are provable (a), and in case the conclusion is an
obligation for a reparation, all the obligations before have to be violated. Thus, the violated obligation was in
force (thus the obligations were provable) and there is evidence that it was violated (thus, the negation of the
content of each violated obligation is provable) (b). In addition, it is necessary to ensure that there are not
rules for the opposite that fire (c), and if they do, these rules are weaker than the rule of the obligation to

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 120 of 185

conclude. For permission, there are the same conditions. In addition, if there is [O]p, it is possible to conclude
[P]p. A complete representation of the logic is presented in [70] and [73]. FCL is agnostic about the nature of
the literals it uses. They can represent tasks or other kind of process elements.

8.1.2.2 Types of rules in FCL

An important aspect of the study of obligations is to determine when they are in force (the lifespan of an
obligation) and their implications on the activities carried out in a process [72]. An obligation can be punctual
when it is in force for a particular time point; otherwise, an obligation is persistent. A persistent obligation
remains in force until it is terminated or removed. For persistent obligations, it is possible to ask if they have
to be obeyed for all instants in the interval in which they are in force, maintenance obligations, or whether
doing or achieving the content of the obligation at least achieved once is enough to fulfil it, achievement
obligations. Achievement obligations have another aspect: they can be preemptive if the obligation could be
fulfilled even before the obligation is actually in force. Otherwise they are non-preemptive. Since obligations
can be violated, the effects of the violations are also required. If the obligation persists after being violated, it
is a perdurant obligation, if it does not, it is a non-perdurant obligation. The notation for obligations and
permissions is FCL is the following:

• [P]p: p is permitted

• [OM]p: there is a maintenance obligation for p

• [OAPP]p: there is an achievement preemptive and perdurant obligations for p

• [OAPNP]p: there is an achieve preemptive, and non-perdurant obligation for p

• [OANPP]p: there is an achievement, non-preemptive and perdurant obligation for p

• [OANPNP]p: there is an achievement, non-preemptive, non perdurant obligation for p

8.1.3 Regorous Process Designer

In this section, Regorous Process Designer (alias Regorous), a compliance checker created for business process
compliance, is introduced. In Section 8.1.3.1, the methodology underlying Regorous is given. In Section 8.1.3.2,
the architecture of Regorous is presented. In Section 8.1.3.3, SPINdle, the defeasible reasoner used by
Regorous is presented.

8.1.3.1 Regorous Process Designer: the basis

Regorous Process Designer (for simplicity called only Regorous) [74] is a business process compliance checker,

which is part of the of the NICTA’s Regorous Tool suite16. It assists business analysts during the ”Process design
phase of the business lifecycle” with mapping regulations to specific process and process steps, so that
processes can be designed or re-designed in a compliant way. Regorous is the result of the implementation of
the approach for process compliance based on the compliance-by-design methodology, proposed in [75] and
[76]. The compliance by design methodology enables the verification of compliance of a process with a set of
rules, before the process is executed. To check whether a process is compliant with a relevant regulation,
Regorous [72] requires an annotated process model and the formal representation of the regulation (See
Figure 87). The annotations are attached to the tasks of the process (Logical state representation), and they
can be used to record the data, resources and other information. A process model is a self-contained, temporal
and logical order in which a set of activities are expected to be executed to achieve a business goal. For the
representation of the process models, Regorous uses Business Process Management Notation (BPMN) [77],
and the rules are modelled using FCL (see Section 8.1.2) to conform the compliance rule base.

16 Regorous Process Designer is available under an evaluation license http://www.regorous.com

http://www.regorous.com/

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 121 of 185

Figure 87. Abstract framework of Regorous, taken from [72]

To annotate the process model, semantic annotations (the process of attaching additional information to
various concepts) are used. Semantic annotations, unlike classic text annotation (used by humans to read
associated information), are used by machines to refer and compute information [78]. Regorous uses the
semantic annotations to perform the analysis of compliance [79]. In FCL, the semantic annotations are literals,
representing the effects of the tasks. Thus, for the n-th element in a trace (sequence of tasks, in which a process
can be executed) it is used State (t,n) to semantically annotate the set of facts in the computation to determine
which rules fire, and consequently which obligations are in force in Force(t,n+1). In addition, the semantic
annotation Force (t,n) contains the obligations that are in force but are not terminated in n. An obligation can
be terminated if the deadline is reached, the obligation has been fulfilled, or if the obligation has been violated
and it is not perdurant (as explained in Section 8.1.2.2, a perdurant obligation is an obligation that persist after
being violated). A process is fully compliant if all its traces are compliant (all obligations have been fulfilled, or
if violated, they have been compensated). A process is partially compliant if there is at least one trace that is
compliant. To check compliance of an annotated process model against a relevant normative system, the
procedure executed is the following [72]:

1. Generate an execution trace of the process.

2. Traverse the trace:

• For each task in the trace, cumulate the effects of the task. Remark: if an effect in the current task
conflicts with a previous annotation, update using the effects of the current task.

• Use the set of cumulated effects to determine which obligations enter into force at the current
task. This is done by a call to of FCL reasoner.

• Add the obligations obtained from the previous step to the set of obligations carried over the
previous task.

• Determine which obligations have been fulfilled, violated or a pending, and if there are violated
obligations, check whether they have been compensated.

3. Repeat for all traces.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 122 of 185

8.1.3.2 Regorous Architecture

Regorous architecture is depicted in Figure 88. For the representation of the process models, it uses the Eclipse
Activiti BPMN 2.0 extended with features to allow users to add semantic annotations to the tasks in the process
model. BPMN notation was selected because it has a graphical interface that is widely accepted in industry,
and BPMN models can be translated to executable process models [75].

Figure 88. Regorous architecture

The procedure for compliance checking is based on two algorithms (See Figure 88), ComputeObligations and
CheckCompliance [75]. ComputeObligations is the algorithm to determine the active chains (current). Given a
set of literals S corresponding to effects of a task T in a process model, the algorithm ComputeObligations
determines the current set of obligations for the process Current. The set of current obligations includes the
new obligations triggered by the task as well as the obligations carried out from previous tasks. The algorithm
CheckCompliance scans all elements of Current against the set of literals S, and determines the state of each
reparation chain (𝐶 = 𝐴1 ⊗ 𝐴2) in Current. More specifically, the algorithm CheckCompliace scans all active
chains one by one. Then for each of them it reports the status. For each chain in current, it looks for the first
element of the chain and it determines the content of the obligation (so if the first element is OB, the content
of the obligation is B). Then it checks whether the obligation has been fulfilled (B is in the set of effects), or
violated (¬B is in the set of effects) or simply we cannot say anything about it (none of B and ¬B is in the set
of effects). In the first case the obligation is discarded and the chain removed from the set of active chains
(similarly if the obligation was carried over from a previous task, i.e., it was in the set unfulfilled). In case of a
violation, the information about this violation is added to the system. This is done by inserting a tuple with the
identifier of the chain in the set Violated. Additionally, we know that violations can be compensated; thus, if
the chain has a second element, the violated element is removed from the chain and the rest of the chain is
put into the set of active chains. Finally, when the set of effects does not tell if the obligation has been fulfilled
or violated, the obligation is propagated to the successive tasks by putting the chain into the set Unfulfilled.
The algorithm also checks whether a chain/obligation was previously violated but then Compensated.
CheckCompliance uses the SPINdle rule engine [80] for the evaluation of the FCL rules. Regorous has been
implemented on top of Eclipse, specifically the version 3.7.2 which is called Eclipse indigo, which was available
in June 2011.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 123 of 185

8.1.3.3 SPINdle

SPINdle17 [80] is an open source Java-based defeasible logic reasoner capable to perform efficient and scalable
reasoning on defeasible logic theories (including theories with over one million rules). SPINdle consists of five
components (depicted in Figure 89): the rule parser, the rule loader, the theory normalizer, the inference
engine, and the I/O interface.

Figure 89. Main components of SPINdle reasoner. Taken from [80]

SPINdle accepts defeasible logic theories given in XML or plain text (with pre-defined syntax). The rule parser
is used to transform the theory from a saved theory document into a data structure that can be loaded with
the rule loader. The theory normalizer transforms the loaded theory into an equivalent theorem without
superiority relations and defeaters, which helps to simplify the reasoning process in the inference engine. The
inference engine generates the conclusions based on a series of theorem transformations in which it is asserted
whether a literal is provable or not (and the strength of the derivation). The I/O interface module provides
methods for helping users to load and save (modified) theory (also the derived conclusion) to and from the
database. Theories can also be exported using XML. SPINdle was tested for correctness, scalability and

performance using different forms of theorems18.

8.1.4 Property Specification Patterns for Finite-State Verification (*)

A property specification pattern [95] is a generalized description of a commonly occurring requirement on the
permissible state/event sequences of a finite model of a system. A pattern comprises a name, a precise
statement of the structure of the behaviour described (pattern’s intent), mapping into common specification
formalisms, examples of known uses and relationships to other patterns. In property specification patterns,
capital letters (e.g., P, Q, R, S) stand for stating formulas in state-based formalisms, such as derivatives of
temporal logics. Each pattern has a scope (see Table 14), which is the extent of the program execution over
which the pattern must hold.

Table 14. Property Specification Patterns Scope

Scope Description

Global The entire program execution

Before The execution up to a given state

17 SPINdle can be download freely from http://spindle.data61.csiro.au/spindle/download.html. Examples of the use of

SPINdle can be seen in http://spindle.data61.csiro.au/spindle/demo.html#clearReset.
18 More information about SPINdle can be found in http://spindle.data61.csiro.au/spindle/documentation.html

http://spindle.data61.csiro.au/spindle/download.html
http://spindle.data61.csiro.au/spindle/demo.html#clearReset
http://spindle.data61.csiro.au/spindle/documentation.html

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 124 of 185

After The execution after a given state

Between Any part of the execution from one given state to another given state

After-until Like between but the designated part of the execution continues even if the second state
does not occur.

The patterns are created in a system organized into one or more categories, as depicted in Figure 90.

Figure 90. Property Specification Patterns Hierarchy

Occurrence patterns include:

• Absence: A given state does not occur within a scope.

• Existence: A given state must occur within a scope.

• Bounded existence: A given state must occur k times within a scope.

• Universality: A given sate occurs throughout a scope

Ordering patterns include:

• Precedence: A state P must be always be preceded by a state Q within a scope.

• Response: A state P must be always be followed by a state Q within a scope.

Compound patterns include:

• Chain precedence: sequence of states, P1, … , Pn must always be preceded by a sequence of states
Q1,…, Qm.

• Chain response: sequence of states, P1, … , Pn must always be followed by a sequence of states
Q1,…, Qm.

8.1.5 EPF Composer metamodels (*)

EPF Composer [44] is an open-source tool aiming at supporting the modeling of customizable software
processes. We recall two open source standards used by EPF Composer and also required in this paper:

• UML 2.0 Diagram Interchange Specification is a standard that supports diagram interchange among
modeling tools. Elements of interest are: Activity, which represents the process, Node, which
represents a point in the process, and Edge, which connects points. Nodes can be of different types.
An Activity Parameter Node represents a task. Initial and Final Nodes represent the start and the end
of the process. Fork and Join Nodes represent the parallel flows and Decision and Merge Nodes
represent conditional behavior.

• UMA (Unified Method Architecture) Metamodel [98], a subset of SPEM 2.0, is used to model and
manage reusable method content and processes. We recall some required elements. Method Content
defines the core elements, i.e., tasks, work products and roles. Managed Content defines textual
descriptions, such as Concept and Reusable Asset. Custom Category defines a hierarchical indexing to
manage method content. A delivery process describes a complete and integrated approach for
performing a specific project and it contains a Breakdown Structure, which allows nesting of tasks.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 125 of 185

8.1.6 Regorous metamodels (*)

An FCL rule set is represented in the schema called Combined Rule Set from which we recall some elements.
Vocabulary contains an element called term, which attribute atom is used to describe rule statements. The
second element, called Rule, is used to define every rule of the logic. A rule is specified with the unique
identifier called label, the description of the rule called control objective, and the actual rule called formal
representation.

Regorous current implemented tool uses an open source engine which is based on BPMN 2.0 (Business Process
Model and Notation). However, for checking compliance, Regorous translates the BPMN 2.0 description into
the Canonical Process Format (CPF) [99], a modeling language agnostic representation that only describes the
structural characteristics of the process. We recall the required CPF elements. A Canonical Process is the
container of a set of Nets which represent graphs made up of Nodes and Edges. Nodes types can be (OR, XOR,
AND) Splits/Joint, which capture elements that have more than one incoming/outgoing edge. Nodes can also
represent Tasks and Events, which are nodes that have at most one incoming/outgoing edge.

The compliance effect annotations, which represents the fulfillment of a rule on a process element, are
captured in Regorous by using a schema called Compliance Check Annotations from which we recall some
elements. A ruleSetList contains the ruleSets uri which is the identification of the rule set. The conditions and
the taskEffects represent the process sequence ow and the tasks respectively (extracted from the BPMN
model) and have an associated effects name which corresponds to its actual compliance effects annotation.

8.2 Pioneering compliance checking in AMASS

The pioneering work on compliance management is conducted in two steps: first a manual exploration, see
Section 8.2.1, then a tool-based exploration, see Section 8.2.2.

8.2.1 Exploring the usage of defeasible logic and compliance by design.

In [88] and in [89] the manual usage of defeasible logic and compliance management was explored.

8.2.2 Exploring the usage of REGOROUS for compliance checking

8.2.2.1 Running Example: ISO 26262*

ISO 26262 [90] addresses functional safety in automotive. ISO 26262 provides a process reference framework
based on a V-model, as well as requirements that apply to the activities defined in the process reference model.
In Figure 91, the process reference model for product development at the software level is sketched. We focus
on the phase Software unit design and implementation, described in ISO 26262 part 6, clause 8, and use its
requirements to understand the potential of Regorous for compliance checking in the context of safety
standards.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 126 of 185

 Figure 91. Product development at the software level

The safety process influences functional safety. Thus, a confirmation review of the safety plan, which includes
the compliance checking of the planned process against safety requirements is mandatory. The safety process
can be either strictly planned, i.e., including all the activities provided by the reference process, or flexibly
planned, i.e., by tailoring activities (omitting/performing them differently). According to ISO 26262:2011 part
2, if a safety activity is tailored, a) the tailoring shall be defined in the safety plan and b) a rationale as to why
the tailoring is adequate and sufficient to achieve functional safety shall be available. From a structure
perspective, ISO 26262 is divided into parts, which are subdivided into clauses. Some clauses represent phases
of the safety process, which also describe activities and tasks.

ISO 26262 uses Automotive Safety Integrity Levels (ASIL), which are levels to specify item’s necessary safety
requirements. Alternative methods to use in the planning of safety activities (e.g., tables) have to be chosen
according to the higher recommendation for the ASIL assigned, but if not, a rationale shall be given that the
selected methods comply with the corresponding requirement. Disjoint alternatives are also included in the
text of the normative requirements. Frequently recurring expressions, which can guide the reading of the
standard, can also be found, e.g., in accordance with. To design a process that is compliant (by design), the
following procedure should be followed:

1. We cite parts of the standard related to the activities of the process i.e., the design of the software
units, the implementation of the software units and the verification of the software unit design and
implementation.

2. We extract the atoms corresponding to the information provided by this phase. An atom may be seen
as an important action that is described in the text, e.g.
startingSoftwareUnitDesignAndImplementationPhase.

3. With the atoms defined in the previous step, and the requirements presented in the standard, we
create the FCL rules.

4. The atoms and the rules have to be written in an XML file that has the extension .ruleset. In Regorous,
the .ruleset file is uploaded to enable

• the user to annotate the task in the process with the atoms, and

• the compliance checker to analyse the compliance of the tasks with the rules.

5. We prove the rule in small traces of the process to verify compliance by design.

Having the methodology in place, we exemplified its application with a set of standard requirements.
First, we cite textual parts of the standard. Figure 92 shows a reformulation of the text given in ISO
26262, Part 6, Clause 8, regarding software units design and implementation.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 127 of 185

Figure 92. Example of requirement for ISO 26262-software unit design and implementation

To model the atoms, we select parts of the standard that refer to specific actions or resources that are
required. In Figure 92, we have highlighted those specific actions/resources. For example, the title of the phase
Software unit design and implementation defines the initiation of the phase. For this reason, we create an
atom that describes this action: startingSoftwareDesiggAndImplementationPhase. The total set of atoms for
the requirements presented in Figure 92 are:

• startingSoftwareDesignAndImplementationPhase

• specifyingSoftwareUnits

• obtainingSoftwareArchitecturalDesign

• obtainingSoftwareSafetyRequirements

• choosingSoftwareUnit

• verifyingASIL

• ASILQM

With the atoms created, and the text of the requirements, we define the FCL rules. For example, a part of the
numeral 8.1 says that software units are specified in accordance with the software architectural design. This
text can be modelled as FCL rule in the following way:

r1:startingSoftwareDesignAndImplementationPhase(X) ⟹ [𝑶𝑨𝑵𝑷𝑵𝑷] obtainingSoftwareArchitecturalDesign(X)

This rule means that when starting the software design and implementation phase, the software architectural
design must be available. [OANPNP] means that the rule is an O obligation, A achievement, NP non perdurant,
and NP non preemptive. In the same way, all the rules corresponding to the requirements of the Figure 92 are
modelled:

r1:startingSoftwareDesignAndImplementationPhase(X) ⟹ [𝑶𝑨𝑵𝑷𝑵𝑷] obtainingSoftwareArchitecturalDesign(X)

r2:startingSoftwareDesignAndImplementationPhase(X)⇒ [OANPNP] obtainingSoftwareSafetyRequirements(X)

r3:obtainingSoftwareArchitecturalDesign(X)⇒ [𝑶𝑨𝑵𝑷𝑵𝑷]choosingSoftwareUnit(Y)

r4:choosingSoftwareUnit(Y)⇒ [𝑶𝑨𝑵𝑷𝑵𝑷]verifyingAsil(Y)

r5:verifyingAsil(Y),ASILQM⇒ [𝑶𝑨𝑵𝑷𝑷]𝒔pecifyingSoftwareUnits(Y)

Once the atoms and the rules are written in XML, they are uploaded in Regorous, the process is modelled using
BPMN 2.0 and the rules are annotated in the tasks. With all the elements in place, compliance is verified by
pressing a button. Figure 93 shows the modelling of the process, an abstraction of the process annotation and
the process compliance verification results.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 128 of 185

Figure 93. Trace 1 of the software unit design and implementation phase

The design of a compliant trace, like the one shown before, was straightforward. However, there were other
kinds of requirements that required more analysis.

Set of challenging ISO 26262 requirements are for instance those represented by recommendation tables. The
recommendation table regarding the notations to be used for the design of software units, for instance,
recommends the usage of four methods, given as four consecutive entries (i.e., all of them should be applied).

As it was mentioned in Section 5.3.2.4, regarding Figure 31, recommendation tables contain variability points,
which imply conditionals. The table regarding the notations suggests: Natural language (++, ++, ++, ++),
Informal notation (++, ++, +, +), semi-formal notation (+, ++, ++, ++), formal notation (+, +, +).

This kind of requirement is one among many that can be identified by reading the normative clauses in ISO
26262 [82]. From the recommendation table, and the guidelines for interpreting such tables, it is inferred that,
for carrying out the design specification of the software units, it is initially necessary to check the ASIL assigned
to the software unit. With the ASIL identified, notation(s) according to this ASIL and the highest
recommendation level should be preferably selected. However, a rationale should be provided if methods
other than those listed are selected. This requirement can be modelled in FCL, by using CDT (Contrary-to-Duty)
obligations. The rules, derived from this analysis are:

r6:verifyingAsil(Y),¬ASILQM ⇒ [𝐎𝐀𝐍𝐏𝐏]𝐜𝐡𝐨𝐨𝐬𝐢𝐧𝐠𝐂𝐨𝐦𝐩𝐥𝐢𝐚𝐧𝐭𝐃𝐞𝐬𝐢𝐠𝐧𝐍𝐨𝐭𝐚𝐭𝐢𝐨𝐧(Y)

r7:choosingCompliantDesignNotation(Y)=>
[OAPNP]selectingDesignNotationAccordingASILRecommendation(Y),
[OAPNP]providingRationaleOnDesignNotationSelected(Y)

Rule r6 means that once ASIL is verified and it is not QM, a compliant design notation should be chosen. Rule
r7 says that a compliant design notation should be selected according to ASIL and recommendations level, but
if not, a rationale should be provided. Rule r7 represents a compensation chain for the reparation of a violation
(the violation considered here is the non-selection of a recommended notation). This type of rule is called CDT
(contrary to duty obligations) in FCL and it suits the modelling of this kind of requirements in ISO 26262.
However, the model in Regorous shows that the process that fulfils this kind of rule is not compliant (see Figure

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 129 of 185

94). The negative result is not a result of a bad practice (or poor understanding) in modelling the rules, but it

shows that Regorous is not properly supporting CDTs19.

Figure 94. A weakly compliant process checked by Regorous

Rules in FCL can be interpreted and modelled in different ways. Therefore, the rule r7 was re-modelled using
a permission. The performed analysis is the following: having a rationale permits to not provide a design
notation according to ASIL and recommendation levels. The rules that support this analysis are the following:

r7’: choosingCompliantDesignNotation(Y)⇒ [OAPNP]selectingDesignNotationAccordingASILRecommendation(Y)

r8: providingRationaleOnDesignNotationSelected(Y)⟹ [𝑷]¬selectingDesignNotationAccordingASILRecommendation(Y)

r8>r7

Rule r7’ corresponds to the obligation to provide a design notation according to ASIL and recommendation
levels, and rule r8 corresponds to the assumption that the provision of a rationale gives the permission of not
selecting a design notation according to ASIL and recommendation levels. Since these two rules are in conflict,
it is necessary to add a priority relation, in which the permit is “stronger” that the obligation. The model in
Regorous is now compliant (see Figure 95). Modelling the rules in this way is considered sound, since according
to legal reasoning and legal theory, permissions can be used to determine that there are not obligations or
prohibitions to the contrary (see Section 8.1.2.1).

19 This assumption was confirmed by the creator of Regorous.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 130 of 185

Figure 95. Modelling of conditional requirements for ISO 26262: Software unit design and specification

A similar process is applied to all phases. The result of this exercise is the creation of 27 atoms (see Figure 96),
27 rules and 4 superiority relations (see Figure 97), and 20 paths (traces) of compliance (see Figure 98). The
complete process, designed to be compliant with ISO 26262 Part 6 Section 8, is presented in Figure 99.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 131 of 185

Figure 96. Terms required for modelling rules for ISO 26262-Software unit design and Specification

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 132 of 185

Figure 97. Rules specification for ISO 26262-Software unit design and specification

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 133 of 185

Figure 98. Definition of the traces for the process Software unit design and specification

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 134 of 185

Figure 99. Complete model of ISO 26262-Software unit design and specification

8.2.3 Exploration conclusions

Regorous’s capabilities have been experimented and considered of important value, even though more
explorations are required to measure its usefulness for modelling compliant processes for engineering cyber-
physical systems. However, during the modelling of the compliant process, some difficulties are present:

1. Rules had to be modelled “by hand” in a text processor, like notepad. An FCL editor was not provided
with the Regorous Process Designer. Therefore, the process of creation of the rules is error prone, and
time-consuming.

2. The notation presented for the rule in FCL, i.e., [OAPP], which means Obligation, Achievement,
Preemptive, Perdurant according to the theoretical background presented in Section 8.1.2.2, is not
implemented in the exact same way in Regorous (Obligation, Achievement, Perdurant, Preemptive).
There is a gap between the theoretical foundations and the tool implementation.

3. The use of CDT (Contrary-to-Duty Obligations) could be beneficial for the definition of the rule in safety
standards. However, the version of FCL used in Regorous does not support CDT, in the way described in
Section 8.1.2.1. This means that Regorous is not able to discard a rule that is violated (and it is not
perdurant) but being compensated by another rule. In the exercise presented in Section 8.2.2,
permissions were used to overcome this problem, meaning that if there is a permission to do something,
there is not an obligation to do something else. This is a way to compensate the violation of an
obligation, and therefore to carry out requirements that have conditional nature.

4. The current version of Regorous allows the modelling of process tasks, but not other types of process
elements, like roles, work products, guidelines, etc.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 135 of 185

8.3 Conceptual solution

In the context of AMASS, SPEM2.0/EPF Composer has been selected to model those process elements that
represent plans. This selection is based on the fact that SPEM 2.0 is well suited for modelling software process,
not only for the provision of generic process concepts (e.g., activity, work products), but also for the extension
mechanisms for modelling and documenting a wide range of processes [91]. Besides, SPEM 2.0 is a good
candidate to model a process mandated by safety standards [92] and to some extent, it also support the
creation of compliance tables, i.e., the mapping between standards requirements and process elements [96].
Therefore, this tool is also recommended to be used during the process of compliance checking.

However, SPEM2.0/EPF Composer does not provide the compliance checking capability needed for the AMASS
purposes. Based on what was recalled in Sections 8.1 and 8.2, it becomes evident that FCL is a language that
can be used for providing the process compliance checking capability, currently missing in SPEM2.0/EPF
Composer. Moreover, Regorous, which is the compliance checker that supports reasoning with FCL, can be
considered as part of the tool support to enrich software process modelling with SPEM2.0/EPF Composer. An
enriched SPEM2.0/EPF Composer would be able to offer the means required for modelling process plans and
its subsequent compliance checking. In particular, it should be possible to model FCL rules in a rule editor, will
support the creation of the FCL rules is an easier and effective way. FCL rules will be used to annotate process
elements provided by SPEM2.0/EPF Composer that will be checked with Regorous. As a consequence,
Regorous will provide a compliance report from which it would be easier to analyse and improve software
process compliance.

The current version of Regorous clearly supports the compliance checking of tasks in a process. However, the
support of other process elements is less clear. Therefore, it is likely that new analysis is needed to increase
compliance capabilities to Regorous.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 136 of 185

9. Potential design solutions for the compliance checking

In this section, design solutions for compliance checking vision are sketched. In Section 9.1, architectural
solutions in which Regorous process designer plays an important role are given. In Section 9.2, the architecture
of a process compliance checker, created from scratch using FCL, and the defeasible logic reasoner SPINdle are
presented.

9.1 Proposals for adapting Regorous to the needs of AMASS

In this section, potential proposals for modification of the Regorous architecture (presented in Figure 88) for
its adaptation to the AMASS needs are proposed. Before explaining those proposals, for sake of clarity, it is
worth to recall that, as presented in [73], Regorous is process modelling language agnostic, which means that
even if the current implementation is based on BPMN, all what Regorous needs is to get a description of the
process and the annotation of each task with the FCL rules.

The first proposal, depicted in Figure 100, proposes the addition of an editor package, which contains two
elements: EPF Composer, for facilitating reuse of process elements, and a Rule Editor, for facilitating the
creation of rule sets.

EPF Composer is expected to provide, as an output, the process models that have to be translated (via model
transformation) to Eclipse Activiti BPMN 2.0. The rule editor will provide the ruleset file, which is currently
needed by Regorous. Regorous is expected to maintain its actual functionality, providing compliance checking
of process tasks without the implementation of the reparation chains. In addition, the tasks of the model
provided via SPEM2.0/EPF Composer have to be annotated in BPMN 2.0.

Figure 100. Adding EPF Composer + rule editor

By implementing the solution depicted in Figure 100, the usual capabilities provided by Regorous remain. In
addition, the rule editor is expected to facilitate the creation of the rule sets required by Regorous. The addition
of EPF Composer serves two purposes. The first purpose is the generation of the bridge that is required
between AMASS core structure and Regorous tool. The second purpose is the provision of process elements
beyond tasks, a characteristic not provided by Regorous.

The second proposal, depicted in Figure 101, requires, in addition to the first proposal, an extended version of
EPF Composer, to provide the user the possibility to add semantic annotations to the process elements, directly
in the model created in EPF Composer. The idea with the provision of this extended version of EPF Composer
is to replace Eclipse Activiti BPMN 2.0 to avoid the translation from an UMA-compliant process model to the
BPMN-compliant process model, and to add process elements beyond tasks to the process model. However,

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 137 of 185

the compliance analysis is expected to be maintained only for the process tasks, since the provision of
compliance to the other process elements require a modification of the ComputeObligations algorithm.
Reparation chains are not added since this functionality is presented in Regorous, whose algorithms are not
planned to be modified in this version of the solution.

Figure 101. Replacing Activiti BPMN 2.0 with EPF Composer + rule editor

These two first proposals have the advantages that the underlying methodology used in Regorous process
designer will facilitate and speed up the implementation of a compliance tool checker that partially covers
AMASS requirements. However, Regorous is a proprietary software, and licenses are required for its utilization.
In addition, Regorous has been implemented in an older version of Eclipse, which requires to be updated.
Changes in the software are only permitted for Regorous owners. Thus, changes cannot be done in the context
of the AMASS project, unless policies about licenses for use and modification of the software of Regorous are

agreed with Regorous owners (previously called Nicta20). In the light of agreements with the Regorous owners,
a third proposal can be designed (see Figure 102).

Figure 102. Replacing BPMN with EPF Composer + rule editor + extended ComputeObligations/CheckCompliance
components

20 https://www.data61.csiro.au/

https://www.data61.csiro.au/

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 138 of 185

The solution presented in Figure 102 adds to the second proposal (presented in Figure 101) an extended
functionality for the algorithms ComputeObligations and CheckCompliance (which belong to the Regorous
tool). The extended functionalities are expected to provide compliance checking for process elements beyond
tasks, and to include CDT obligations (reparation chains) to formulate the rules. This proposal will cover all the
requirements for compliance checking in the context of safety standards, but the tool implemented may be
subject to vendor license fees, and the provided code may not be open source.

9.2 Creating an AMASS process compliance checker from scratch

A completely new compliance checker can be designed, using FCL (presented in Section 8.1.2), the
methodology for compliance by design used in Regorous (presented in section 8.1.3), and the defeasible logic
reasoner (SPINdle). As presented in Section 8.1.3.3, SPINdle is an open source application, which can be used
in the design and implementation of a completely new tool for Process compliance in the context of AMASS
(see Figure 103).

Figure 103. AMASS Process Compliance Designer

In this version, a compliance checker, that supports FCL rules, the computation of obligations for all process
elements, and the check of compliance including reparation chains should be designed. The compliance
checker functionality will take as input the annotated process from the EPF composer and the rule set provided
by the rule editor. The functionality provided by the Compliance checker should allow:

• Computing of obligations for all process elements, not only tasks.

• Compliance checking for all the traces in the process.

• Including reparation chains as an alternative for modelling rules in FCL.

9.3 Pros and cons of the architectural design solutions

Table 15 summarizes the pros and cons of the architectural design solutions.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 139 of 185

Table 15. Pros and cons of the architectural design solutions

Solution Pros Cons

Adding EPF
Composer + rule
editor

• Short term implementation time.

• Provide compliance analysis of process
tasks.

• Addition of EPF Composer (AMASS
selected tool) as graphical interface for
the process model.

• Implemented tool is under
vendor/proprietary licenses.

• Process elements different that
tasks cannot be analysed for
compliance.

• Contrary-to-duty obligations or
reparation chains are not
implemented.

• Requires a process of model-to-
model transformation to import the
process model from EPF composer
to BPMN 2.0.

Replacing BPMN by
an extended version
of EPF Composer +
rule editor

• Short term implementation time.

• EPF Composer (AMASS selected tool)
will be used as the direct process
modeller. Therefore model-to-model
transformations are not required,
increasing response time of the tool.

• Implemented tool is under
vendor/proprietary licenses.

• Process elements different that
tasks cannot be analysed for
compliance.

• Contrary-to-duty obligations or
reparation chains are not
implemented.

EPF Composer + rule
editor + extended
Compute obligations
algorithm +
extended Check
compliance
algorithm

• Medium term implementation time.

• EPF composer (AMASS selected tool)
will be used as the direct process
modeller. Therefore, model to model
transformations are not required,
increasing response time of the tool.

• Compliance checking for other process
elements beyond tasks.

• Contrary to duty obligations or
reparation chains included in the tool.

• Implemented tool is under
vendor/proprietary licenses.

Creation a new
compliance checker

• EPF Composer (AMASS selected tool)
will be used as the direct process
modeller. Compliance checking for
other process elements beyond tasks.

• Contrary to duty obligations or
reparation chains included in the tool.

• Open source tool.

• Long term implementation,
probably beyond the limits of
AMASS project.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 140 of 185

10. AMASS design solution for compliance checking (*)

In this chapter, the AMASS design for the compliance checking vision (presented in Chapter 8-9) is detailed.
The chapter is structured as follows: in 10.1, safety compliance patterns are explained. In Section 10.2, the
mechanisms to model SPEM 2.0-compatible process models for compliance checking are described. Finally, in
Section 10.3 , the mechanism to generate Regorous inputs are described.

10.1 Safety compliance patterns

Formalizing safety requirements in FCL, recalled in Section 8.1.2, requires skills, which cannot be taken for
granted. Patterns, which are “abstractions from concrete forms which keep recurring in specific non-arbitrary
context” [93], could represent a solution. For this reason, in [94], safety compliance patterns are defined, by
following Dwyer’s et. al’s property specification pattern style, recalled in Section 8.1.4. In this section, a
definition of safety compliance patterns is presented, as well as a set of ISO 26262-specific FCL compliance
patterns to facilitate rules formalization.

10.1.1 Safety compliance patterns

Automatic compliance checking of process, as presented in Figure 87, involves the definition of a finite state
model of the process, where normative safety requirements provide the permissible states of the process
elements. In this sense, a process can be verified in a similar way as is done with a system. Thus, the
specification pattern definition, presented in Section 8.1.4, can be translated into the safety process
compliance checking context as follows: safety compliance patterns are patterns that describe commonly
occurring normative safety requirements on the permissible state sequence of a finite state process model.
With this definition, it is possible to develop a mapping between specification patterns and safety compliance
patterns, as follows: the presence of a state in a system can be interpreted as the state of the obligation
imposed to an element in the process, and the scope corresponds to the interval in a process when the
obligations formulated by the pattern are in force.

10.1.2 ISO 26262-related compliance patterns identification

For identifying a safety compliance pattern in ISO 26262, five methodological steps have been delineated, as
follows:

1. The first step consists of the selection of a recurring structure in the standard since safety requirements
in ISO 26262 have implicit and explicit structures.

2. The second step is the description of the obligation for compliance, namely, the reasons why the
structure is required for safety compliance.

3. The third step is the pattern description, based on similar (or a combination of) behaviors of the patterns
described by Dwyer et al.’s (See Section 8.1.4) This description is contextualized to safety compliance,
based on the mapping presented in Section 10.1.1. In this step, a name, which reflects the related
obligation for compliance, is assigned to the safety pattern.

4. The fourth step is the definition of the scope of the pattern, which is also based on Dwyer et al.’s work.

5. The fifth step is the formalization in FCL. To formalize the pattern, the scope defined for the pattern
requires being mapped into the rule notations provided by FCL. Therefore, a global scope, which
represents the entire process model execution, can be mapped to maintenance obligation, which
represents that an obligation has to be obeyed during all instants of the process interval. A before scope,
which includes the execution of the process model up to a given state, can be mapped to the concept
of preemptive obligation, which represents that an obligation could be fulfilled even before it is in force.
An after scope, which includes the execution of the process model until a given state, can be mapped to
the concept non-preemptive obligation, which represents that an obligation cannot be fulfilled until it
is in force. Table 16 presents the mapping previously described.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 141 of 185

Table 16. Mapping of the patterns scope into FCL rule notation

Dwyer’s et al’s patterns scope FCL rule notation

Global Maintenance Obligation (OM)

Before Preemptive Obligation (OAP)

After Non-preemptive Obligation (OANP)

It should be noted that, in safety compliance, it is possible to define exceptions for the rules. Therefore, if the
obligation admits an exception, the part of the pattern that corresponds to the exception is described as a
permission, since, as recalled in Section 8.1.2, if something is permitted the obligation to the contrary does not
hold. The obligation, to which the exception applies, is modeled as non-perdurant, since the permission is not
a violation of the obligation, and therefore the obligation does not persist after the permission is granted. In
this case, the obligation and a permission have contradictory conclusions, but the permission is superior since
it represents an exception.

10.1.3 ISO 26262-related compliance patterns definition

The methodological steps, presented in Section 10.1.2, are used to define an initial set of four ISO 26262 -
related FCL compliance patterns.

1. Pattern: Address Phase. Recurring structure: A phase. Obligation for compliance: Every phase proposed
by the safety model must be addressed. A phase can be omitted if tailoring is performed and a rationale
is provided. Pattern description: Universality + absence - A phase must occur. Not addressing the phase
requires its tailoring and the provision of a rationale. Scope: Global. FCL mapping: A maintenance
obligation address{Phase} is triggered by a previous task {optionalTriggeringObligation}, which can be
empty if the phase is checked for compliance in isolation from the other phases. The permission for not
address{phase} requires two antecedents, tailor{Phase} and rationaleForOmiting{Phase}

𝑟: {optionalTriggeringObligation} ⟹ [OM]address{Phase}
𝑟′: tailor{Phase}, rationaleForOmiting{Phase} ⟹ [P] − address{Phase}

𝑟′ > 𝑟

2. Pattern: Perform Preconditions. Structure: The structure implicit in the expression in accordance with.
Obligation for compliance: A task is prohibited until the preconditions are performed. Pattern
description: Absence + precedence - A given task cannot occur within a scope. The task is permitted to be
performed if the preconditions are performed. Scope: After. FCL mapping: A rule triggered by a previous
rule {TriggeringObligation} prohibits the performing of the task perform{Task}. The permission for not
perform{Task} is granted after the preconditions are fulfilled perform{Preconditions}.

𝑟: {TriggeringObligation} ⟹ [OANONP] − perform{Task}
𝑟′: perform{Precondition1}, … , perform{PreconditionN} ⟹ [P]perform{Task}

𝑟′ > 𝑟

3. Pattern: Select Disjoint Methods. Structure: Structure implicit when the word or is used to list two
methods. Obligation for compliance: Only one method can be selected from a list of two. Pattern
description: Existence + absence - A given method can be selected within a scope. The presence of a
second method derogates the selection of the first method. Scope: After. FCL mapping: A rule triggered
by previous obligations{TriggeringObligation} imposes the obligation of selecting a method
select{Method}. The selection of a second method select{Method2}, derogates the previous selection
select{Method1}.

𝑟: {TriggeringObligation} ⟹ [OANONP]select{Method1}
𝑟′: select{Method2} ⟹ [P] − select{Method1}

𝑟′ > 𝑟

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 142 of 185

4. Pattern: Select alternative methods. Structure: Alternative methods given in tables. Obligation for
compliance: Methods should be selected according to ASIL/recommendation levels. Alternative methods
can be selected if a rationale is provided. Pattern description: Response + absence - A given obligation
has to occur. The provision of a rationale grants the permission to derogate the obligation. Scope: After.
FCL mapping: A rule triggered by previous obligations {TriggeringObligation} imposes the selection of
methods according to the requirements select{mandatoryMethods}. The provision of the rationale is the
permission that derogates the obligation.

𝑟: {TriggeringObligation} ⟹ [OANONP]select{mantdatoryMethods}
𝑟′: provideRationaleForNotSelect{mandatoryMethod} ⟹ [P] − select{mandatoryMethod}

𝑟′ > 𝑟

10.1.4 ISO 26262-related compliance patterns instantiation

In this section, the patterns are instantiated. First, the definition of the (sub-)phase Software Unit Design and
Implementation, which is presented in Figure 104, can be formally represented by instantiating the pattern
AddressPhase. In the following way:

𝑟1 ⟹ [OM]address{SwUnitDesignAndImplementation}
𝑟1

′: tailor{SwUnitDesignAndImplementation}, rationaleForOmiting{SwUnitDesignAndImplementation}
⟹ [P] − address{SwUnitDesignAndImplementation}

𝑟1
′ > 𝑟1

Figure 104. Requirement that represents the initiation of the software unit design and implementation (sub-)phase

The first objective of the (sub-)phase, also presented in Figure 104, has the expression in compliance with,
which can be represented with the pattern Perform Preconditions. Specifically, the software architectural
design and the associated safety requirements are preconditions to specify the software units. It can be
assumed that the triggering rule is addressSwUnitDesignAndImplementationEnabling.

𝑟2: {addressSwUnitDesignAndImplementation} ⟹ [OANONP] − perform{SpecifySwUnits}
𝑟2

′: perform{ProvideSoftwareArchitecturalDesign}, perform{ProvideSafetyRequirments}
⟹ [P]perform{SpecifySwUnits}

𝑟2
′ > 𝑟2

Figure 105 represents a requirement, which mentions the use of two disjoint implementation strategies,
namely implementation as a model or directly as source code. Therefore, this requirement can be modeled
using the pattern Select Disjoint Methods. It can be assumed that the triggering rule is implementingSwUnit.

𝑟3: {implementingSwUnit} ⟹ [OANONP]select{ImplementingAsSourceCode}
𝑟3

′: select{ImplementingAsModel} ⟹ [P] − select{ImplementingAsSourceCode}
𝑟3

′ > 𝑟3

Figure 105. Requirement that represents the selection of disjoint implementation strategies

Finally, Figure 106 represents a requirement in which mandatory notations should be selected. This
requirement can be represented by using the pattern Select alternative methods. It is assumed that the
triggering rule is performSpecifySwUnit.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 143 of 185

𝑟4: {SpecifySwUnits} ⟹ [OANONP]select{mandatoryNotationsForSwDesign}
𝑟4

′: provideRationaleForNotSelect{mandatoryNotationsForSwDesign}
⟹ [P] − select{mandatoryNotationsForSwDesign}

𝑟4
′ > 𝑟4

Figure 106. Requirement that represents the selection of mandatory notations

10.2 Modelling SPEM 2.0-compatible process models for compliance
checking

This section explains the first steps for concretizing the AMASS solution for compliance checking in which SPEM
2.0-compatible process models can be used for compliance checking with Regorous. Recalling, this solution
consists of the combination of process modeling capabilities via SPEM 2.0 [6] (Systems & Software Process
Engineering Metamodel) reference implementation, specifically by using EPF (Eclipse Process Framework)
Composer, and compliance checking capabilities via Regorous [8], an FCL-based reasoning methodology and
tool, used in the business context.

Figure 107. AMASS Compliance Checking Vision

Figure 107 depicts the graphical representation of the AMASS Compliance Checking Vision in which two roles
are required, namely, the process engineer, who should support the interpretation of the standard’s
requirements, model, annotate the process, and analyze the compliance report; and an FCL expert, who should
interpret standard´s requirements and formalize them in FCL. The figure is divided in three areas, which
represent the tool support required, as follows:

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 144 of 185

1. Region 1 (surrounded by a red line) delimitates the tool support required for describing rule sets and for
modelling and annotating software processes with compliance effects.

2. Region 2 (surrounded by a purple line) describes Regorous compliance checking.

3. Region 3 (surrounded by a yellow line) delimitates the mechanisms to ensure SPEM 2.0 and Regorous
compatibility.

10.2.1 Mechanisms to annotate software process models

This step represents the mechanism that should be implemented in the Region 1 (surrounded by a red line in
Figure 107) to represent rule sets and model and annotate (with compliance effects) the software processes.
Compliance effects are those effects that emerge from the cumulative interactions between the process tasks,
producing the desired global properties mandated by the regulations. Technically, compliance effects are
extracted from the set of formulas of the logic, i.e., compliance effects correspond to the premises and
conclusions that compound the rules. SPEM 2.0 and the open source implementation, called EFP composer,
offers sufficient elements to describe the software process required by Regorous. In particular, SPEM 2.0
defines reusable content method elements for representing a variety of process models, including elements
to support textual descriptions in a variety of ways, called Guidance types. Two different guidance kinds are of
interest, namely the Reusable Asset, in which rule set information can be captured and the Concept in which
key information regarding compliance effects can be recorded. These two guidance kinds have the particularity
that that they can be added, or in other words, they can be annotated to the process models. To accommodate
the process descriptions required by Regorous, three plugins, as done by the IBM approach for mapping
standards requirements presented in [96], are adopted in the following way:

1. Plugin for capturing standard’s requirements: In the method authoring of EPF composer, it is captured
the standard’s requirements using custom categories. The root of the custom categories is the name of
the standard. The novelty added to this plugin is that the rule set and the rules are added by using a
customized reusable asset for the former and customized concepts for the latter. The rules are
associated to the corresponding standard’s requirements.

2. Plugin for capturing process elements: In the method authoring of EPF composer, the process elements
required to support the software process modeling are captured.

3. Plugin for annotating process description: This plugin is used to match standard’s requirements with
processes. This plugin contains an extended copy of the tasks defined in the previous plugin (by using
contributes to the original ones) in the method authoring of EPF composer. Then, tasks are annotated
with compliance effects. In the process authoring of EPF composer, the delivery process is modeled and
annotated with the compliance effects, which are extracted from the rules defined in the rule set. Once
the process is modelled and annotated, an activity diagram (by using the proprietary activity diagram
provided by EPF composer) is also created.

The three plugins are exported, to be able to transform their information to the inputs required by Regorous.

10.2.2 Modelling and annotating a small example from ISO 26262

In this section, the mechanism to model and annotate software processes using EPF Composer is presented by
modeling a simple example from ISO 26262, Part 6. Initially, a plugin for capturing standard’s requirements is
created. For this, a custom category root called Standard Requirements ISO 26262 Software Unit Design is
defined, to which the requirements from ISO 26262 are adhered. The standard’s requirements, which are
depicted in Figure 104 and Figure 106 are represented with a short but descriptive name in a nested list of
custom categories. Then the rules (a subset of the rules modeled in Section 10.1.4 and presented in Figure
108) are associated to the corresponding requirements.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 145 of 185

Figure 108. Rules required for compliance checking of a small example in ISO 26262

The customized list of standard’s requirements and the rules are depicted Figure 109.

Figure 109. Standard's requirements plugin

The actual rule is written in the main description field of the compliance effect (see Figure 110).

Figure 110. Specification of rule 3.1

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 146 of 185

The rule set is defined in a customized reusable asset (called Rule Set-ISO 26262-Software Unit Design), which
contains the superiority relations between rules (see Figure 111).

Figure 111. Rule set specification

Then, the plugin for capturing process elements is created (See Figure 112).

Figure 112. Process elements plugin

Finally, the third plugin is created. In this plugin a copy of the process tasks is carried out. The copied tasks are
extended (with contributes) to the original tasks. Then, the tasks are annotated by deducing the compliance
effects that they produce. For example, the task Start Software Unit Design Process, produces the compliance
effect addressSoftwareUnitDesignProcess, since with this task we initiate addressing the process. This task has
two inputs, i.e., the software safety requirements and the architectural design. Thus, it also produces the
compliance effects performProvideAssociatedSwSafetyRequirements and
performProvideSwArchitecturalDesign. The annotation can be seen in the section called Concepts (See Figure
113).

Figure 113. Annotated task

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 147 of 185

Then, the annotated tasks (modelled in the method content of the plugin) are used to describe the breakdown
structure and the activity diagram. The activity diagram, which represents the delivery process, is depicted in
Figure 114.

Figure 114. Activity Diagram of the Software Unit Design Process

Once created, the three plugins are exported. From the exported plugins, two files are extracted.

• First, an XMI file (usually called diagram), which describes the activity diagram, is selected for
transferring the process description required by Regorous. The elements of interest are an Activity
that provides the name of the process, an initial node and a final node that represent the start and end
event respectively, one Activity parameter node for every task and one control flow for every
sequence. Other process elements were not modeled in the example presented. However, the file
can also provide a decision, merge, and fork and join nodes for modeling exclusive and parallel gateway
respectively, which can be useful for complex processes.

• Second, an XML file, which provides the compliance annotated process information, is also extracted.
In Table 17, the elements required for compliance checking are presented. As the table shows, the
activity name corresponds to the process name. Tasks have associated concepts that correspond to
the compliance effects. We can also create the rule set since every concept is described with the actual
rule and the reusable asset with the superiority relation.

Table 17. Annotated process description

Element Information

Activity name Software Unit Design Process

Task use name Start Software Unit Design Process

- Concept addressSwUnitDesignProcess
performProvideAssociatedSwSafetyRequirements
PerformProvideSwarchitecturalDesign

Task use name Specify Software Unit Design

-Concept performSpecifySoftwareUnit

Task use name Design Software Unit

-Concept SelectMandatoryNotationsForSwDesign

10.3 Generating Regorous inputs

In this section, it is defined the transformation (surrounded by a yellow line in Figure 107) necessary to
automatically generate the models required by Regorous, i.e., the FCL rule set, the structural representation
of the process and the compliance effects annotations [100].

10.3.1 Generating the rule set

As recalled in Section 8.1.6, Regorous requires a rule set that conforms to the Regorous schema, called
Combined Rule Set. This information can be obtained from the Delivery Process provided by EPF Composer and

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 148 of 185

described with UMA elements, as recalled in Section 8.1.5. The corresponding mapping descriptions are
presented in Table 18.

Table 18. Mapping Elements from UMA to the Rule Set

UMA Rule Set Mapping Description

Reusable
Asset

Rule Set Reusable Asset, a type of content element, is transformed into the rule set.
The attributes transferred are name, presentationName and
briefDescription.

Concept Term Concept, a type of content element, is transformed into the Terms. The
attribute transferred is name.

Content
Category

Rule Each content category that contains a rule in the field brief description is
transformed into a rule. The attributes transferred are name,
presentationName, and briefDescription.

The algorithmic solution for obtaining the rule set is presented in Figure 115. The algorithm initiates with the
description of its required input (DeliveryProcess), which is loaded with the function LoadFunction, and the
expected output (RuleSet). Then the input is parsed with the function getElemementsByTagName, which
searches the elements to be mapped, with the function Map to the output. The first element searched is the
uma:ReusableAsset, whose attribute name is mapped to the rules uri. Then, the algorithm searches for the
elements uma:ContentCategory, which provides the attributes id, controlObjective and formalRepresentation
of each rule.

Figure 115. Algorithm for Obtaining the Rule Set

10.3.2 Generating the structural representation of the process

Regorous also requires the representation of the process, which currently is produced by using a subset of
BPMN 2.0. Within AMASS, such representation is given via EPF Composer-supported representation, which is
based on UML 2.0 Diagram Interchange Specification. In Table 19, the mapping between BPMN 2.0, CPF, and
UML is given.

Table 19. Mapping Elements from UML Diagram to a BPMN and Canonical Process

BPMN CPF UML Mapping description between UML and CPF

process Canonical
Process

Activity Activity information is transformed to a canonical
process in CPF. The attribute transferred is id.

startEvent Start Event Initial Node The Initial Node becomes a node with type start event
in CPF.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 149 of 185

BPMN CPF UML Mapping description between UML and CPF

userTask Task Type Activity
Parameter
Node

Each Activity Parameter Node becomes a task type in
the CPF. Attributes transferred are id and name.

sequenceFlow Edge Control Flow Each Control Flow becomes an edge in CPF. Attributes
transferred are id, name, source and target.

endEvent End Event Activity Fi-
nal Node

The Activity Final Node becomes an end event type in
CPF.

exclusive
gateway

XOR Split
Type

Decision
Node

The Decision Node becomes an XORSplitType in CPF.

exclusive
gateway

XOR Join
Type

Merge Node The Merge Node becomes an XORJoinType in CPF.

parallel gate-
way

AND Split
Type

Fork Node The Fork Node becomes an ANDSplitType in CPF.

parallel gate-
way

AND Join
Type

Join Node The Join Node becomes an ANDJoinType in CPF.

Figure 116 describes the algorithmic solution for mapping the elements described in Table 19. The algorithm
initiates with the description of its required input (UML Activity Diagram) and the expected output (Canonical
Format). The function LoadFile makes the input available for processing. The function getElementsByTagName
searches specific elements in the file. Initially we search for the tag that corresponds to the element marked
as uml:Activity, which is mapped (using the function Map) to a process. Using the same function, the nodes
tagged as uml:node are searched to be mapped to its corresponding element in the output, namely
uml:ActivityParameterNode is mapped to the TaskType, uml:InitialNode is mapped to the startEvent,
uml:Activity FinalNode, is mapped to the endEvent, uml:ForkNode and JoinNode, are mapped to the
parallelGateway, and uml: DecisionNode and uml:MergeNode, are mapped to the exclusiveGateway. Finally,
the nodes tagged as uml:edge are used to describe the sequencesFlow information required in the process.
The mapping of the process structural elements requires a unique identifier (or Id) that is generated internally
each time the function Map is used.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 150 of 185

Figure 116. Algorithm for Obtaining the Process Structure

10.3.3 Generating the Compliance Effect Annotations

Finally, the compliance effects annotations require a structure that complies with the Regorous schema called
Compliance Check Annotations. This information can be retrieved from EPF Composer taking into account that
the process elements can be extracted from the process structure (described with UML elements) and the
compliance effects annotations can be extracted from the delivery process (described with UMA elements).
The corresponding matching elements description is presented in Table 20.

Table 20. Mapping Elements from UMA/UML Metamodel to the Compliance Check

UML/UMA Compliance
Annotations

Mapping Description

Reusable Asset ruleSet This element comes as an UMA element. A reusable asset
becomes a ruleSetList. The attribute transferred is the name.

edge conditions This element comes as an UML element. Each edge becomes a
special element in the compliance annotations file called
conditions. The attribute transferred is the id.

node Task Effects This element comes as an UML element. The node becomes a
Task Effects. The attribute transferred is the id. Then, the id is
also used to search for the concepts that should be converted
into the compliance effects in the delivery process file.

Concept Effect This element comes as an UMA element. Every concept
associated to the task is transferred to the Effect. The attribute
transferred is the name.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 151 of 185

Figure 117 describes the solution for mapping the elements presented Table 20. The algorithm initiates with
the description of the required inputs, i.e., UML Activity Diagram and the DeliveryProcess, and the expected
output, i.e., ComplianceEffectsAnnotations. After the files are loaded, the algorithm searches in the delivery
process the element tagged as uma:ReusableAsset and maps it to the rule set. Similarly, the algorithm searches
for the elements tagged as uml:edge and uml:node in the UMLActivityDiagram and maps them to the
conditions and taskEffects respectively. The node id is used to search for the elements tagged as uma:concept
in the DeliveryProcess, which is mapped to the effects. The previous algorithms were programmed in Java,
obtaining the correct formats required by Regorous.

Figure 117. Algorithm for Obtaining the Compliance Effects Annotations

10.3.4 Model checkable for compliance: an example for ISO 26262

In what follows, the transformations are applied to the example of annotated process, described in Section
10.2.2. The first model corresponds to the generated Rule Set. As presented in Figure 118, the generated Rule
Set has the elements Vocabulary, which contains the rules, described in EPF Composer with an uma:concept.
It also contains the rules described in the content category elements, that correspond to the rules.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 152 of 185

Figure 118. Rule set generated

In Figure 119 it is presented the generated process structure. As the figure depicts, there is one Node that
represents the start point of the process and three nodes that represents task types. Three edges represent
the connection between the nodes.

In Figure 120, the compliance annotations generated model is presented. In the model it is possible to see the
rule set URI (Uniform Resource Identifier), which is the rule set identification, conditions element id, which
represent control flows identification, and the taskEffects represent the tasks, whose effects name
corresponds to the actual effects.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 153 of 185

Figure 119. Process structure generated

Figure 120. Compliance annotations generated

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 154 of 185

11. Implementation solution for compliance checking: a way
forward

In this chapter, a way forward concerning the implementation is proposed. The real implementation is
expected to be given in D6.6 [21], output of Task 6.3. Table 21 provides details concerning the new functionality
for the AMASS Compliance Management Vision.

Table 21. Compliance checking

ID Short
Description

Description Prototype
Nº

Priority Elaborated
in section

WP6_CM_004

Triggering
compliance
checking

The AMASS tools shall provide the
functionality for automatically
triggering the requirements for
(re)checking the compliance of
safety processes against rules –
especially, when there is change in
the standards/ regulations.

P2 shall Chapter
5

WP6_CM_009

Process
Compliance
(formal)
management

The AMASS tools shall enable users
to formally check process
compliance.

P2 shall Chapter
8÷10

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 155 of 185

12. Conceptual solution for ontology-based mapping (*)

12.1 Representation of Safety Standards with Semantic Technologies
Used in Industrial Environments (*)

Understanding and following safety standards with their text can be difficult. Ambiguity and inconsistency,
among other issues, can easily arise. As a solution, several authors argue for the explicit representation of the
standards with models, which can be created with semantic technologies such as ontologies. However, this
possibility has received little attention. The few authors that have addressed it have also only dealt with a
subset of safety standard aspects and have used technologies not usually applied for critical systems
engineering. As a first step towards addressing these issues, we are working on the representation of safety
standards with Knowledge Manager (KM) [140], a tool used in industrial environments that exploits semantic
technologies to manage domain information.

Our proposal to represent safety standards with semantic technologies is based on two main elements: KM,
as supporting approach and tool for semantic specification of a standard’s information, and a holistic generic
metamodel for the specification of safety compliance needs [141]. The metamodel indicates the element types
that must be considered when having to demonstrate compliance with safety standards, as well as the
relationships between them. The overall purpose of our proposal is to provide guidance about how a
standard’s terminology, data items of the element types, and relationships between the items can be
represented with KM.

An excerpt of the metamodel is shown in Figure 121. The metamodel supports the specification of the different
types of safety compliance needs: information about safety assurance requirements, artefacts, and activities,
and about their applicability. This also includes additional information about roles, techniques, artefact
attributes, artefact relationships, and relationships between the element types. All the classes in the
metamodel specialise Reference Element, and Reference Activity, Reference Artefact, Reference Role, and
Reference Technique specialise Constrained Reference Assurable Element. Further information about the
metamodel can be found in [141].

Figure 122 shows the structure of an ontology in KM. An ontology consists of several layers, each depending
on and extending the semantic information of the inner layer. The most inner layer (Terminology) corresponds
to the terms of a domain together with their syntactic information. Relationships between the terms can be
specified in the Conceptual model layer, as well as their semantics with clusters; e.g. the semantics of the terms
‘car’ and ‘truck’ can be ‘system’, and they specialise ‘vehicle’. Patterns can then be developed to provide
templates (aka boilerplates) for system information specification; the patterns refer to aspects of the two
underlying layers. The Formalization layer includes information about how system information that matches a
pattern will be semantically formalised and stored. Finally, at the Inference rules layer the data in all the other
layers can be exploited for the specification of rules to derive new information, e.g. about the correctness of a
system specification. At its current state, the proposal only deals with the Terminology and the Conceptual
model layers. KM is available in [140].

The proposal consists of two main activities: KM configuration and specification of a standard’s information.
Each activity consists of several steps, as we explain below. We have already applied the proposal for certain
parts of DO-178C, EN 50128, and ISO 26262.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 156 of 185

Figure 121. Excerpt of the metamodel for the specification of safety compliance needs

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 157 of 185

Figure 122. Ontology layers in KM

1. KM configuration. This activity is necessary to tailor the default KM usage to represent safety standards,
i.e. certain aspects of KM must be configured so that a user can create a suitable representation in
accordance with the holistic generic metamodel. The configuration focuses on those semantic aspects of
the standards that must be included in the representation. These aspects are specific to safety standards
but independent of the specific standard to represent. Two tasks must be performed.

1.1 Specification of semantic clusters. New clusters must be added to the Conceptual model layer to be
able to indicate the type of information that a term represents. First, a cluster with the name of the
safety standard to be represented is necessary to later specify that a term falls within the scope of the
standard. Second, semantic clusters must be added for Reference Artefact, Reference Artefact
Attribute, Reference Activity, Reference Role, and Reference Technique, a cluster for each. These
clusters are part of another new cluster called Reference Assurance Framework. The semantic clusters
will be used to further categorise certain terms.

1.2 Specification of relationship types. KM also supports the specification of relationship types between
terms. To represent a safety standard, a relationship type has to be created for each association in the
metamodel between the metaclasses for which the new clusters have been added, e.g. for ‘user-
inputArtefact’ between Reference Activity and Reference Artefact. This does not apply to the
compositions, e.g. between Reference Artefact and Reference Artefact Attribute. KM has a predefined
relationship type for composition, as well as for specialisation (to specify e.g. taxonomies) and for
equivalence (to specify e.g. synonyms), among others. Another relationship type called ‘Reference
Artefact Relationship’ must be added to be able to relate different Reference Artefacts in KM. The
specification of the relationship types also includes the specification of the roles of the relationship
ends.

2. Specification of a standard’s information. This activity results in the specific representation of a given
safety standard. Two tasks can be distinguished. These tasks will usually be executed iteratively to
incrementally represent a safety standard.

2.1 Specification of a standard’s terminology. This task has two main aspects to address. First, most
standards have some glossary or vocabulary section. The corresponding terms and definitions,
abbreviations, and acronyms must be added to the Terminology. Each time a term is added, it is
necessary to (1) specify its syntactic category (e.g. noun or acronym) and (2) associate it with the
semantic cluster that corresponds to the name of the standard; e.g. the term ‘algorithm’ would be
added as a DO-178C noun. Next, the text of the standard must be analysed to identify terms that
correspond to Reference Artefact, Reference Artefact Attribute, Reference Activity, Reference Role, or
Reference Technique. Each time a term is identified, it is added to the Terminology and, in addition to

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 158 of 185

the clusters for the glossary terms, the semantic cluster of the element type is associated; e.g.
‘Software Requirements Data’ is a DO-178C noun that also corresponds to a Reference Artefact.

2.2. Specification of the conceptual model of a safety standard. Once all the relevant terms have been
introduced and classified, relationships between them can be specified in the Conceptual model. These
relationships will be classified according to the available relationship types in KM, both the default
ones and those created during KM configuration. A user must conform to the holistic generic
metamodel when specifying relationships, i.e. only terms that correspond to the ends of a given
association in the metamodel must be related. For example, ‘Software Requirements Data’ is an
‘output’ of ‘Software Requirements Process’ in DO-178C.

The user also needs to decide whether the relationships between Reference Artefacts should be specified as
specialisations, as compositions, or with the Reference Artefact Relationship type. It is also possible to define
specialisations of this relationship type if a user decides so, e.g. because it is a recurrent Reference Artefact
Relationship. For instance, it is common that artefacts have to ‘conform to’ some plan or standard. Finally, it
can also be necessary to specify specialisation and equivalence relationships between terms; e.g. ‘MC/DC’ and
‘Modified Condition/ Decision Coverage’ are equivalent for DO-178C.

Figure 123 shows a part of the representation for DO-178C that results from the application of the approach.

Figure 123. Example of specification of a standard’s information with Knowledge Manager

Within the overall purpose of demonstrating alignment or compliance with a safety standard, we currently
envisage six main possibilities to take advantage of the representations:

a) Quality analysis of the text of a safety standard. KM is part of a tool suite that supports, among other
features, system artefact quality analysis, including textual artefacts. More concretely, the suite can
analyse artefact correctness, completeness, and consistency. Considering the text of a safety standard
as an example of artefact, its text quality could be determined. This would be valuable because text
quality is one of the most frequent weaknesses that practitioners find in safety standards. Parts that
could be better specified or should be clarified could be identified.

b) System specification alignment. When specifying information for a specific system or analysing the
information, the degree to which the specification is aligned with a given standard could be assessed.
First, the system could be specified, e.g. its system requirement, according to patterns that refer to

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 159 of 185

the semantic clusters added or to standard-specific terms. Second, an ontology of the system could be
linked to the ontology of the standard, e.g. to specify that a given part of the system corresponds to
the DO-178C component concept.

c) Compliance assessment. An ontology of a safety standard created with KM could be used to assess
process and product compliance. The tool suite capabilities could be used to compare process or
product information with the ontology, in order to determine compliance gaps. The information could
correspond to artefacts of different nature: textual specifications, documents, diagrams, spreadsheets.

d) Comparison of standards. The text or ontology of a safety standard could be compared with the
ontology of another standard, in order to identify commonalities and differences. This usage can be
regarded as an extension of (a).

e) Reuse of compliant system information. If a system’s information (e.g. a system model) is linked with
the ontology of a safety standard to declare compliance with the standard, it would be possible to
search for compliant system information and, when found, to reuse it. It could even be possible to
analyse system information reuse between safety standards if the ontologies of the different standards
are linked. The linking of a system’s information with the ontology could be based on (b).

f) Specification of standard-specific metrics. Specific metrics could be designed within the Inference rules
layer based on the semantic information of a safety standard represented in KM. The metrics could
assess (1) general compliance with the standard (e.g. the amount of Reference Artefacts that have
been provided) and (2) artefact-specific characteristics that a standard defines (e.g. architecture
specification consistency). Although the metrics are often not directly declared in the safety standard
(e.g. for the latter example), the standards’ information would drive their definition by indicating the
areas for which metrics could be designed and possible aspects to consider.

Methodological guidance to enact these scenarios will be provided in D6.8. It is also possible that, as a result
of the definition of this guidance and of its application in the industrial use cases, we discover that further
benefits can be exploited.

12.2 Semantic Analysis of Safety Standards (*)

Semantic analysis of safety standards (or in general of assurance standards) is an important area for AMASS
because in can facilitate tasks such as the interpretation of standards and their comparison. These tasks can
later represent a basis for assurance reuse, as the gained insights can guide an engineer when deciding
whether it is possible or advisable that a certain assurance asset is reused across products or domains.

No new, specific means for semantic analysis of safety standards are currently envisioned, but AMASS will
exploit the support provided by other solutions already defined:

• Equivalence mapping, presented in Section 5.2, which allows an engineer to establish the degree of
correspondence between the elements of different standards.

• Semantic representation of safety standards with KM and the usage possibilities that it enables, as
described in Section 12.1.

These two solutions can further be applied together when KM is integrated with the AMASS Tool Platform
(joint work of WP5 and WP6), and more concretely when CACM models are indexed and stored with KM
technology. This requires that KM connects to CDO, which is the main storage technology of the AMASS Tool
Platform. Once KM can search in CACM models, which include equivalence maps, and using also the semantic
representation of the standards as support, it will be possible to synergistically combine the semantic analysis
possibilities of both solutions. In addition, the semantic representation could also assist engineers when
specifying equivalence maps, as the representation of different standards can be the basis to decide upon the
degree of correspondence between elements.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 160 of 185

13. Implementation solution for the ontology-based compliance
management vision: a way forward

In this chapter, a way forward concerning the implementation is proposed. The real implementation is
expected to be given in D6.6 [21], output of Task 6.3. Table 22 provides details concerning the ontology-based
compliance management functionality, on top of the semantics-based mapping of standards, for the AMASS
Compliance Management Vision.

Table 22. Ontology-based compliance management

ID Short Description Description Prototype
Nº

Priority Elaborated in
section

WP6_SEM_001

Semantics-based
mapping of
standards

The AMASS tools shall enable the
mapping of standards based on
their semantics.

P2 shall Chapter 12

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 161 of 185

14. Metrics for reuse

So far, metrics to measure the effectiveness of family-oriented engineering approaches have been partly
neglected. A lack of metrics can impede their adoption. For instance, organizations considering the adoption
of Safety-oriented Process Lines (SoPLs) are faced with the upfront questions regarding the selection of the
right processes for conversion, to derive the maximum benefits in the shortest time frame.

Resources can be allocated to an endeavour only in the presence of objective justification of the economic
benefits. To provide such justification, an appropriate measurement methodology is needed. In this chapter,
the GQM+ Strategies model [83] (shortened GQMPS) is used. GQMPS is an extension of the GQM (Goal
Question Metric) paradigm [84], a goal-based software implementation and measurement paradigm.

More specifically, in this chapter, in line with and beyond D1.3 [2], GQMPS paradigm is used in order to further
elaborate the STO4-Cross/Intra Domain Reuse. The focus is limited to process-related reuse. However, similar
reasoning can be transposed to product as well as assurance case-related reuse.

14.1 GQMPS for process-related reuse

For sake of clarity it should be pointed out that a revised and extended version of this section was accepted
for publication at EuroSPI-2018 [154].

14.1.1 GQMPS

The GQMPS model links measurement programs to higher level organization goals and strategies [83]. GQMPS
is built as an extension of the GQM paradigm, a top down approach, in which measurements are based on
measurement goals [84].

As recalled in D1.3 [2], the GQM paradigm consists of three levels: the conceptual level (Measurement Goal)
where the objectives are defined, the operational level (Question) where the questions are defined and the
quantitative level where the metrics are defined. These levels are also hierarchically organized in a pyramid
structure. The apex of the pyramid is represented by a measurement goal, which specifies the purpose of
measurement, the object which is being measured, the issue to be measured and the viewpoint from which
the measurement is taken. This measurement goal is refined by a set of questions which breaks down the goal
into its significant elements. Each question is further refined into one or more metrics. These metrics may
either be objective or subjective in nature. Moreover, a particular metric may be used to answer more than
one question.

The GQMPS model helps organizations to align multi-level organization goals and strategies to the
measurement goals. It consists of two perspectives, the Organizational and Planning Perspective (OPP) and the
Control Perspective (CP). The OPP and CP structures help incorporating dependencies among different levels
of the organization. The OPP is concerned with the organizational goals and strategies while the CP is
concerned with the measurements.

The structure of the OPP resembles a pyramid with the top goal of the organization at the apex. The top goal
is broken down into one or more strategies. Each strategy can be further split into one or more goals and
associated strategies until the strategies cannot be further split into lower goals. The CP structures are built
using the GQM paradigm. Each organizational goal is linked to a GQM structure in the CP via a measurement
goal. These links enable alignment of organizational goals and strategies with measurement goals. This ensures
that organizations invest resources only in meaningful and essential data collection and analysis activities.

14.1.2 GQM + Strategies Model for the evaluation of families of processes (*)

In this section, a GQMPS model for the evaluation of families of safety-oriented processes (SoPLs) is developed.
This model represents an initial design of the measurement framework.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 162 of 185

The overview of this model is given in Figure 124.

Figure 124. SoPLE-targeted GQM+ Strategies Model

The model includes only the goals related to the feasibility of establishing SoPLs.

The OPP structure reflects the organizational goals and strategies starting with the top overall organization
goal and the related strategies broken down below, reflecting the SoPLE organization goals and their related
strategies. The association of the top organizational goal (G1) to the strategy (S3) of ’Exploit commonality of
safety-oriented processes’ is given. The strategy S3 is further reduced to the software development
organization (SDO) goal G2, that of ’identify candidate SoPLs for reusability’ supporting the strategy S6, ’Build
reusable SoPLs’. Strategy S3 is reduced to a single SDO goal for illustration purposes, though it may be reduced
to additional goals, such as productivity and quality-related goals.

The CP part of the model links the goal G2 to the measurement goal MG1, ’Assess suitability to form a SoPL’.
The viewpoint is that of the SoPL manager who belongs to the SDO and has overall organizational responsibility
for software development with formation of SoPLs as the object. MG1 is progressively refined to question Q1
and the metrics M1, M2 and M3 addressing the extent of commonality.

The model builds on top of metrics which were developed within the product line community. More
specifically, in [85], Berger et al. define several metrics which provide different perspectives for assessing the
suitability for setting up product lines. Among such metrics, within the proposed model (Figure 61), three
metrics are used: Size of Commonality (SoC), Process-related Reusability (PrR), and Relationship Ratio (RR).

Originally, SoC measures the number of reusable components in a product line and is determined by comparing
the component signatures. A syntactic comparison of signatures is performed from the names of the
components, while a semantic comparison is performed from the behavioural profiles of the components that
capture behavioural constraints. If the two signatures are identical, the components are identical. SoC is
computed as shown in Equation (1a) where pi represents the products of the product line, i ranges from 2 to
n and Cpi represents the set of components of the product i.

𝑆𝑜𝐶 = |⋂ 𝐶𝑝𝑖

𝑛

1

| (1𝑎)

PrR measures the extent of reusability of the common components for a specific product. PrR is computed as
shown in Equation (1b).

𝑃𝑟𝑅𝑖 =
𝑆𝑜𝐶

|𝐶𝑝𝑖|
 (1𝑏)

RR measures the extent of commonality between pairs of products of the product line. RR is computed as
shown in Equation (1c) where i and j range from 1 to n, n is greater than 1, and Cpi and Cpj represent the set
of components of the i and j products respectively.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 163 of 185

𝑅𝑅𝑖,𝑗 =
|𝐶𝑝𝑖 ⋂ 𝐶𝑝𝑗|

|𝐶𝑝𝑖 ⋃ 𝐶𝑝𝑗|
 (1𝑐)

The model developed in this chapter has been applied for measuring the gain obtained through the AMASS
solutions in the context of UC11. The application was documented in a paper (see [154]), accepted at EuroSPI
conference. The further development is planned in the context of T6.4, D6.8 [23].

14.2 GQMPS for product-&-assurance case related reuse (*)

Similar to what proposed for measuring process-related reuse, GQMPS customizations can be elaborated for
product as well as assurance case-related reuse. Such customizations would exploit the same metrics
interpreted in the contexts of either products or assurance cases.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 164 of 185

15. Conclusion

This deliverable has first recalled the context/motivation and AMASS-specific needs concerning cross-and-intra
domain reuse and compliance management.

Then, it has documented the final design of the AMASS solutions for cross-and-intra domain reuse (in Chapters
3-6), offering also a set of metrics for evaluating the potential gain implied by the adoption of the proposed
solutions (Chapter 14).

This deliverable has also documented the final design of the AMASS solutions for compliance management
(Chapter 7-13).

It should be highlighted that both designs comprise a conceptual and tool-agnostic solution, to be deployed
within the AMASS platform. It should also be highlighted that the proposed solutions have been illustrated via
a rich set of simplified examples stemming from the AMASS case studies and that, in the majority of the cases,
these solutions have been presented in relevant venues and accepted for publication.

In the remaining period of the AMASS project, the focus will be on: 1) the finalization of the implementation
of the presented design solutions (to be made available as part of the AMASS final prototype and documented
in D6.6 [21]); 2) the definition of the methodological guidelines (to be documented in D6.8 [23]), where the
potential user (less interested in the design choices) gets guidance on how and which methods/tools best fit
together in the context of an application. Finally, cooperation with WP1 for the demonstration of the
effectiveness of the proposed solutions is also expected to take place in the remaining period.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 165 of 185

Abbreviations and Definitions

ACM Association for Computing Machinery
ACS Attitude Control System
ADAS Advanced Driver-Assistance System
AOCS Attitude Orbit Control Systems
API Application Programming Interface
ARTA AMASS Reference Tool Architecture
ASIL Automotive Safety Integrity Level
BPMN Business Process Model and Notation
BVR Base Variability Resolution
BCL Basic Constraint Language
CACC Cooperative Adaptive Cruise Control
CACM Common Assurance and Certification Meta-model
CAKE Computer-Aided Knowledge Environment
CAN Controller Area Network
CBSE Component-Based Software Engineering
CCL Common Certification Language
CCU Central Computing Unit
CDO Connected Data Objects
CDT Contrary-to-Duty Obligations
CHESSML CHESS Modelling Language
COTS Commercial Off The Shelf
CP Control Perspective
CPF Canonical Process Format
CPS Cyber Physical System
CVL Common Variability Language
DSL Domain Specific Language
DUI Delegated User Interface
EASA European Aviation Safety Agency
ECSS European Cooperation for Space Standardization
ECU Electronic Control Unit
ECMP Electronic Component Management Process
EMC Electromagnetic compatibility
EMF Eclipse Modelling Framework
EPF Eclipse Process Framework
EPS Electrically Assisted Power Steering
ERMTS European Rail Traffic Management System
ESD Electrostatic Discharge
ETL Epsilon Transformation Language
FAA Federal Aviation Administration
FCL Formal Contract Logic
FDIS Final Draft International Standard
FLEDS Fuel Level Estimation and Display System
FMEDA Failure Modes Effects (Diagnostic) Analysis
FPGA Field Programmable Gate Array
FODA Feature-Oriented Domain Analysis
FCL Formal Contract Logic
FTA Fault Tree Analysis
GQM Goal Question Metric
GQMPS GQM+ Strategies model

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 166 of 185

GSN Goal Structuring Notation
HARA Hazard Analysis Risk Assessment
HTTP Hypertext Transfer Protocol
HW Hardware
ICS Industrial Control Systems
ICU Integrated Control Unit
IMA Integrated Modular Avionics
ISO International Organization for Standardization
JSON JavaScript Object Notation
LIN Local Interconnect Network
KM Knowledge Manager
KPI Key Performance Indicator
MBSE Model-based Systems Engineering
MCU Microcontroller Unit
MDE Model Driven Engineering
MOF Meta Object Facility
MOTS modified off the shelf
NATO North Atlantic Treaty Organization
NICTA National ICT Australia
OCL Object Constraint Language
OCRA Othello Contracts Refinement Analysis
OEM Original Equipment Manufacturer
OMG Object Management Group
OPP Organizational and Planning Perspective
OSLC Open Services for Lifecycle Collaboration
OTS Off The Shelf
PHA Preliminary Hazard Analysis
PoS Part-of-Speech
PrR Process-related Reusability
RC Resistor Capacitor
RecL Recommendation Level
RDF Resource Description Framework
REST Representational State Transfer
RPC Remote Procedure Call
RQS Requirements Quality Suite
RR Relationship Ratio
SA Safety Architect
SACM Structured Assurance Case Meta-model
SAE Society of Automotive Engineers
SAS Systems Assets Store
SDO Software Development Organization
SecL Security Levels
SEI Software Engineering Institute
SEooC Safety Element out-of-Context
SIL Safety Integrity Level
SKB System Knowledge Base
SiSoPL Security-informed Safety-oriented Process Line
SKR System Knowledge Repository
SOAP Simple Object Access Protocol
SoC Size of Commonality
SoPL Safety-oriented Process Lines
SoPLE Safety-oriented Process Lines Engineering

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 167 of 185

SOUP Software of Unknown Pedigree
SPEM Software and Systems Process Engineering Meta-model
SPL Split Phase Level
SPLCA Software Product Line Covering Array
SRL Security Risk Level
SSRW Sun Sensors Reaction Wheels
SSTH Sun Sensors Thrusters
STO Scientific and Technical Objective
STRW Star Tracker Reaction Wheels
STTH Star Tracker Thrusters
SUT System Under Test
SW Software
SysML Systems Modelling Language
TARA Threat Assessment & Risk Analysis
TVM Transmission Voie-Machine
UDP User-defined Process
UMA Unified Method Architecture
UML Unified Modelling Language
URI Uniform Resource Identifier
V&V Verification & Validation
WSDL Web Services Description Language
XMI XML Metadata Interchange
XML eXtensible Markup Language

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 168 of 185

References

[1] AMASS D1.1 Case studies description and business impact, 9th February 2018.

[2] AMASS D1.3 Evaluation framework and quality metrics, 30th September 2017.

[3] AMASS D2.1 Business cases and high-level requirements, 28th February 2017.

[4] AMASS D2.2 AMASS reference architecture (a), 30th November 2016.

[5] AMASS D2.3 AMASS reference architecture (b), 30th September 2017.

[6] AMASS D2.4 AMASS reference architecture (c), 4th June 2018.

[7] AMASS D2.6 Integrated AMASS platform (a), 31st March 2017.

[8] AMASS D3.1 Baseline and requirements for architecture-driven assurance, 9th March 2018.

[9] AMASS D3.2 Design of the AMASS tools and methods for architecture-driven assurance (a), 30th June
2017.

[10] AMASS D3.3 Design of the AMASS tools and methods for architecture-driven assurance (b), 31st March
2018.

[11] AMASS D3.5 Prototype for architecture-driven assurance (b), 30th September 2017.

[12] AMASS D4.2 Design of the AMASS tools and methods for multi-concern assurance (a), 31st March 2017.

[13] AMASS D4.3 Design of the AMASS tools and methods for multi-concern assurance (b), 30th April 2018.

[14] AMASS D5.1 Baseline requirements for seamless interoperability, 30th November 2016.

[15] AMASS D5.2 Design of the AMASS tools and methods for seamless interoperability (a), 31st March 2017.

[16] AMASS D5.3 Design of the AMASS tools and methods for seamless interoperability (b), 30th June 2018.

[17] AMASS D6.1 Baseline and requirements for cross/intra-domain reuse, 9th March 2018.

[18] AMASS D6.2 Design of the AMASS tools and methods for cross/intra-domain reuse (a), 31st October
2017.

[19] AMASS D6.4 Prototype for cross/intra-domain reuse (a), 31st March 2017.

[20] AMASS D6.5 Prototype for cross/intra-domain reuse (b), 31st December 2017.

[21] AMASS D6.6 Prototype for cross/intra-domain reuse (c), 31st October 2018.

[22] AMASS D6.7 Methodological guide for cross/intra-domain reuse (a), 31st December 2017.

[23] AMASS D6.8 Methodological guide for cross/intra-domain reuse (b), 31st October 2018.

[24] M. F. Johansen, O. Haugen, F. Fleurey, A. G. Eldegard, and T. Syversen. Generating better partial covering
arrays by modelling weights on sub-product lines. Proceedings of the 15th International Conference on
Model Driven Engineering Languages and Systems (MODELS), Innsbruck, Austria, LNCS, vol 7590.
Springer, pp. 269-284, September 30-October 5, 2012.

[25] I. Ayala, B. Gallina. Towards Tool-based Security-informed Safety Oriented Process Line Engineering. 1st
ACM International workshop on Interplay of Security, Safety and System/Software Architecture (ISSA),
Copenhagen, Denmark, November 28th, 2016.

[26] B. Gallina, E. Gómez-Martínez, C. Benac Earle. Promoting MBA in the Rail Sector by Deriving Process-
related Evidence via MDSafeCer. Computer Standards & Interfaces -SPICE-2016 Special Issue (CSI SPICE-
2016), http://dx.doi.org/10.1016/j.csi.2016.11.007.

[27] J. P. Castellanos Ardila and B. Gallina. Towards Increased Efficiency and Confidence in Process
Compliance. 24th European & Asian Systems, Software & Service Process Improvement & Innovation,
Ostrava, Czech Republic, 5.-8. Sept. 2017.

[28] C. Cârlan, B. Gallina, S. Kacianka, R. Breu. Arguing on Software-level Verification Techniques
Appropriateness. Proceedings of the 36th International Conference on Computer Safety, Reliability and
Security (SAFECOMP), Trento, Italy, September 12-15, 2017.

[29] B. Gallina. A Model-driven Safety Certification Method for Process Compliance. 2nd IEEE International
Workshop on Assurance Cases for Software-intensive Systems (ASSURE), joint event of ISSRE, Naples,
Italy, doi: 10.1109/ISSREW.2014.30, pp. 204-209, November 3-6, 2014.

https://www.amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D1.1_Case-studies-description-and-business-impact_AMASS_Final.pdf
https://www.amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D1.3_Evaluation-framework-and-quality-metrics_AMASS_Final.pdf
https://www.amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D2.1_Business-cases-and-high-level-requirements_AMASS_final.pdf
https://www.amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D2.4_AMASS-reference-architecture-%28c%29_AMASS_Final.pdf
https://www.amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D2.6_Integrated-AMASS-Platform-%28a%29_AMASS_Final.pdf
https://www.amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D3.1_Baseline-and-Requirements-for-Architecture-Driven-Assurance_AMASS_final.pdf
https://www.amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D3.3_Design-of-the-AMASS-tools-and-methods-for-architecture-driven-assurance-%28b%29_AMASS_Final.pdf
https://www.amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D3.5_Prototype-for-architecture-driven-assurance-%28b%29_AMASS_Final.pdf
https://www.amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D4.3_Design-of-the-AMASS-tools-and-methods-for-multiconcern-assurance-%28b%29_AMASS_Final.pdf
https://www.amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D5.1_Baseline-and-Requirements-for-Seamless-Interoperability_AMASS_Final.pdf
https://www.amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D5.3_Design-of-the-AMASS-tools-and-methods-for-seamless-interoperability-%28b%29_AMASS_Final.pdf
https://www.amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D6.1_BaselineAndRequirementsForCrossIntraDomainReuse_AMASS_final.pdf
https://www.amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D6.4_Prototype-for-cross-intra-domain-reuse-%28a%29_AMASS_Final.pdf
https://www.amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D6.5_Prototype-for-cross-intra-domain-reuse-%28b%29_AMASS_Final.pdf
http://dx.doi.org/10.1016/j.csi.2016.11.007

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 169 of 185

[30] B. Gallina, K. Lundqvist and K. Forsberg. THRUST: A Method for Speeding Up the Creation of Process-
related Deliverables. IEEE 33rd Digital Avionics Systems Conference (DASC-33),
doi:10.1109/DASC.2014.6979489, Colorado Springs, CO, USA, October 5-9, 2014.

[31] O. M. G., “Software & systems process engineering meta-model specification,” Object Management
Group, Tech. Rep. formal/2008-04-01, April 2008. [Online].

Available: http://www.omg.org/spec/SPEM/2.0/PDF

[32] Ø. Haugen, “Common Variability Language (CVL),” Object Management Group, Tech. Rep. ad/2012-08-
05, August 2012. [Online]. Available: http://www.omgwiki.org/variability/doku.php

[33] VARIES,” http://www.varies.eu/, accessed: 2017-07-13.

[34] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature Oriented Domain Analysis
(FODA) Feasibility Study. Technical report, Carnegie-Mellon University Software Engineering Institute,
November 1990.

[35] SACM: http://www.omg.org/spec/SACM/2.0/Beta1

[36] Eclipse process framework project (epf),” https://eclipse.org/epf/ , accessed: 2017-09-12.

[37] European cooperation for space standardization, ecss-e-st-40c, space engineering software.
http://wwwis.win.tue.nl/2R690/doc/ECSS-E-ST-40C(6March2009).pdf. Last accessed: June 16, 2017.

[38] Ø. Haugen and O. Øgård. BVR - better variability results. Proceedings of the 8th International Conference
on System Analysis and Modeling: Models and Reusability (SAM), Valencia, Spain. In D. Amyot, P.
Fonseca i Casas, and G. Mussbacher, editors, System Analysis and Modeling: Models and Reusability,
volume 8769 of Lecture Notes in Computer Science, pages 1–15, Springer International Publishing, 2014.

[39] M. Jones, E. Gomez, A. Mantineo, and U. K. Mortensen. Introducing ECSS software-engineering
standards within ESA. http://www.esa.int/esapub/bulletin/bullet111/chapter21_bul111.pdf, August
2002.

[40] A. Vasilevskiy and Ø. Haugen. Resolution of interfering product fragments in software product line

engineering. In J. Dingel, W. Schulte, I. Ramos, S. Abrahão, and E. Insfran, editors, Model-Driven

Engineering Languages and Systems, volume 8767 of Lecture Notes in Computer Science, pages 467–
483. Springer International Publishing, 2014.

[41] Øystein Haugen. Variability modelling. https://wiki.hiof.no/images/3/34/CPS-11-
VariabilityModeling.pdf

[42] VARIES D4.2- BVR - The language. http://bvr.modelbased.net/docs/VARIES_D4.2_v01_PP_FINAL.pdf

[43] VARIES D4.3 BVR Tool.

 http://www.varies.eu/wp-content/uploads/sites/8/2013/05/VARIES_D4.3_v01_PU_FINAL.pdf

[44] EPF Composer Architecture Overview. https://www.eclipse.org/epf/composer_architecture/

[45] ISO/IEC 15026-2:2011, Systems and software engineering -- Systems and software assurance -- Part 2:
Assurance case

[46] Governatori, G., & Sadiq, S. (2008). The Journey to Business Process Compliance. Public Law, 1-32.

[47] Antoniou, G., Billington, D., Governatori, G., Maher, M. (2000). Representation Results for Defeasible
Logic. ACM Transactions on Computational Logic, 255-287.

[48] Governatori, G., Rotolo, A., Sartor, G. (2005). Temporalised Normative Positions in Defeasible Logic. 10th
International Conference on Artificial Intelligence and Law (ICAIL), 25-34.

[49] CVL, OMG Revised Submission, http://www.omgwiki.org/variability/lib/exe/fetch.php?media=cvl-
revised-submission.pdf

[50] OCL, http://www.omg.org/spec/OCL/2.4/

[51] I. Sljivo, B. Gallina, J. Carlson, H. Hansson, S. Puri. A Method to Generate Reusable Safety Case Fragments
from Compositional Safety Analysis. Proceedings of the 14th International Conference on Software
Reuse (ICSR), Springer, LNCS 8919, ISBN 978-3-319-14130-5, pp.253-268, Miami, Florida, USA, January
4-6, 2015.

http://www.omg.org/spec/SPEM/2.0/PDF
http://www.omgwiki.org/variability/doku.php
http://www.varies.eu/
http://www.omg.org/spec/SACM/2.0/Beta1
https://eclipse.org/epf/
http://wwwis.win.tue.nl/2R690/doc/ECSS-E-ST-40C(6March2009).pdf
http://www.esa.int/esapub/bulletin/bullet111/chapter21_bul111.pdf
https://wiki.hiof.no/images/3/34/CPS-11-VariabilityModeling.pdf
https://wiki.hiof.no/images/3/34/CPS-11-VariabilityModeling.pdf
http://bvr.modelbased.net/docs/VARIES_D4.2_v01_PP_FINAL.pdf
http://www.varies.eu/wp-content/uploads/sites/8/2013/05/VARIES_D4.3_v01_PU_FINAL.pdf
https://www.eclipse.org/epf/composer_architecture/
http://www.omgwiki.org/variability/lib/exe/fetch.php?media=cvl-revised-submission.pdf
http://www.omgwiki.org/variability/lib/exe/fetch.php?media=cvl-revised-submission.pdf
http://www.omg.org/spec/OCL/2.4/

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 170 of 185

[52] B. Gallina, L. Fabre. (2015, September). Benefits of security-informed safety-oriented process line
engineering. In Digital Avionics Systems Conference (DASC), 2015 IEEE/AIAA 34th (pp. 8C1-1). IEEE.

[53] B. Gallina, S. Kashiyarandi, H. Martin, R. Bramberger. (2014, July). Modeling a safety-and automotive-
oriented process line to enable reuse and flexible process derivation. In Computer Software and
Applications Conference Workshops (COMPSACW), 2014 IEEE 38th International (pp. 504-509). IEEE.

[54] D. Nute, “Defeasible Logic,” in International Conference on Applications of Prolog, 2001, pp. 151–169.

[55] V. W. Marek and M. Truszczynski, Nonmonotonic logic: context-dependent reasoning. Springer Science
& Business Media, 2013.

[56] R. Reiter, “A logic for default reasoning,” Artif. Intell., vol. 13, no. 1–2, pp. 81–132, 1980.

[57] W. Lukaszewicz, “Considerations on Default Logic: An Alternative Approach,” Comput. Intell., vol. 4, no.
1, pp. 1–16, 1988.

[58] G. Brewka, “Cumulative default logic: In defense of nonmonotonic inference rules,” Artif. Intell., vol. 50,
no. 2, pp. 183–205, 1991.

[59] G. Gottlob and M. Zhang, “Cumulative Default Logic: Finite Characterization, Algorithms, and
Complexity,” Artif. Intell., vol. 69, no. 1–2, pp. 329–345, 1994.

[60] J. P. Delgrande, T. Schaub, and W. K. Jackson, “Alternative approaches to default logic,” Artif. Intell., vol.
70, no. 1–2, pp. 167–237, 1994.

[61] A. Mikitiuk and M. Truszczynski, “Constrained and rational default logics,” in International Joint
Conference on Artificial Intelligence, 1995, pp. 1509–1517.

[62] R. C. Moore, “Semantical considerations on nonmonotonic logic,” Artif. Intell., vol. 25, no. 1, pp. 75–94,
1985.

[63] J. McCarthy, “Circumscription - a form of Non-monotonic Reasoning,” Artif. Intell., vol. 13, no. 1, pp. 27–
39, 1980.

[64] M. Maher, “Propositional Defeasible Logic has Linear Complexity,” Theory Pract. Log. Program., vol. 1,
no. 6, pp. 691–711, 2001.

[65] G. Antoniou, D. Billington, G. Governatori, and M. J. Maher, “Representation results for defeasible logic,”
ACM Trans. Comput. Log., vol. 2, no. 2, pp. 255–287, 2001.

[66] D. Nute, Defeasible Deontic Logics. Springer Science & Business Media, 2012.

[67] G. H. Von Wright, “Deontic logic,” Mind, vol. 60, no. 237, pp. 1–15, 1951.

[68] G. Governatori, “Representing business contracts in RuleML,” Int. J. Coop. Inf. Syst., vol. 14, no. 02n03,
pp. 181–216, 2005.

[69] G. Governatori and A. Rotolo, “A Gentzen System for Reasoning with Contrary-To-Duty Obligations. A
Preliminary Study,” in Sixth International Workshop on Deontic Logic in Computer Science, 2002, pp. 97–
116.

[70] G. Governatori and A. Rotolo, “A conceptually rich model of business process compliance,” in 7th Asia-
Pacific Conference on Conceptual Modelling, 2010, vol. 110, pp. 3–12.

[71] G. Governatori and Z. Milosevic, “Dealing with contract violations: Formalism and domain specific
language,” Proc. - IEEE Int. Enterp. Distrib. Object Comput. Work. EDOC, pp. 46–57, 2005.

[72] G. Governatori, “The regorous approach to process compliance,” in IEEE 19th International Enterprise
Distributed Object Computing Conference Workshops and Demonstrations (EDOCW), 2015, pp. 33–40.

[73] G. Governatori, F. Olivieri, A. Rotolo, and S. Scannapieco, “Computing Strong and Weak Permissions in
Defeasible Logic,” J. Philos. Log., vol. 42, no. 6, pp. 799–829, 2013.

[74] Nicta, “Regorous Process Designer Help.”

[75] G. Governatori and S. Sadiq, “The Journey to Business Process Compliance,” Public Law, pp. 1–32, 2009.

[76] S. Sadiq and G. Governatori, “Managing regulatory compliance in business processes,” Handb. Bus.
Process Manag. 2 Strateg. Alignment, Governance, People Cult., pp. 265–288, 2015.

[77] Object Management Group, “Documents Associated With Business Process Model And NotationTM
(BPMNTM) Version 2.0.” Available: http://www.omg.org/spec/BPMN/2.0/. [Accessed 2017/09/13].

http://www.omg.org/spec/BPMN/2.0/

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 171 of 185

[78] Polygraphia, "Ontotext," [Online].

Available: https://ontotext.com/knowledgehub/fundamentals/semantic-annotation/.

[Accessed 2017/09/11].

[79] S. Sadiq, G. Governatori, and K. Namiri, “Modeling Control Objectives for Business Process Compliance,”
5th Int. Conf. BPM, pp. 149–164, 2007.

[80] H. Lam and G. Governatori, “The Making of SPINdle,” Rule Interchang. Appl., pp. 315–322, 2009.

[81] R. Lu, S. Sadiq, and G. Governatori, “Compliance Aware Business Process Design,” in International
Conference on Business Process Management, 2007, pp. 120–131.

[82] B. Gallina, J. P. Castellanos Ardila, and M. Nyberg, “Towards Shaping ISO 26262-compliant Resources for
OSLC-based Safety Case Creation,” in 4th International Workshop on Critical Automotive Applications:
Robustness & Safety, 2016, p. 4.

[83] V. Basili, A. Trendowicz, M. Kowalczyk, J. Heidrich, C. Seaman, J. M•unch, and D. Rombach. GQM+
Strategies in a Nutshell. In Aligning Organizations Through Measurement, pages 9{17. Springer, 2014.

[84] V. R. Basili, G. Caldiera, and H. D. Rombach. The Goal Question Metric Approach, 1994. Citado, 3:11,
2012.

[85] C. Berger, H. Rendel, and B. Rumpe. Measuring the Ability to Form a Product Line from Existing
Products. arXiv preprint arXiv:1409.6583, 2014.

[86] B. Gallina. Towards Enabling Reuse in the Context of Safety-critical Product Lines. 5th International
Workshop on Product LinE Approaches in Software Engineering (PLEASE), joint event of ICSE, Florence,
Italy, May 19th, 2015.

[87] B. Gallina and M. Nyberg, “Reconciling the ISO 26262-compliant and the agile documentation
management in the Swedish context,” in CARS 2015 - Critical Automotive applications: Robustness &
Safety, Paris, 2015.

[88] J. P. Castellanos Ardila and B. Gallina, “Towards Increased Efficiency and Confidence in Process
Compliance,” in 24th European & Asian Systems, Software &Service Process Improvement & Innovation,
2017, p. 12.

[89] J. P. Castellanos-Ardila and B. Gallina, “Towards Efficiently Checking Compliance Against Automotive
Security and Safety Standards,” in The 7th IEEE International Workshop on Software Certification, 2017.

[90] ISO 26262, “Road Vehicles-Functional Safety. International Standard.” 2011.

[91] A. Koudri and J. Champeau, “MODAL: A SPEM extension to improve co-design process models,” Int. Conf.
Softw. Process, pp. 248–259, 2010.

[92] B. Gallina, I. Sljivo, and O. Jaradat, “Towards a Safety-oriented Process Line for Enabling Reuse in Safety
Critical Systems Development and Certification,” in 35th Annual IEEE Software Engineering Workshop
(SEW), 2012, pp. 148–157.

[93] D. Riehle and H. Züllighoven, “Understanding and using patterns in software development,” Tapos, vol.
2, no. 1, pp. 3–13, 1996.

[94] J. Castellanos Ardila and B. Gallina, “Formal Contract Logic Based Patterns for Facilitating Compliance
Checking against ISO 26262,” in 1st Workshop on Technologies for Regulatory Compliance, 2017, pp. 65–
72.

[95] M. Dwyer, G. Avrunin, and J. Corbett, “Property Specification for Finite-State Verification,” in
International Conference on Software Engineering. 1998, pp. 411–420.

[96] B. McIsaac, “IBM Rational Method Composer: Standards Mapping.” 2015.
[97] J. P. Castellanos Ardila, B. Gallina, and F. Ul Muram, “Enabling Compliance Checking against Safety

Standards from SPEM 2.0 Process Models,” in Euromicro Conference on Software Engineering and
Advanced Applications, 2018.

[98] O. M. Group, “UMA metamodel.”
http://www.eclipse.org/epf/tool_component/EPF_Schema_201003161045.xsd

[99] M. La Rosa et al., “APROMORE: An advanced process model repository,” Expert Syst. Appl., pp. 7029–
7040, 2011.

https://ontotext.com/knowledgehub/fundamentals/semantic-annotation/
http://www.eclipse.org/epf/tool_component/EPF_Schema_201003161045.xsd

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 172 of 185

[100] J. P. Castellanos Ardila, B. Gallina, and F. UL Muram, “Transforming SPEM 2.0-compatible Process Models
into Models Checkable for Compliance,” in 18th International SPICE Conference, 2018.

[101] IEC 62443:2015 Security for industrial automation and control systems.
[102] The European Organisation for Civil Aviation Equipment, “Airworthiness Security Process Specification”,

ED-202A, 2014.
[103] The European Organisation for Civil Aviation Equipment, “Airworthiness Security Methods and

Considerations”, ED-203, 2015.
[104] The International Electrotechnical Commission, “Industrial-process measurement, control and

automation- Framework for functional safety and security”, IEC TR 63069 ED1, TC 65, 2018-06.
[105] The International Electrotechnical Commission, “Functional safety of

electrical/electronic/programmable electronic safety-related systems”, IEC 61508, 1998.
[106] McQueen M.A., Boyer W.F., Flynn M.A., Beitel G.A., “Time-to-Compromise Model for Cyber Risk

Reduction Estimation.” In: Gollmann D., Massacci F., Yautsiukhin A. (eds) Quality of Protection. Advances
in Information Security, vol 23. Springer, Boston, MA, 2006.

[107] L. Piètre-Cambacédès and M. Bouissou, “Modeling safety and security interdependencies with BDMP
(Boolean logic Driven Markov Processes),” 2010 IEEE International Conference on Systems, Man and
Cybernetics, Istanbul, pp. 2852-2861, 2010.

[108] The Eclipse Foundation, “The Papyrus Environment”, in
https://www.eclipse.org/papyrus/download.html.

[109] The International Electrotechnical Commission, “Industrial communication networks – Network and
system security – Part 1-1: Terminology, concepts and models”, IEC/TS 62443-1-1, 2009.

[110] Automotive Electronics Council, AEC Q100 "Failure Mechanism Based Stress Test Qualification For
Integrated Circuits"; http://www.aecouncil.com/AECDocuments.html

[111] International Automotive Task Force, IATF 16949:2016 – Technical Specification "Quality management
system requirements for automotive production and relevant service parts
organisations"; http://www.iatfglobaloversight.org/iatf-publications/

[112] International Organization for Standardization, ISO 9001-2015 "Quality management systems --
Requirements"; https://www.iso.org/standard/62085.html

[113] https://www.bav.admin.ch/dam/bav/fr/dokumente/nntv/eisenbahn/nntv_loc_pas_gueltig.pdf.downl
oad.pdf/RTNN%20LOC&PAS%20-%20Versione%20actuelle%20(septembre%202017).pdf

[114] http://www.securite-ferroviaire.fr/sites/default/files/users/reglementations/pdf/sams706v2.pdf
[115] B. Gallina, Z. Szatmari. Ontology-based Identification of Commonalities and Variabilities among Safety

Processes. Proceedings of the 16th International Conference on Product-Focused Software Process
Improvement (PROFES), Springer, LNCS 9459, pp. 182-189, ISBN 978-3-319-26843-9, Bolzano, Italy,
December 2-4, 2015.

[116] Object Management Group (OMG). 2004. Software Process Engineering Metamodel Specification
(SPEM), Version 1.1. ftp://ftp.omg.org/pub/spem-rtf/SPEM-CD-20040308.pdf. (2004). (Last accessed:
October 11, 2017).

[117] Object Management Group (OMG). 2008. Software & Systems Process Engineering Metamodel
Specification (SPEM), Version 2.0. http://www.omg.org/spec/SPEM/2.0/. (2008). (Last accessed:
October 11, 2017).

[118] Anatoly Vasilevskiy, Øystein Haugen, Franck Chauvel, Martin Fagereng Johansen, and Daisuke Shimbara.
July 20-24, 2015, Nashville, TN, USA. The BVR tool bundle to support product line engineering. In
Proceedings of the 19th International Conference on Software Product Line (SPLC ’15).
https://doi.org/10.1145/2791060.2791094

[119] H. Mili, F. Mili, and A. Mili, “Reusing software: Issues and research directions,” Softw. Eng. IEEE Trans.
On, vol. 21, no. 6, pp. 528–562, 1995.

[120] C. W. Krueger, “Software reuse,” ACM Comput. Surv. CSUR, vol. 24, no. 2, pp. 131–183, 1992.
[121] M. Smolárová and P. Návrat, “Software reuse: Principles, patterns, prospects,” CIT J. Comput. Inf.

Technol., vol. 5, no. 1, pp. 33–49, 1997.
[122] B. W. Boehm, Software Engineering Economics, 1st ed. Upper Saddle River, NJ, USA: Prentice Hall PTR,

1981.

https://www.eclipse.org/papyrus/download.html
http://www.aecouncil.com/AECDocuments.html
http://www.iatfglobaloversight.org/iatf-publications/
https://www.iso.org/standard/62085.html
https://www.bav.admin.ch/dam/bav/fr/dokumente/nntv/eisenbahn/nntv_loc_pas_gueltig.pdf.download.pdf/RTNN%20LOC&PAS%20-%20Versione%20actuelle%20(septembre%202017).pdf
https://www.bav.admin.ch/dam/bav/fr/dokumente/nntv/eisenbahn/nntv_loc_pas_gueltig.pdf.download.pdf/RTNN%20LOC&PAS%20-%20Versione%20actuelle%20(septembre%202017).pdf
http://www.securite-ferroviaire.fr/sites/default/files/users/reglementations/pdf/sams706v2.pdf
ftp://ftp.omg.org/pub/spem-rtf/SPEM-CD-20040308.pdf
http://www.omg.org/spec/SPEM/2.0/
https://doi.org/10.1145/2791060.2791094

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 173 of 185

[123] Y. Kim and E. A. Stohr, “Software Reuse: Survey and Research Directions,” J Manage Inf Syst, vol. 14, no.
4, pp. 113–147, Mar. 1998.

[124] H. Mili, Reuse based software engineering: techniques, organization and measurement. New York:
Wiley, 2002.

[125] T. J. Biggerstaff and C. Richter, “Software Reusability: Vol. 1, Concepts and Models,” T. J. Biggerstaff and
A. J. Perlis, Eds. New York, NY, USA: ACM, 1989, pp. 1–17.

[126] J. Fortune and R. Valerdi, “Considerations for successful reuse in systems engineering,” in Space 2008
Conference, 2008.

[127] S. F. Model-Driven, K. A. Weiss, E. C. Ong, and N. G. Leveson, “Reusable specification components for
model-driven development,” in In Proceedings of the International Conference on System Engineering,
INCOSE, 2003.

[128] I. Jacobson, M. Griss, and P. Jonsson, Software Reuse: Architecture, Process and Organization for
Business Success. New York, NY, USA: ACM Press/Addison-Wesley Publishing Co., 1997.

[129] E.-A. Karlsson, Ed., Software Reuse: A Holistic Approach. New York, NY, USA: John Wiley & Sons, Inc.,
1995.

[130] D. Mcilroy, “Mass-produced Software Components,” in Proceedings of Software Engineering Concepts
and Techniques, Garmisch, Germany, 1969, pp. 138–155.

[131] INCOSE, “Systems Engineering Vision 2020,” INCOSE, Technical INCOSE-TP-2004-004-02, 2004.
[132] U. Shani and H. Broodney, “Reuse in model-based systems engineering,” 2015, pp. 77–83.
[133] W. B. Smith, “3.3.2 Re-Use Libraries Leveraging Model-Based Systems Engineering to greatly increase

engineering productivity,” INCOSE Int. Symp., vol. 24, no. 1, pp. 298–312, Jul. 2014.
[134] C. Dumitrescu, R. Mazo, C. Salinesi, and A. Dauron, “Bridging the gap between product lines and systems

engineering: an experience in variability management for automotive model based systems
engineering,” in Proceedings of the 17th International Software Product Line Conference, 2013, pp. 254–
263.

[135] O. Gotel et al., “The Grand Challenge of Traceability (v1.0),” in Software and Systems Traceability, J.
Cleland-Huang, O. Gotel, and A. Zisman, Eds. London: Springer London, 2012, pp. 343–409.

[136] J. M. Alvarez-Rodríguez, Elena Gallego and J. Llorens, “Reuse of Physical System Models by means of
Semantic Knowledge Representation: A Case Study applied to Modelica,” in Proceedings of the 11th
International Modelica Conference 2015, 2015, vol. 1.

[137] R. Mendieta, J. L. de la Vara, J. Llorens, and J. M. Alvarez-Rodríguez, “Towards Effective SysML Model
Reuse,” in Proceedings of the 5th International Conference on Model-Driven Engineering and Software
Development - Volume 1: MODELSWARD, 2017, pp. 536–541.

[138] T. R. Gruber, “A Translation Approach to Portable Ontology Specifications,” Knowl Acquis, vol. 5, no. 2,
pp. 199–220, Jun. 1993.

[139] N. Guarino, “Formal Ontology, Conceptual Analysis and Knowledge Representation,” Int J Hum-Comput
Stud, vol. 43, no. 5–6, pp. 625–640, Dec. 1995.

[140] The REUSE Company: https://www.reusecompany.com/
[141] de la Vara, J.L., Ruiz, A., Attwood, K., Espinoza, H., Panesar-Walawege, R.K., Lopez, A., del Rio, I., Kelly,

T.: Model-Based Specification of Safety Compliance Needs: A Holistic Generic Metamodel. Information
and Software Technology 72: 16-30 (2016)

[142] B. Gallina, Z. Haider, A. Carlsson. Towards Generating ECSS-compliant Fault Tree Analysis’ Results via

Concerto FLA. 2nd International Conference on Reliability Engineering (ICRE), Milan, Italy, December 20-

22, 2017.

[143] https://www.polarsys.org/chess/publis/CHESSMLprofile.pdf
[144] Schieferdecker, I. (2012). Model-Based Testing. Software, IEEE, 29(1), 14- 18.
[145] Dalal, S., et.al (1999). Model-based testing in practice. Proceedings - International Conference on

Software Engineering, 285-29
[146] Utting, Mark (2006), Practical Model_based Testing ISBN 9780123725011
[147] AMASS D1.4 AMASS Demonstrators (a), April 2017

https://www.reusecompany.com/
https://www.polarsys.org/chess/publis/CHESSMLprofile.pdf
https://www.amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D1.4_AMASS-demonstrators-%28a%29_AMASS_Final.pdf

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 174 of 185

[148] W. S. Greenwell, J. C. Knight, C. M. Holloway, and J. J. Pease, “A Taxonomy of Fallacies in System Safety
Arguments,” in In Proceedings of the 2006 International System Safety Conference, 2006.

[149] F. UL Muram, B. Gallina, and L. Gomez Rodriguez. 2018. Preventing Omission of Key Evidence Fallacy in
Process-based Argumentations. In 11th International Conference on the Quality of Information and
Communications Technology (QUATIC), Coimbra, Portugal, September 4-7, 2018. (in press).

[150] M.Soden: Dynamische Modellanalyse von Metamodellen mit Operationaler Semantik. Dissertation,
2014

[151] ANSYS medini Technology AG: medini analyze Metamodel Guide
[152] B. Kaiser et al.: Advances in Component Fault Trees. To appear in Proceedings of ESREL 2018
[153] M. A. Javed and B. Gallina. Safety-oriented Process Line Engineering via Seamless Integration between

EPF Composer and BVR Tool. In 22nd International Systems and Software Product Line Conference

(SPLC), Sept 10-14, Gothenburg, Sweden, in press. ACM Digital Library, 2018.

[154] B. Gallina and S. Iyer. Towards Quantitative Evaluation of Reuse within Safety-oriented Process Lines.

25th European & Asian Systems, Software & Service Process Improvement & Innovation (EuroSPI),

Communications in Computer and Information Science, Springer, pp. 162-174, Bilbao, Spain, 5.-7. Sept.

2018.

[155] B. Gallina, F. Ul Muram, and J. P. Castellanos Ardila. Compliance of Agilized (Software) Development
Processes with Safety. Proceedings of the 4th international workshop on agile development of safety-
critical software (ASCS), co-located with XP 2018, May 21st, Porto, Portugal, 2018.

[156] I. Sljivo, B. Gallina, J. Carlson, H. Hansson, S. Puri. Tool-Supported Safety-Relevant Component Reuse:

From Specification to Argumentation. 23rd International Conference on Reliable Software Technologies

(Ada-Europe), Lisbon, Portugal, June 18-22, 2018.

[157] R. Dardar, B. Gallina, A. Johnsen, K. Lundqvist, and M. Nyberg: Industrial Experiences of Building a Safety

Case in Compliance with ISO 26262. In: Proc. Of the 2nd WoSoCER, joint event of the 23rd International

Symposium on Software Reliability (ISSRE), Dallas, Texas, USA (Nov. 2012) 349–354

[158] B. Gallina, A. Gallucci, K. Lundqvist and M. Nyberg. VROOM & cC: a Method to Build Safety Cases for ISO
26262-compliant Product Lines. 32nd International Conference on Computer Safety, Reliability and
Security (SAFECOMP) 2013 - Workshop {SASSUR} (Next Generation of System Assurance Approaches for
Safety-Critical Systems), Toulouse, France, 2013.

[159] S. Mazzini, J. M. Favaro, S. Puri, and L. Baracchi, “CHESS: an open source methodology and toolset for
the development of critical systems,” in Joint Proceedings of the 12th Educators Symposium (EduSymp
2016) and 3rd International Workshop on Open Source Software for Model Driven Engineering
(OSS4MDE 2016) co-located with the ACM/IEEE 19th International Conference on Model Driven
Engineering Languages and Systems (MODELS 2016), Saint Malo, France, October 3, 2016., 2016, pp.
59–66.

[160] M. Panunzio and T. Vardanega, “A component-based process with separation of concerns for the

development of embedded real-time software systems,” Journal of Systems and Software, vol. 96, pp.

105–121, 2014.

[161] E. Lee, A Denotational Semantics for Dataflow with Firing. Electronics Research Laboratory, College of

Engineering, University of California, 1997.

[162] AMASS-site: https://www.amass-ecsel.eu.
[163] J. Chelini et al. Avionics Certification: Back to Fundamentals with Overarching Properties. 9th European

Congress Embedded Real Time Software and Systems (ERTS)-2018.

https://www.amass-ecsel.eu/

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 175 of 185

Appendix A

This appendix provides the non-complete BCL grammar, taken from [41]. The complete definition of the BCL
grammar and its semantics can be found in [49] (Section 8.3 Definition of Basic Constraint Language).

For the purpose of this document, this appendix is sufficient to let the reader follow the grammatical
specification of the BCL contraints, which where included within the VSpec models.

<BCLExpression> ::= <Existence> | <NumRelation>
<Existence> ::= <UniExistence> | <BinaryExistence>
<UniExistence> ::= <VSpec> | not <VSpec> | (<Existence>) <VSpec> refers to a Choice or a VClassifier
<BinaryExistence> ::= <Existence> <binop> <Existence> <binop> ::= and | or | xor | implies | iff
<NumRelation> ::= normal arithmetic expression

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 176 of 185

Appendix B

To enable readers to better read the details of a set of figures, previously presented in the document, this
appendix contains their expanded versions.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 177 of 185

Figure 125. Expanded version of Figure 40

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 178 of 185

Figure 126. Expanded version of Figure 41

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 179 of 185

Figure 127. Expanded version of Figure 45

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 180 of 185

Figure 128. Expanded version of Figure 46

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 181 of 185

Figure 129. Expanded version of Figure 47

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 182 of 185

Figure 130. Expanded version of Figure 48

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 183 of 185

Figure 131. Re-configured argumentation fragment

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 184 of 185

Appendix C. Changes with respect to D6.2 (*)

New Chapters:

Chapter/Appendix Title

10 AMASS design solution for compliance checking

15 Conclusion

Appendix C To document the changes.

New Sections:

Section Title

5.5 Product-related reuse: focus on safety and security analysis artefacts

5.6 Conceptual approach on product reuse

5.7 Model Based Testing for exploring the benefits of re-use of development cycles

5.9.1.1 Types of fallacy

5.9.1.2 Modelling of Safety Processes

5.9.1.3 Detecting Fallacies in Process Models

5.8 Approach on impact analysis and delta analysis based on data indices using Elasticsearch

5.10.1 Argument-fragment generation at the architectural pattern level

8.1.4 Property Specification Patterns for Finite-State Verification

8.1.5 EPF Composer Metamodels

8.1.6 Regorous Metamodels

12.2 Semantic Analysis of Safety Standards

14.2 GQMPS for product-&-assurance case related reuse

Chapters whose number has changed:

Former
Chapter No.

New
Section No.

Title

11 12

12 13

13 14

Modified Chapters/Sections:

Chapter/Section Title Change

1 Introduction Revised to proper introduce the new deliverable.

2 Recap concerning industrial needs
with respect to STO4

Revised w.r.t. changes introduced in D1.1, v.1.2.

4.1.1 Process-related macro and micro
(reusable) elements

Better explained the difference between process
plan and executed process;
Discussed the impact of FAA and RESSAC
intiatives on the AMASS solutions.

4.2.1.4 Verification phases of the life-cycle
maintenance of SEooC

Revision of the presentation, minor changes.

5.1.5 Definition of an interface for reuse
discovery

Revision of the presentation, minor changes.

AMASS

Design of the AMASS tools and methods for cross/intra-domain reuse (b)

D6.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 185 of 185

5.2 Reuse assistance The main content of the section regarding the
design has been re-written.

5.3.4.1 Intra-domain variability
management at assurance case level:
an automotive assurance case line

The design of this functionality has been
completed and exemplified.

5.9 Automatic generation of process-
based arguments

Four sub-sections are added within section 5.9.1.
Moreover, the table showing the mapping
between UMA-compliant process modelling
elements, and CACM-compliant argumentation
modelling elments is updated.

5.9.2 Generating Process-based
Argumentation Representing
Executed Processes

This subsection has been revised and completed.

7 AMASS vision for compliance
management

Revision of the vision, minor changes.

9.2.2.1 Running Example: ISO 26262 More information related to the standards ISO
26262 was added.

12.1 Representation of Safety Standards
with Semantic Technologies Used in
Industrial Environments

Revision of the explanation about the enactment
of the scenarios proposed to exploit the
semantic representation of safety standards.

14.1.2 GQM + Strategies Model for the
evaluation of families of processes

Revision and inclusion of parts published in a
paper accepted at EuroSPI-2018.

References References References have been enriched.

Appendix B Appendix B Extended with new images.

