
This deliverable is part of a project that has received funding from the ECSEL JU under grant agreement No 692474.
This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme
and from Spain, Czech Republic, Germany, Sweden, Italy, United Kingdom and France.

ECSEL Research and Innovation actions (RIA)

AMASS
Architecture-driven, Multi-concern and Seamless Assurance and

Certification of Cyber-Physical Systems

Methodological Guide for
Seamless Interoperability (b)

D5.8

Work Package: WP5: Seamless Interoperability

Dissemination level: PU =Public

Status: Final

Date: 31st October 2018

Responsible partner: Tomáš Kratochvíla (Honeywell)

Contact information: Tomas.Kratochvila@Honeywell.com

Document reference: AMASS_D5.8_WP5_HON_V1.0

PROPRIETARY RIGHTS STATEMENT
This document contains information, which is proprietary to the AMASS Consortium. Permission to reproduce any
content for non-commercial purposes is granted, provided that this document and the AMASS project are credited as
source.

Contributors

Reviewers

Names Organisation

Tomáš Kratochvíla, Vít Koksa Honeywell (HON)

Jose Luis de la Vara, Jose María Álvarez, Francisco
Rodríguez, Eugenio Parra, Fabio di Ninno, Miguel
Rozalen

Universidad Carlos III de Madrid (UC3)

Luis M. Alonso, Borja López, Julio Encinas The REUSE Company (TRC)

Pietro Braghieri, Stefano Tonetta, Alberto Debiasi Fondazione Bruno Kessler (FBK)

Morayo Adedjouma, Botella Bernard, Huascar
Espinoza, Thibaud Antignac

CEA LIST (CEA)

Marc Sango ALL4TEC (A4T)

Ángel López, Alejandra Ruiz Tecnalia Research and Innovation (TEC)

Jan Mauersberger medini Technologies AG (KMT)

Names Organisation

Eugenio Parra (Peer reviewer) Universidad Carlos III de Madrid (UC3)

Jaroslav Bendík (Peer reviewer) Masaryk University (UOM)

Cristina Martinez (Quality Manager) Tecnalia Research and Innovation (TEC)

Alejandra Ruiz Lopez (TC reviewer) Tecnalia Research and Innovation (TEC)

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 3 of 85

TABLE OF CONTENTS

Executive Summary .. 7

1. Introduction.. 8

2. Seamless Interoperability Approaches ... 11
2.1 Evidence Management .. 11
2.2 OSLC KM .. 11
2.3 V&V Manager and OSLC Automation ... 17
2.4 Ad-hoc Tool Integration ... 17
2.5 Papyrus Interoperability ... 20
2.6 V&V Tool Integration ... 22
2.7 Seamless Tracing.. 23
2.8 Collaborative Editing .. 24
2.9 Safety/Cyber Architect Tools Integration .. 26
2.10 Data and Security Management ... 26

3. Methodological Guide .. 27
3.1 Evidence Management .. 27
3.2 OSLC KM .. 30
3.3 V&V Manager and OSLC Automation ... 42
3.4 Ad-hoc Tool Integration ... 45
3.5 Papyrus Interoperability ... 46
3.6 V&V Tool Integration ... 49
3.7 Seamless Tracing via OSLC for Safety Case Fragments Generation .. 51
3.8 Collaborative Editing .. 52
3.9 Safety/Cyber Architect Tools Integration .. 54
3.10 Data and Security Management ... 58

4. Conclusions... 59

Abbreviations and Definitions.. 60

References ... 62

Appendix A. Methodological Guide for Seamless Interoperability – EPF Process Description 63

Appendix B. The OSLC KM Resource Shape .. 71
B.1 Base Knowledge Management ... 71
B.2 Specification Versioning ... 72
B.3 KM Resource Definitions .. 73
B.4 KM Service Provider Capabilities .. 82
B.5 Open Issues ... 84

Appendix C : Document changes with respect to D5.7 ... 85

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 4 of 85

List of Figures

Figure 1. AMASS Prototype P2 building blocks ... 9
Figure 2. Updated UML Class Diagram of the OSLC Knowledge Management Resource Shape 13
Figure 3. Functional Architecture and core services for knowledge management based on the OSLC KM . 14
Figure 4. ReqIF metamodel .. 18
Figure 5. Integrity connector architecture .. 19
Figure 6. Rhapsody connector architecture .. 20
Figure 7. FBK Tool Integration via files ... 23
Figure 8. FBK Tool Integration via OSLC Automation .. 23
Figure 9. Comparison of revision control systems regarding change sets .. 25
Figure 10. Architecture or centralized collaboration server .. 25
Figure 11. Interoperability between the AMASS platform (CHESS, OpenCert) and Safety/Cyber Architect

tools .. 26
Figure 12. Overview of the development of needed interoperability .. 27
Figure 13. A federated and distributed architecture of OSLC-based services and providers 34
Figure 14. Integration between IBM Doors DNG and Requirements Quality Metrics through OSLC 34
Figure 15. Implementation of “IntelliSense” capabilities through OSLC in CK Editor 35
Figure 16. A Low-pass filter circuit edited in Open Modelica .. 35
Figure 17. The Low-pass filter circuit Artefact indexed in Knowledge Manager... 36
Sub-Figure 18. Preferred visualization and PBS of a “Rugged Computer” ... 37
Figure 19. The Evidence Manager import process using OSLC KM .. 40
Figure 20. The OSLC-KM Evidence Manager Importer Wizard showing the available OSLC-KM parsers....... 41
Figure 21. The OSLC-KM Evidence Manager Importer Wizard showing a connection to a Papyrus model ... 42
Figure 22. The OSLC-KM Evidence Manager Importer Wizard selecting the AMASS project to store the

evidences .. 42
Figure 23. Ad-hoc connection methodology process .. 46
Figure 24. Excerpt of Papyrus Additional components Discovery view.. 47
Figure 25. How to connect to a CDO repository ... 47
Figure 26. Import model into CDO repository... 48
Figure 27. Steps to Import ReqiF file into Papyrus model ... 49
Figure 28. Exported Papyrus model into ReqIF file ... 49
Figure 29. OSLC Automation Plan ... 50
Figure 30. Domain-of-domains creation ... 52
Figure 31. Tool setup and workflow for collaborative editing ... 53
Figure 32. From change in one client, over collaborative server to change in another client 54
Figure 33. Import from CHESS tool to Safety Architect tool .. 55
Figure 34. Import Data from Cyber Architect tool to Safety Architect tool .. 55
Figure 35. Safety & Security Viewpoint in Safety Architect tool .. 56
Figure 36. Safety & Security Viewpoint Selection in Safety Architect Tool .. 56
Figure 37. Propagation Tree in Safety Architect Tool .. 57
Figure 38. Evidence resource location in OpenCert .. 57
Figure 39. A Process for system safety and security co-analysis .. 57
Figure 40. Top-level overview of the process ... 63
Figure 41. Activity diagram for the first stage of the process .. 64
Figure 42. Description of the task Collect requirements or criteria ... 64
Figure 43. Description of the task List available technologies ... 65
Figure 44. Activity diagram of Decision making .. 65
Figure 45. Description of task Create matrix... 66
Figure 46. Example of new Pugh matrix ... 66
Figure 47. Reference to the supporting material How to use the Pugh matrix .. 66

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 5 of 85

Figure 48. Reference to the supporting material Pugh matrix .. 66
Figure 49. Description of the task Assign weight to requirements .. 67
Figure 50. Example of Pugh matrix with weights .. 67
Figure 51. Description of the task Estimate suitability for each requirement .. 68
Figure 52. Example of the Pugh matrix with estimated suitabilities .. 68
Figure 53. Description of the task Evaluate suitability of technology for the whole project 69
Figure 54. Example of the computed total technology values ... 69
Figure 55. Activity diagram of Design and Implementation .. 70
Figure 56. Description of the task Design and implementation ... 70

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 6 of 85

List of Tables

Table 1. Mapping of the OSLC KM approach to the knowledge management processes 12
Table 2. Role of different artefact types in evidence change impact analysis ... 30
Table 3. Artefacts, tool provider and OSLC adapters ... 33
Table 4. Issues in the case study and mitigating factors .. 39
Table 5. Mapping of SysML elements to OSLC properties for OSLC Requirement resource 43
Table 6. Mapping of SysML elements to OSLC properties for OSLC Automation Plan resource 44
Table 7. Example of OSLC related web addresses .. 50
Table 8. Examples of V&V related functionality and automation plans .. 50
Table 9. Base Knowledge Management Compliance ... 71
Table 10. OSLC KM: System Representation Language resources .. 74
Table 11. OSLC KM: The Artefact resource shape .. 75
Table 12. OSLC KM: The Metaproperty resource shape... 77
Table 13. OSLC KM: The Relationship resource shape ... 77
Table 14. OSLC KM: The Concept resource shape.. 78

List of Listings

Listing 1. Regular Tree Grammars of RDF, GRDF, and the OSLC KM Resource Shape, Gkm 15
Listing 2. Set of mapping rules, Mrdf2km, to transform RDF in OSLC KM Resource Shape 16
Sub-Listing 3. Partial example of a PBS and a controlled vocabulary as OSCL KM artefacts. 37
Sub-Listing 4. Partial example of a requirement following the OSCL RM specification. 37
Sub-Listing 5. Partial example of an observation in the OSLC EMS (KPI) vocabulary 37
Sub-Listing 6. Partial example of a change request following the OSCL CM specification. 37
Sub-Listing 7. Partial example of the lower pass filter as and OSLC KM artefact. 37
Listing 8. Software reuse environment through Linked Data (RDF code snippets in Turtle syntax) 37
Listing 9. SPARQL query to gather components without defects and with high-quality requirements 38

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 7 of 85

Executive Summary

The deliverable D5.8 Methodological Guide for Seamless Interoperability (b) is released by the AMASS work
package WP5 Seamless Interoperability and provides information about how to use the approaches and
tools for seamless integration of engineering tools. This deliverable is the second outcome of the task T5.4
“Methodological Guidance for Seamless Interoperability” and is based on the results from tasks T5.1
“Consolidation of Current Approaches for Seamless Interoperability” (D5.1 Baseline requirements for
seamless interoperability [10]), the outputs of the task T5.2 “Conceptual Approach for Seamless
Interoperability” (D5.2 Design of the AMASS tools and methods for seamless interoperability (a), D5.3
Design of the AMASS tools and methods for seamless interoperability (b) [11]), and on the three outputs of
the task T5.3 Implementation for Seamless Interoperability (D5.4 Prototype for seamless interoperability (a)
[12], D5.5 Prototype for seamless interoperability (b) [13], and D5.6 Prototype for seamless interoperability
(c) [14]).

The guide contains a set of rules to use the architecture and usage scenarios with detailed steps. The
intention is that third parties such as tool vendors can apply these guidelines to connect their tools to other
tools in the scope of seamless interoperability.

Anyone should be able to integrate their tools with the AMASS Platform using this guide. Moreover, this
guidance is applicable for seamless tool integration in general, for example for the following integration
frameworks: OSLC (KM, Automation), Papyrus, or ad-hoc integration.

This document focuses on the guidelines for the techniques developed in WP5 for Seamless
Interoperability. To have more general overview and guidelines for the AMASS approach including the
methods and techniques provided by other WPs, the reader is referred to D2.5 (AMASS user guidance and
methodological framework) [9]. In particular, the WP5 activities can be enriched with the link to reference
standards.

The main relationships of D5.8 with other AMASS deliverables are as follows:

• D2.1 (Business cases and high-level requirements) [8] includes the requirements that the design for
Seamless Interoperability must satisfy.

• D2.4 (AMASS reference architecture (c)) [19] presents the high-level architecture of the AMASS
Tool Platform.

• D5.1 (Baseline requirements for seamless interoperability) [10] reviews and consolidates existing
work for Seamless Interoperability.

• D5.3 (Design of the AMASS tools and methods for seamless interoperability (b)) [11] is the final
version of the AMASS design for Seamless Interoperability.

• D5.6 (Prototype for seamless interoperability (c)) [13] reports how the design in D5.3 has been
implemented in the AMASS Prototype P2.

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 8 of 85

1. Introduction

Embedded systems have significantly increased in technical complexity towards open, interconnected
systems. The rise of complex Cyber-Physical Systems (CPS) has led to many initiatives to promote reuse and
automation of labour-intensive activities such as the assurance of their dependability. The AMASS
approach focuses on the development and consolidation of an open and holistic assurance and certification
framework for CPS, which constitutes the evolution of the OPENCOSS [15] and SafeCer [16] approaches
towards an architecture-driven, multi-concern assurance, reuse-oriented, and seamlessly interoperable
tool platform.

The expected tangible AMASS results are:

a) The AMASS Reference Tool Architecture, which will extend the OPENCOSS and SafeCer conceptual,
modelling and methodological frameworks for architecture-driven and multi-concern assurance, as
well as for further cross-domain and intra-domain reuse capabilities and seamless interoperability
mechanisms (based on OSLC specifications [17]).

b) The AMASS Open Tool Platform, which will correspond to a collaborative tool environment
supporting CPS assurance and certification. This platform represents a concrete implementation of
the AMASS Reference Tool Architecture, with a capability for evolution and adaptation, which will
be released as an open technological solution by the AMASS project. AMASS openness is based on
both standard OSLC APIs with external tools (e.g. engineering tools including V&V tools) and on
open-source release of the AMASS building blocks.

c) The Open AMASS Community, which will manage the project outcomes, for maintenance,
evolution and industrialization. The Open Community will be supported by a governance board,
and by rules, policies, and quality models. This includes support for AMASS base tools (tool
infrastructure for database and access management, among others) and extension tools (enriching
the AMASS functionality). As Eclipse Foundation is part of the AMASS consortium, the
Polarsys/Eclipse community (www.polarsys.org) has been selected to host AMASS Open Tool
Platform.

To achieve the AMASS results, as depicted in Figure 1, the multiple challenges and corresponding scientific
and technical project objectives are addressed by different work-packages.

http://www.polarsys.org/

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 9 of 85

Figure 1. AMASS Prototype P2 building blocks

Since AMASS targets high-risk objectives, the AMASS Consortium decided to follow an incremental
approach by developing rapid and early prototypes. The benefits of following a prototyping approach are:

• Better assessment of ideas by initially focusing on a few aspects of the solution.

• Ability to change critical decisions based on practical and industrial feedback (case studies).

AMASS has planned three prototype iterations:

1. During the first prototyping iteration (Prototype Core), the AMASS Platform Basic Building Blocks

(see Figure 1), will be aligned, merged and consolidated at TRL41.

2. During the second prototyping iteration (Prototype P1), the AMASS-specific Building Blocks will be
developed and benchmarked at TRL4; this comprises the blue basic building blocks as well as the
green building blocks (Figure 1). Regarding seamless interoperability, in this second prototype, the
specific building blocks will provide advanced functionalities regarding tool integration,
collaborative work, and tool quality characterisation and assessment.

3. Finally, at the third prototyping iteration (Prototype P2), all AMASS building blocks will be
integrated in a comprehensive toolset operating at TRL5. Functionalities specific for seamless
interoperability developed for the second prototype will be enhanced and integrated with
functionalities from other technical work packages.

Each of these iterations has the following three prototyping dimensions:

• Conceptual/research development: development of solutions from a conceptual perspective.

• Tool development: development of tools implementing conceptual solutions.

• Case study development: development of industrial case studies (see D1.1 [18]) using the tool-
supported solutions.

1 In the context of AMASS, the EU H2020 definition of TRL is used, see
http://ec.europa.eu/research/participants/data/ref/h2020/other/wp/2016_2017/annexes/h2020-wp1617-annex-g-
trl_en.pdf

http://ec.europa.eu/research/participants/data/ref/h2020/other/wp/2016_2017/annexes/h2020-wp1617-annex-g-trl_en.pdf
http://ec.europa.eu/research/participants/data/ref/h2020/other/wp/2016_2017/annexes/h2020-wp1617-annex-g-trl_en.pdf

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 10 of 85

As part of the Prototype Core, WP5 was responsible for consolidating the previous works on specification of
evidence characteristics, handling of evidence evolution, and specification of evidence-related information
(e.g. process information) in order to design and implement the basic building block called “Evidence
Management” (see Figure 1). In addition, WP5 was responsible for the implementation of the “Access
Manager” and “Data Manager” basic building blocks. Nonetheless, the functionality of these latter blocks is
used not only in WP5, but in all the WPs, e.g. for data storage and access (of system components, of
assurance cases, of standards’ representations, etc.). For P1 and P2 prototypes, WP5 has refined and
extended the existing implementation with support for specific seamless interoperability based on the
development of new functionality, and not only the integration of available tools.

This deliverable is the output of Task T5.4 “Methodological Guidance for Seamless Interoperability”.

It is a methodological guide to use the Seamless Interoperability approach. The guide contains a set of rules
to use the architecture and usage scenarios with detailed steps. The intention is that 3rd-parties like tool
vendors can apply these guidelines to connect their tools to other tools in the scope of seamless
interoperability.

There are several possible approaches to establish an effective interconnection of various systems. The
approaches most relevant to the AMASS platform are discussed at a conceptual level in the Chapter 2.

Chapter 3 contains more detailed description of the individual approaches and some practical hints related
to their implementation.

Appendix A recommends the procedure of selecting an appropriate solution for a given integration task.
The procedure is captured in the form of EPF (Eclipse Process Framework) process description.

Appendix B contains lots of practical information about the OSLC KM approach.

Appendix C contains the list of modifications with respect to the predecessor of this document, i.e. to the
D5.7 Methodological Guide for Seamless Interoperability (a).

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 11 of 85

2. Seamless Interoperability Approaches

This section presents the technology-specific interoperability approaches that are supported and
implemented for seamless interoperability of 3rd party tools in AMASS.

2.1 Evidence Management

Assurance evidence corresponds to artefacts that contribute to developing confidence in the dependable
operation of a system and that can be used to show the fulfilment of the criteria of an assurance standard.
Examples of artefact types that can be used as assurance evidence include risk analysis results, system
specifications, reviews, testing results, and source code. Those artefacts that correspond to assurance
evidence can be referred to as evidence artefacts. The body of assurance evidence of an assurance project
is the collection of evidence artefacts managed. A chain of assurance evidence is a set of pieces of
assurance evidence that are related, e.g. a requirement and the test cases that validate the requirement.
Assurance evidence traceability is the degree to which a relationship can be established to and from
evidence artefacts. Impact analysis of assurance evidence change is the activity concerned with identifying
the potential consequences of a change in the body of assurance evidence.

Evidence management can be defined as the system assurance and certification area concerned with the
collection and handling of the body of assurance evidence of an assurance project. When managing
assurance evidence, the first step is usually to determine what evidence must be provided. Afterwards, the
evidence artefacts must be collected and might also have to be evaluated and traced to other artefacts.
During this process, it might be necessary to make changes in the evidence artefacts, and such changes
might impact other items. Once the body of evidence of the assurance project is regarded as adequate, the
process can be finished.

2.2 OSLC KM

In this section, the main building blocks of the OSLC KM specification are outlined. The OSLC KM
motivation, objectives and shape have been already introduced in the Deliverable D5.3 [11] (section 3.1.1).
Here, we recall the main concepts of OSLC and the Knowledge Management Specification:

• The Open Services for Lifecycle Collaboration (OSLC) initiative is a joint effort between academia
and industry to boost data sharing and interoperability among applications by applying the Linked
Data principles: “1) Use URIs as names for things. 2) Use HTTP URIs so that people can look up those
names. 3) When someone looks up a URI, provide useful information, using the standards (RDF*,
SPARQL) and 4) Include links to other URIs, so that they can discover more things”.

• OSLC is based on a set of specifications that take advantage of web-based standards such as the
Resource Description Framework (RDF) and the Hypertext Transfer Protocol (HTTP) to share data
under a common data model (RDF) and protocol (HTTP). Every OSLC specification defines a shape
for a particular type of resource. For instance, requirements, changes, test cases or estimation and
measurement metrics, to name a few, have already a defined shape (also called OSLC Resource
Shape). In this context, last times have also seen the creation of two new approaches for defining

data shapes: the Shape Expressions2 (ShEx) language to describe RDF graph structures and the

Shapes Constraint Language3 (SHACL), a W3C Recommendation. In both cases, these languages
allow developers to define the structure of the data to be exchanged with the aim of validating RDF
documents, communicating expected graph patterns for potential reuse in APIs and to generate

2 https://www.w3.org/2001/sw/wiki/ShEx
3 https://www.w3.org/TR/shacl/

https://www.w3.org/2001/sw/wiki/ShEx
https://www.w3.org/TR/shacl/

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 12 of 85

user interface forms and code. In the case of OSLC, the resource shape serves us to define the
structure of the data to be exchanged. There is a common core of properties and elements, the
OSCL Core vocabulary, and, then, depending on the domain there are extensions to the core
vocabulary creating a domain specific language for each artefact type to be exchanged.

Although OSLC Resource Shapes or, more precisely, data shapes, have already been defined to model
metadata and contents of different types of artefacts, there are still some types of artefacts for which there
is no shape. As examples, it is possible to find elements of a vocabulary, an ontology, an electrical circuit, a
requirements pattern or a dynamic system model to name a few. Due to this situation, a common strategy
for knowledge management is hard to draw since no common representation language for any kind of
artefact is available (here RDF is used as underlying data model but a vocabulary on top of that is
completely necessary). Therefore, a universal data shape, as presented in Deliverable D5.3 [11] (section
3.1.1), is required. The System Representation Language (SRL) is the vocabulary designed to represent
information for any type of artefact generated during the development lifecycle. This data shape gives a
response to accommodate the processes in a knowledge management strategy, see Table 1:

Table 1. Mapping of the OSLC KM approach to the knowledge management processes

Knowledge Management
Process

Support

Capture/Acquire Access OSLC repositories in the context of Systems Engineering for all
existing specifications and other RDF-based services or SPARQL
endpoints.

Organize/Store RDF as a public exchange data model and syntax, and as a universal
internal representation model to build the System and Software
Knowledge Repository (SKR).

Access/Search/Disseminate RDF query language (e.g. SPARQL), natural language or a native query
language (if any). A set of entities and relationships creating an
underlying graph.

Use/Discover/Trace/Exploit Entity reconciliation based on graph comparison.

Visualization A generic graph-based visualization framework that can show not only
entities and relationships, but also interpret them as type of diagram. E.g.
Class diagram.

Exploit Index, search, trace or assess quality based on the internal
representation model.

Share/Learn An OSLC interface on top of the SKR that offers both data and services.

Create Third-party tool that exports artefacts using an OSLC-based interface.

On the other hand, and due to the fact that a huge amount of data, services and endpoints based on RDF
and the Linked Data principles are already publicly available, a mapping between any RDF vocabulary and
the data shape is completely necessary to support backward compatibility and to be able to import any
piece of RDF data into an OSLC KM based repository.

Building on these assumptions and considering the guidelines and definitions of the OSLC Core
specification, the data shape for knowledge management (the SRL vocabulary) will conform the next basic
OSLC definitions:

1. “An OSLC Domain is one ALM (Application Lifecycle Management) or PLM (Product Lifecycle
Management) topic area”. Each domain defines a specification.

In this case, a new domain is being defined: Knowledge Management (KM).

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 13 of 85

2. “An OSLC Specification is comprised of a fixed set of OSLC Defined Resources”.

According to the Deliverable D5.3 [11], the SRL vocabulary will be used as the underlying shape for
knowledge items. The key concepts of this metamodel are the Artefact and Relationship classes. An
artefact is a container of relationships (Relationships) that can have metaproperties being that
metadata (e.g. authoring, versioning, visualization features and, in general, provenance information)
and artefact properties (e.g. maxTolerance, refTemperature, etc.). An artefact can also own other sub
artefacts to support situations such as “a model has different diagrams”. If an artefact only represents
the apparition of a term it will contain a reference to a term (element of a controlled vocabulary or
taxonomy). This term can have a grammatical category (TermTag) such as name, pronoun, adverb or
verb to name just a few. In the same manner, a semantic category (SemanticCluster) represented by a
term can be assigned to a term for instance the semantics “negative”. Thus, different terms can have
different semantics. Finally, a relationship establishes a link between n artefacts and semantics that can
be also attached to the link, e.g. “part-of” (by default a relationship will be considered as a
composition). Figure 2 presents an updated version of the SRL elements.

Figure 2. Updated UML Class Diagram of the OSLC Knowledge Management Resource Shape

3. “An OSLC Defined Resource is an entity that is translated into an RDF class with a type”. Every resource
consists of a fixed set of defined properties whose values may be set when the resource is created or
updated.

Considering that the Linked Data Initiative has seen in recent times the creation of methodologies,
guidelines or recipes to publish RDF-encoded data, we have paid special attention to follow a similar
approach by reusing existing RDF-based vocabularies. More specifically, the following rules have been
applied to create the OSLC resource shapes:

• If there is an RDF-based vocabulary that is already a W3C recommendation or it is being
promoted by other standards organization, it must be used as it is, by creating an OSCL
Resource Shape.

• If there is an RDF-based vocabulary but it is just a de-facto standard, it should be used as it is,
by including minor changes in the creation of an OSCL Resource Shape.

• If there is not an RDF-based vocabulary, try to take advantage (reusing properties and classes)
of existing RDF-based vocabularies to create the OSLC Resource Shape.

In the particular case of knowledge management, we have selected the Simple Knowledge Organization
System (SKOS), a W3C recommendation, to define concepts, since it has been designed for promoting
controlled vocabularies, thesauri, taxonomies or even simple ontologies to the Linked Data initiative.
That is why, in our model, most of the entities can be considered as a skos:Concept and we have
created the shape of this standard definition of concept in the resource oslc_km:Concept.

https://www.eca-ios.org/mediawiki/index.php/Ios_km:Concept

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 14 of 85

4. “An OSLC Defined Property is an entity that is translated into an RDF property”. It may define useful
information such as the type of the property, datatypes and values, domain, range, minimum and
maximum cardinality, representation (inline or reference) and readability.

The detailed description of all properties for every defined resource is an evolution (and extension) of
the initial shape defined in the public deliverable “Interoperability Specification - V2” of the CRYSTAL

project4, a summary of these defined properties is also presented in Appendix B. The OSLC KM
Resource Shape.

5. An OSLC Service Provider is a tool that offers data implementing an OSLC specification in a REST-
fashion.

The Figure 3 shows a functional architecture for an OSLC Knowledge Management provider. It shall be
able to process any kind of OSLC-based resource or even any piece of RDF. Once the data is in the
OSLC-KM processor, a reasoning process can be launched to infer new RDF triples (if required).
Afterwards, data is validated and indexed into the system and software knowledge repository (SKR). On
top of this repository, services such as semantic search, naming, traceability, quality checking or
visualization may be provided, generating new OSLC KM Resources. This functional architecture has a
reference implementation on top of Knowledge Manager [20].

Mapping RulesMapping Rules

RDF2RSHP
(Visitor

Patterrn)

Reasoning
process to

classify and
infer new

triples
(optional)

Validation
& RSHP

generation

OSLC KM specificationOSLC KM specification

OSLC-KM processor

OSLC-
based

resources
and RDF

Semantic
Indexing
process

OSLC KM
based

resources
RDF vocabulariesRDF vocabularies

Semantic
Search

Process &
Naming

SKR

Traceabi
lity

OSLC KM item2OSLC KM item2

OSLC KM item1OSLC KM item1

Quality
Checking

Quality rulesQuality rules

Visualiza
tion

General-purpose
view

Preferred view

RSHP graph or
Natural language query

End-users and
tools

OSLC KM interface

OSLC KM items
(OSLC resources

&
skos:Concept)

OSLC KM items
(OSLC resources

&
skos:Concept)

OSLC KM items
(mappings)

OSLC KM items
(mappings)

OSLC KM items
(OSLC resources+
quality metrics)

OSLC KM items
(OSLC resources+
quality metrics)

System Knowledge
Repository (RSHP)

Figure 3. Functional Architecture and core services for knowledge management based on the OSLC KM

2.2.1 Mapping Between Any Piece of RDF to the OSLC KM Data Shape

The emerging use of RDF to tackle interoperability issues in different contexts has created a data-based
environment in which data and information can be easily exchanged. Given this situation a strategy to map

4 The deliverable can be found in the next URL:
http://www.crystal-artemis.eu/fileadmin/user_upload/Deliverables/CRYSTAL_D_601_023_v3.0.pdf and an up-to-date
version is available in http://trc-research.github.io/spec/km/ (Last access: October 2018).

http://www.crystal-artemis.eu/fileadmin/user_upload/Deliverables/CRYSTAL_D_601_023_v3.0.pdf
http://trc-research.github.io/spec/km/

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 15 of 85

RDF-encoded data to the OSLC KM Resource Shape (hereafter KM) abound must be defined similar to the
one presented in the mapping between relational databases and RDF.

To do so a direct mapping is defined to perform simple transformations and to provide a basis for defining
and comparing more complex transformations. In order to design this direct mapping, both models are
represented using the commonly defined abstract data types set and list. This algebraic formalization of the
core fragment of RDF to be translated into KM, that is, RDF without RDFS vocabulary and literal rules allows
us to make a graph syntax transformation. The definitions follow a type-as-specification approach; thus
models are based on dependent types that can also include cardinality. More specifically, Listing 1 shows
both specifications as a kind of regular tree grammars that can be used to specify a rule-based
transformation between two grammars (denotational semantics). Thus, a transformation between RDF and
KM can be defined as a function, RDF2KM, that takes the RDF grammar, GRDF, a valid RDF graph,
RDFgraph, the KM grammar Gkm and a set of direct mapping rules, Mrdf2km (see Listing 2 where sub-

indexes refer to attributes and relationships of the elements), to generate a valid KMgraph.

𝑅𝐷𝐹2𝐾𝑀: 𝐺𝑅𝐷𝐹 × 𝑅𝐷𝐹𝑔𝑟𝑎𝑝ℎ × 𝐺𝑘𝑚 × 𝑀𝑟𝑑𝑓2𝑘𝑚 → 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝𝑔𝑟𝑎𝑝ℎ

(1) RDF Graph ::= Set(Triple)

(2) Triple ::= (Subject, Predicate, Object)

(3) Subject ::= IRI | BlankNode

(4) Predicate ::= IRI

(5) Object ::= IRI | BlankNode | Literal

(6) BlankNode ::=RDF blank node

(7) Literal ::=PlainLiteral | TypedLiteral

(8) PlainLiteral ::= lexicalForm | (lexicalForm,
languageTag)

(9) TypedLiteral ::= (lexicalForm, IRI)

(10) IRI ::= RDF URI-reference as subsequently
restricted by SPARQL

(11) lexicalForm ::= a Unicode String

(1) Artefact ::= (Set(Relationship), MetaData{0,*}) |

(Term {0,1}) |

(2) Relationship ::= (Subject, Verb, Predicate, Semantics)

(3) Subject ::= Artefact {0,1}

(4) Verb ::= Artefact {0,1}

(5) Object ::= Artefact {0,1}

(6) Term ::= (lexicalForm, languageTag, TermTag)

(7) Type ::= lexicalForm

(8) MetaData ::= (Tag, Value)

(9) Term ::= { Artefact, lexicalForm}

(10) Term ::= { Artefact {0,1}, lexicalForm {0,1}}

(11) Term ::= (lexicalForm, languageTag, TermTag)

Listing 1. Regular Tree Grammars of RDF, 𝑮𝑹𝑫𝑭, and the OSLC KM Resource Shape, 𝑮𝒌𝒎

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 16 of 85

1. RDF Graph ::= Artefact

2. Triple ::= Realtionship

3. Subject ::= ARTEFACT / ARTEFACTId =IRI, ARTEFACTTERM=(lexicalForm=label(IRI),languageTag=”EN”,SyntaxTag=
Realtionship.POS_TAGGING.CATEGORY)

4. Predicate ::= ARTEFACT / ARTEFACTId =IRI, ARTEFACTTERM=(lexicalForm=label(IRI),languageTag=”EN”,SyntaxTag=
Realtionship.POS_TAGGING.CATEGORY)

5. Object ::=

5.1. ARTEFACT / ARTEFACTId =IRI, ARTEFACTTERM=(lexicalForm=label(IRI),languageTag=”EN”,

SyntaxTag= Realtionship.POS_TAGGING.CATEGORY) /*When the object is a resource.*/

5.2. ARTEFACT / ARTEFACTId = auto_generate_id, ARTEFACTTERM=(lexicalForm= PlainLiteral.
lexicalForm,languageTag=PlainLiteral.languageTag,SyntaxTag= Realtionship.POS_TAGGING.CATEGORY)
/*When the object is a PlainLiteral.*/

5.3. ARTEFACT / ARTEFACTId = auto_generate_id, ARTEFACTTERM=(lexicalForm= TypedLiteral.
lexicalForm,languageTag= Realtionship.POS_TAGGING.CATEGORY.LANG,SyntaxTag= TypedLiteral.IRI)
/*When the object is a TypedLiteral.*/

6. BlankNode ::= ARTEFACT / ARTEFACTId =IRI,
ARTEFACTTERM=(lexicalForm=label(IRI),languageTag=”EN”,SyntaxTag=RDF.BLANK_NODE)

7. Literal ::= PlainLiteral | TypedLiteral

8. PlainLiteral ::=

8.1. Term / TermlexicalForm = lexicalForm, TermlanguageTag = Relationship.POS_TAGGING.LANG, TermsyntaxTag =
Relationship.POS_TAGGING.CATEGORY |

8.2. Term / TermlexicalForm = lexicalForm, TermlanguageTag = languageTag, TermsyntaxTag =
Relationship.POS_TAGGING.CATEGORY

9. TypedLiteral ::= Term / TermlexicalForm = lexicalForm, TermlanguageTag = Relationship.POS_TAGGING.LANG,
TermsyntaxTag = IRI

10. LexicalForm ::= TermlexicalForm

11. IRI ::= lexicalForm=label(IRI)

Listing 2. Set of mapping rules, 𝐌𝐫𝐝𝐟𝟐𝐤𝐦, to transform RDF in OSLC KM Resource Shape

2.2.2 Initial Assessment of the OSLC KM Data Shape

Taking into account the functional architecture presented in Figure 3 to exploit OSLC/RDF/SRL, a new
question arises: Which is the gain of having a common representation model?

In order to address this question, it is necessary to establish a context in which data and information is
being exchanged. Assuming that there is a common and shared data model (RDF) and a set of standard
protocols to access this information (HTTP-based technology), we will focus on the gain of using the
presented approach to provide a set of core and common services.

Let sk be a service providing data and information, according to the OSLC principles. To represent the data
exchanged in this service, a data shape comprising a set of RDF-based vocabularies, VRDF, is being used.

Let also ck be a client of this service sk, if this client wants to automatically consume and process the data
provided by sk then it must necessarily process the set VRDF so that, at least, #VRDF (cardinality of the set
VRDF) mappings are necessary.

If we generalize this situation to an environment in which there is a set S of service providers publishing

data under a set of RDF-based vocabularies where VRDF
sk represents the set of RDF-based vocabularies used

by the service sk, a client of this set S must create ∑ #VRDF
sk mappings.

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 17 of 85

Furthermore, if we assume that we will likely have a set of clients C, and the set of mappings or adapters
will not be publicly shared, we can easily infer that the total number of required mappings (in the worst

case) to provide an interoperable environment raises to: #C ∙ ∑ #VRDF
sk which implies a large amount of

time and effort for developing the same task.

On the other hand, the presented approach needs just one mapping, since there is a set of generic mapping
rules between any RDF-based vocabulary and the KM shape. Thus, in order to provide a set of core
services, see Figure 3, only one set of mapping rules is required, easing the task of consuming data
exchanged under different RDF-based vocabularies, by providing not just a data model for this exchange,
but a data model to universally represent any kind of information.

There is also another positive side-effect of applying the presented approach, if a service sk wants to

publish a certain data set then it must necessarily use a set of RDF-based vocabularies VRDF
sk to represent

such information.

2.3 V&V Manager and OSLC Automation

OSLC Automation specification builds on the Open Services for Lifecycle Collaboration (OSLC) Core
Specification to define the OSLC resources and operations supported by an OSLC automation provider. The
full specification is available at:
http://open-services.net/wiki/automation/OSLC-Automation-Specification-Version-2.1/

Optionally, the integration of FBK V&V Tools based on OSLC Automation could be used without the V&V
Manager as described in section 2.6.

OSLC Automation allows not only automation of tasks and processes, but also an integration of any non-
interactive tool without writing specific tool adapter (for example many command line tools). V&V
Manager plugin automates validation and verification of requirements, system architecture, and
behavioural models using OSLC and verification servers, where verification and validation backend tools are
installed.

In order to integrate a new verification and validation tool on the verification servers the following process
shall be followed:

1. Install the tool on the verification servers.

2. Register the tool on the Proxygen (Facebook's C++ HTTP Libraries) server application. The server
needs to know:

• The tool binary name to be executed – only if it is different from the name stated in the OSLC
Automation Plan.

• The tool parameters – only if the parameters have to be handled differently than as command
line arguments or as a content of a configuration file parameters.

• Artefacts under verification (contracts, requirements, system architecture, system design) –
only if the artefacts have to be handled differently than just to be passed as arguments in the
form of filenames.

In summary, if the tool binary name, its parameters and the artefacts under verification could be passed to
the command line tool in a standard way, the V&V tool does not have to be registered by the verification
server application.

2.4 Ad-hoc Tool Integration

The Reuse Company toolset is used as a basis for the study of ad-hoc tool integration. TRC’s RQS suite
comprises different ad-hoc connectors to enable retrieving requirements from them and run quality
assessment processes.

http://open-services.net/wiki/automation/OSLC-Automation-Specification-Version-2.1/

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 18 of 85

The general idea to create ad-hoc connectors is to identify a suitable API or strategy to exchange
information with the desired source. Once this mean is identified, there should be a process to validate it,
this can be done revising all the functions needed to retrieve, and specially to send information entity by
entity and in sets to speed up the integration.

There have been new additions to this set of ad-hoc connectors in the scope of the AMASS project:

• Integrity: proprietary RMS tool by PTC.

• ReqIF: it is a standard to represent requirements in XML that can be stored in a textual file.

• Rhapsody: even if Rhapsody is focused on modelling, there are requirements being part of those
models, so the integration will focus on retrieving them, not the model itself.

2.4.1 ReqIF Connector Integration

This is a new ad-hoc connector created to retrieve and author requirements from ReqIF specifications (see
Figure 4).

ReqIF is a well-known standard to represent requirements in XML format. Its structure allows to have
several specifications within one project. Indeed, every single ReqIF XML file is considered as a project.
Within the project, it may contain 0..N blocks or Specifications. Finally, each Specification may contain
both, hierarchically-related Specifications and Objects (requirements). In addition to that, ReqIF allows
traceability by creating Relations between Objects within the same ReqIF file.

Despite of the fact that ReqIF is a well-known standard, all the information that is contained within the file
is meta-defined. It means that it does not contain fixed attributes to contain the different attributes of the
Objects, but contains meta-definition of attributes that are part of the Objects. So that every single
attribute is defined in advance within the HEADER of the ReqIF file, and then mapped in the Objects
definition.

For that reason, the ReqIF ad-hoc connector needs to pre-define a mapping of the attributes of every single
ReqIF Specification to fulfil the RQA/RAT metamodel. This is compulsory to let the tools know where to
extract the Statement, Heading, Author, etc., from each ReqIF Object (requirement).

Figure 4. ReqIF metamodel

The strategy used for this ad-hoc integration has been using the programming framework, in this case .NET
frameworks for File and XML interoperability.

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 19 of 85

2.4.2 PTC Integrity Integration

This is a new ad-hoc connector created to retrieve and author requirements from PTC documents.

PTC Integrity follows a typical client/server architecture with the only specific characteristic that the server
is a web server composed of many different interfaces. Furthermore, the client has also some possible
interactions via its API and coding it in C language.

The integration has been accomplished (Figure 5) by consuming some of these web service interfaces for
RQA and RAT tools; and for authoring capabilities on top of the Integrity client (RAT Integrity Plugin), some
interactivity has been achieved by using the Integrity client API.

Finally, the integration for the RAT plugin has not been as seamless as done with other RMS tools. Every
other RAT plugin has a feature (whose name is RAT Inline), which allows the user to see directly in the
requirements grid the quality assessment without opening any other user interface.

The problem arose when understanding the Integrity architecture that the changes are committed to the
server and the triggers reacting to these changes were to be executed on the server, that would create an
incredible amount of network traffic from RAT Integrity Plugins to the Integrity server and, in addition, the
server would be overloaded executing all the trigger actions for all the changes of all the users. However, in
other tools, the triggers have the possibility to be handled by the client which is the source of the change
that allows to distribute the computing load and to reduce the network traffic to the minimum.

Figure 5. Integrity connector architecture

2.4.3 Rhapsody Integration

This is a new ad-hoc connector created to retrieve requirements from Rhapsody projects. Even if a
Rhapsody project is composed of many different models, these models can have requirements related to or
inside them, the integration will focus on retrieving and authoring them, not the models themselves.

The Rhapsody architecture is composed of an editing environment working with files stored either locally in
the computer or in a network resource. They could also be under management control using any of the
well-known version control management tools, such as Git, Subversion, etc.

Rhapsody allows to interoperate with the content of the project using a Java interface as well as other .NET
interface, but the later one is obsolete, so it does not allow us to implement our desired functionalities.

The Java interface allows to subscribe handlers to triggers that are fired inside Rhapsody. Then by creating
the suitable Java function and subscribing to the desired trigger, any functionality can be implemented.

The integration between RQS tools and Rhapsody has been done using this Java interface. The architecture
(see Figure 6) is composed of three different elements:

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 20 of 85

• RAT Rhapsody plugin: written in Java, subscribes to the suitable triggers in Rhapsody, such as
creating and editing requirements, and transfers control to a service (XAT Resident Process) written
in .NET and available via a resident process within the same computer.

• The second component of the architecture is written using .NET and consists of two different parts:

o XAT Resident Process: which it is in charge of using the already existing technology
provided by TRC to author requirements via a COM object after receiving any trigger
handler.

o Rhapsody COM interface: it is an interface in charge of communicating the XAT Resident
Process and Rhapsody. XAT Resident Process commits the changes performed in the RAT
COM object back in Rhapsody via using this interface.

• The third element is the RAT COM object that allows to perform any quality assessment and
enables guided authoring using patterns, and makes this functionality also available for other RMS
tools plugins.

All these three elements must be deployed in the same computer.

Finally, some major integration points to be mentioned are:

• The requirement format for Rhapsody is HTML and the RQS tool works authoring requirements in
RTF format, so a conversion process is performed before using the RAT COM object.

• The RAT COM interface has been improved to allow editing requirements having hyperlinks to any
other Rhapsody model element at any position of the requirement.

• RAT Edition window is not possible to be modal on top of Rhapsody with this architecture.

Figure 6. Rhapsody connector architecture

2.5 Papyrus Interoperability

In this section, we describe different ad-hoc connectors to enable exporting and importing model elements
from Papyrus. The ad-hoc connectors are available as Papyrus additional components. Note that these
components have already been outlined in D5.3 [11]. Here, we recall them and outline their main
specifications.

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 21 of 85

CDO Model Repository integration

Papyrus provides integration with CDO model repository technology for sharing and real-time collaborative
editing of Papyrus models. This feature enables to connect to distant repositories using online or offline
check-out. The model data are not physically store on the local machine. With the CDO integration, it is
possible to create new or open existing Papyrus models in a checkout, it works similar to local workspace
projects. One can also import existing model from its local workspace into the distant CDO repository. A
functionality helps the user check for cross-references dependencies. It is recommended that any model
that reference or is referenced by the initially imported model must also be imported into the repository;
otherwise, the model could not be correctly opened if Papyrus is not connected.

RSA integration

Papyrus provides mechanisms to import model elements from RSA/RSA-RTE tool. It supports class,
Composite Structure, Object, Profile, Activity, and State Machine diagrams import. The plugin is available in
Eclipse Neon. However, it must work on old and newer versions. The integration has been developed in
Java and using QvTo transformation.

To import a RSA model into Papyrus, the user must perform the following steps:

1. Copy the .emx or .epx file into an empty (not a Papyrus) project.

2. Use the dedicated "Import RSA Model/Profile" menu to import the corresponding Papyrus model
(file *.uml, *.notation and *.di) by right clicking on the RSA files.

To use the Papyrus RSA model importer, the user does not need to have RSA installed on its machine.
Further information on this feature is available in the Eclipse Help Content.

Rhapsody integration

Papyrus supports importing SysML Internal Block, Parametric and Block Definition Diagram from Rhapsody
tool. The migration tool, done using QvTo language, has been developed with Eclipse Neon and IBM
Rhapsody 8.0.3, but it must support previous and next versions.

Because Rhapsody and Papyrus are representing differently similar concepts, the Rhapsody to Papyrus
import process is implemented as a set of mapping rules between those two representations. To express
the mapping rules, a description of Rhapsody representation of UML and graphical concepts has been
implemented in the form of an Ecore metamodel. The metamodel has been built thanks to an analysis of
two complementary public information: 1) a public java API providing a first list of the concepts and their
inheritance relationship; 2) a list of 150+ examples provided in the Sample directory. Those examples
provided a good overview of all the concepts involved in Rhapsody models and how they are serialized in
textual files. However, an automated update process is provided as a “developer feature”: when a user
provides a new Rhapsody model containing concepts that have not been encountered in the analysed
examples, the metamodel update with those new concepts can be automated.

To import the Rhapsody model, the plugin provides the API to convert a ''*.rpy'' into a Papyrus model
(''*.uml'', ''*.notation'', ''*.di'' and ''*.properties'' files) following 2 steps:

1. The *.rpy file is converted into a *.umlrpy which is the same model described using the EMF
Rhapsody metamodel.

2. the QVTO transformation are automatically called to import the model described in
the *.umlrpy file into a Papyrus model (file *.uml, *.notation and *.di).

To use the Papyrus Rhapsody model importer, the user does not need to have Rhapsody installed on its
machine. Further information on this feature is available in the Eclipse Help Content.

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 22 of 85

ReqIF integration

Papyrus provides a traceability solution for connecting SysML elements with ReqIF requirements based on
the ReqIF OMG Document Number: formal/2013-10-01 Standard. This feature is implemented in the
Papyrus Req tool extension.

To use the import feature, the user must have a SysML model and select the package where ReqIF
elements will be imported. The menu “File Import Papyrus Import ReqIF” from Papyrus categories
allows to choose the ReqiF file, then the type of requirements to process. A simple user can import instance
of requirements inside the Papyrus tool (with relations). An advanced user can, in addition, import new
types of requirements inside the Papyrus tool by defining its own profile.

To export the UML elements into a ReqIF, the user must select the model or package where the elements
to export are stored. Then, the «File Export export ReqIF form the papyrus Categories” menu allows
to generate a ReqFile.

Papyrus also offers native features to export and import requirements from excel and csv files, by
copy/paste, drag and drop features. See Eclipse Help Content for further details.

Simulink integration

Papyrus has developed a Matlab/Simulink integration (import and export) for co-modelling and co-
simulation. The integration aims in one hand at specifying and validating SW functionality. On another
hand, it aims at validating the control system performances and define the embedded SW. The plugin is
supported by an EMF-based implementation and (QvTo, Acceleo) model-based transformations. It uses
Ecore metamodels to generate Stateflow and Simulink Data Dictionary concepts from SysML models and
UML state machines. The integration can import/export the models as FMU model for an FMI-based
simulation. Hence, other models, e.g., from Dymola, OpenModelica, are also supported.

This feature is not available as Papyrus additional components, but it is provided to the AMASS consortium
for free for the duration of the AMASS project.

2.6 V&V Tool Integration

The integration of the V&V tools based on OSLC Automation using V&V Manager is described in section 2.3.
Main differentiator is that V&V Manager allows distribution of the verification and validation tasks to
multiple servers.

Concerning the V&V Integration with the FBK Tools, two modalities are available: the first one allows to
invoke the FBK tools locally by passing the artefacts and the command via files; the second one performs
the same functionalities via the OSLC-Automation adapter. It is notable that from the consumer side, these
kinds of the integration are almost transparent.

Going more in detail:

Integration of FBK Tool via files

The architecture of the integration towards FBK tools via file is depicted in Figure 7. The tool adapter takes
in charge the request from CHESS, converts the model to the Verification tool format, setups the artefacts
and the commands files, sends them to the Verification Tools, and in the end returns the result to CHESS,
ready to be shown grafically.

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 23 of 85

Figure 7. FBK Tool Integration via files

Integration of FBK Tool via OSLC

Figure 8 represents the same functionality described above but using the OSLC approach. As mentioned
above, here we choose to use the OSLC Automation Domain for the integration toward the Verification
Tools. Each V&V functionality is mapped to an Automation Plan instance, then the Automation Request is
set with the parameters (artefact, contract name, properties to be verified, etc.) and finally the Automation
Result contains the output of the V&V functionality that has been executed.

Figure 8. FBK Tool Integration via OSLC Automation

2.7 Seamless Tracing

As discussed in D5.3 [11], in nowadays industrial settings, the safety engineering life-cycle artefacts are the
result of various and not integrated tools. As a consequence, seamless traceability, i.e. the relationships
between artefacts during the safety engineering lifecycle, represents a serious challenge.

Within AMASS, such challenge is tackled by proposing solutions aimed at overcoming the gaps between
different types of safety engineering tools and general-purpose tools. In this deliverable, we briefly recalled
the solutions that are expected to be used to guide the AMASS platform users on how to enable seamless
tracing.

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 24 of 85

• The Eclipse project Capra [1] follows the approach of point-to-point integration with only partial
data import. Capra aims to provide a modular framework for tracing. Everything besides a small
generic core is interchangeable and any number of new trace target types can be defined in new
Eclipse plugins.

There is a conceptual overlap between tracing to external sources and evidence management as
the items being traced in a safety case will often (but not always) be used as evidence. It is
recommended to trace the appropriate evidence objects, if those are available, for several reasons.
Firstly, tracing with evidence gives the traced artefact its semantics, which is important for safety
assessments. Secondly, evidence can be updated to a new version by repeating the process that
created the artefact. This can be helpful for impact analysis. Finally, it removes redundancies from
the model as only one type of artefact or evidence wrapper needs to be created.

• OSLC (as well as OSLC extensions) can be used for the purpose of automatically generating safety
cases, and for enabling continuous self-assessment [3], [4], [5], [6] and [7]. This solution could be
selected for those sub tool-chains, were OSLC adaptors are available.

2.8 Collaborative Editing

Besides seamless traceability across tool boundaries, the editing and authoring of all kinds of safety case
data in teams is a big challenge. Especially when it comes to concurrent (multiple users work independently
on the same project data) or even collaborative editing (multiple users work concurrently on the same
data). Both aspects become even more challenging when today’s diverse tool landscape and IT
infrastructures are taken into consideration.

In principle most existing configuration management solutions like Subversion, GIT but also CDO or Google
Docs support teamwork in one or another way. Although they are quite different in technology and also in
features, they are common - and thus comparable - in the fact that “users create change-sets which are
applied to a central data model after a certain delay or time”. Note that we treat a change-set here as a
side effect of collaboration and not side effect of version management. An example: in Subversion the user
creates an offline working copy of the shared data, is editing them (potentially offline) and committing the
change set to the Subversion. Time between checkout and commit might be rather long and no connection
to the server is required during that time. Google docs is more or less permanently sending small change-
sets (so called mutations) to the Google server and changes are applied more or less immediately and by
sophisticated merge and transformation logic to the shared data model to avoid conflicts and tedious
merges. Figure 9 shows different technologies and their positioning on a XY graph, showing the relation
between assumed time between creation and application of a change set and the chance to produce a
conflict.

Within AMASS this topic was tackled with prototype solutions to support real time collaboration in core
components of the AMASS platform or at least in connected tools. Note that most editing facilities in the
AMASS prototypes and also persistency was mainly based on file system (collaboration only with
Git/Subversion) or CDO. The main aim was to “move closer to the left”, i.e. to offer a solution that “feels
more like Google than CDO” but still is applicable to core technologies as EMF/Eclipse.

Conceptually the collaborative real-time editing is based on a simple architecture (see Figure 10):

• There is a server component that maintains EMF models / resources.

• While editing, they are treated as master.

• Clients connect to the server and may retrieve the initial state or may upload an initial state of the
EMF model.

• After that, small EMF changes are sent by all clients, applied by the server in the order of
appearance (incoming at server) and propagated to all connected clients so they can apply changes
from other clients to keep in sync.

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 25 of 85

• There is no transaction between client and server but changes are applied in sequence and
“exclusively” on the server side so any incoming change that produces a conflict (e.g. Due to
latency and late income) is rejected and not applied.

• Clients have to communicate to the server to keep in sync.

• Clients may have to revert changes in case they were rejected by the server.

Figure 9. Comparison of revision control systems regarding change sets

Figure 10. Architecture or centralized collaboration server

This approach is somewhat similar to what was presented earlier in the AMASS project and what is similar
to the “EMF Collab” project, which unfortunately seems to be dead. The current prototype is therefore
based on a commercial product which offers similar features on a mature state. A lightweight bus is used
between server and any client. Clients may register to the bus at any time to send or receive changes. The
bus has several “channels”, one is used to exchange change sets, but others are used to manage
authentication, data access, browsing etc. A third channel is used to exchange information about which
user is doing what at the moment to support collaborative features.

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 26 of 85

2.9 Safety/Cyber Architect Tools Integration

The integration of the Safety Architect and Cyber Architect tools based on the mapping between CHESS and
Safety Architect is described in the deliverable D5.6 [14]. In this deliverable, the solutions that are expected
to be used to guide the AMASS platform users is briefly recalled in Figure 11.

The mapping allows the import of a CHESS model scope (Requirement View, System View, Component
View, Deployment View and Analysis View) in Safety Architect. The dependability view is also considered
during the import. For example, CHESS port failure mode stereotypes are mapped to Safety Architect
specific failure Modes. The methodological guidance about how to use Safety/Cyber Architect tools
integration is presented in Section 3.8.

Figure 11. Interoperability between the AMASS platform (CHESS, OpenCert) and Safety/Cyber Architect tools

2.10 Data and Security Management

The Security Management allow creating access policies to models stored in the AMASS CDO Centralised
Repository. This access policies will consist in managing users, groups of users and roles:

• Users represent a user of the AMASS Platform.

• Users may be grouped together into Groups of Users. One user can belong to several groups.

• Roles restrict the access and the access rights over the existing data stored by the Data Module in
the CDO Repository. A role can be assigned to a user or to a groups or users, that is, to all the
members of the group.

The Data Management is responsible of requesting and checking the users access credentials to use AMASS
Platform and if they are authorized users, only show to them the data according to their role/s. The Data
Management also controls the permissions over the accessible data, avoiding write operation performed
by not authorized users and it also restricts the access to certain AMASS Platform functionalities according
to the user’s predefined role.

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 27 of 85

3. Methodological Guide

This chapter presents methodological guidance about how to apply seamless interoperability concepts in
AMASS. Each section of this chapter presents a specific technology-dependent guidance that is intended to
help in implementing the described technology.

Of course, not all the listed means of interoperability need to be applied in a given situation. In order to
also support the selection of the most appropriate technological basis for the developed communication
between tools, the Appendix A. Methodological Guide for Seamless Interoperability – EPF Process
Description is included. The evaluation process to decide which technological section is applicable for the
integration of a given tool, based on the requirements on the integration, is described in this appendix in
the form provided by the EPF Composer.

Figure 12. Overview of the development of needed interoperability

Figure 12 is an excerpt of the EPF process description. It contains the suggested workflow for creation of
new communication channels between tools. The phases Requirements and Decision Making should guide
the developer to an appropriate section of this Methodological Guide. These two phases can be common to
all new interoperability efforts and are described in detail in the Appendix A. Methodological Guide for
Seamless Interoperability – EPF Process Description. The third phase Design and Implementation has its
specific features for each technology. Therefore, the relevant guidance is not included in the general
appendix, but it is provided by the individual sections of the chapter.

3.1 Evidence Management

This section presents guidance about how to use evidence-related concepts in AMASS for evidence
management in Prototype P1. The section has been divided according to the four main functional areas for
evidence management in the AMASS Tool Platform: Evidence Specification, Evidence Traceability, Evidence
Evaluation and Evidence Change Impact Analysis.

3.1.1 Evidence Specification

This section provides information about how the artefacts of an assurance project should be specified,
focusing on three main aspects.

Artefact Definition

For each instance of a given artefact type (e.g., requirement), an artefact definition must be specified (e.g.
Req1, Req2, and Req3). Otherwise, it would not be possible to track their lifecycles independently (e.g.

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 28 of 85

versions of an artefact definition). The notion of artefact type mainly corresponds to Reference Artefact,
but this can vary depending on the nature or purpose of evidence management. Several artefact definitions
and their corresponding artefacts can represent the materialisation of a given Reference Artefact.

Artefact granularity

The granularity of the artefacts of an assurance project can vary: set of documents (e.g., system
specifications), document (e.g., requirements specification), parts of a document (e.g., a given single
requirement), etc. The granularity will depend on the purpose of an artefact and on some traceability-
related purposes. As a rule of thumb, an artefact (and thus an artefact definition) must be specified if: (1)
the artefact must be linked to others; (2) the lifecycle of the artefact must be tracked, or; (3) the artefact is
used in some other general AMASS area (e.g. as evidence for argumentation).

Company- or domain-specific practices

The concepts used for evidence management are generic and aim to support practices across different
application domains and companies. However, there exist specific practices that are not directly and
explicitly represented in the concepts, and a company must be aware of this. As an example, a company
might have its own criteria for evaluating the artefacts of its assurance projects. In this case, evaluation is a
broad concept that supports company-specific evaluation practices.

3.1.2 Evidence Traceability

Possible relationships between evidence artefacts include:

• Constrained_By: a relationship of this type from an artefact A to an artefact B documents that
artefact B defines some constraint on artefact A, e.g. source code can be constrained by coding
standards.

• Satisfies: a relationship of this type from an artefact A to an artefact B documents that artefact A
realisation implies artefact B realisation too, e.g. a design specification can satisfy a system
requirement.

• Formalises: a relationship of this type from an artefact A to an artefact B documents that artefact A
is a formal representation of artefact B, e.g. a Z specification can formalise a requirement
specification in UML or natural language.

• Refines: a relationship of this type from an artefact A to an artefact B documents that artefact A
defines artefact B in more detail, e.g. a low-level requirement can refine a high-level requirement.

• Derived_From: a relationship of this type from an artefact A to an artefact B documents that
artefact A is created from artefact B, e.g. source code can be derived from a system model when a
source code generator is used.

• Verifies: a relationship of this type from an artefact A to an artefact B documents that artefact A
shows that artefact B properties are true, e.g. model checking results can verify a requirement.

• Validates: a relationship of this type from an artefact A to an artefact B documents that artefact A
shows that that artefact B properties can be regarded as valid, e.g. a test case can validate a
requirement.

• Implements: a relationship of this type from an artefact A to an artefact B documents that artefact
A corresponds to the materialisation of artefact B, e.g. source code can implement an architecture
specification.

Two relationships are already explicitly supported in the AMASS Tool Platform: Evolution_Of
(precedentVersion) and Composed_Of (artefactPart).

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 29 of 85

3.1.3 Evidence Evaluation

By evidence evaluation we mainly refer to the activity targeted at judging the adequacy of an artefact and
the results associated with this activity. This activity is performed by specifying evaluation events for an
artefact and associating the event with a specific evaluation (i.e., its information).

Criteria for evidence evaluation can include:

• Completeness: unknown, incomplete, draft, final, obsolete.

• Consistency: unknown, informal, semiformal, formal; other options could be unknown, consistent,
inconsistent, or unknown, informally consistent, semi-formally consistent, formally consistent.

• Originality: unknown, derivative, original.

• Relevance: unknown, low, mediumLow, medium, mediumHigh, high.

• Reliability: unknown, unReliable, nonUsuallyReliable, usuallyReliable, fairlyReliable,
completelyReliable

• Significance: unknown, low, mediumLow, medium, mediumHigh, high.

• Strength: a numerical value between 0 and 100.

• Trustworthiness: unknown, low, mediumLow, medium, mediumHigh, high.

• Appropriateness: unknown, low, mediumLow, medium, mediumHigh, high.

As mentioned above, a company can have its own evidence evaluation criteria. The most common
approach in industry for evidence evaluation is the use of checklists, thus conformance to a checklist or to
some of its items can be used as evaluation criterion.

3.1.4 Evidence Change Impact Analysis

Evidence change impact analysis can be necessary in the different general situations listed below. This
impact analysis can be triggered by the changes in different artefact types mentioned, which can also be
affected by changes. The insights below are based on the results of a large industrial survey [2].

The situations in which the respondents had to deal with evidence change impact analysis are:

• Modification of a new system during its development

• Modification of a new system as a result of its V&V

• Reuse of existing components in a new system

• Re-certification of an existing system after some modification

• Modification of a system during its maintenance

• New safety-related request from an assessor or a certification authority

• Re-certification of an existing system for a different operational context

• Re-certification of an existing system for a different standard

• Re-certification of an existing system for a different application domain

• Changes in system criticality level

• Independent assessment of the risk management process

• Hazards identified after the fact

• Re-certification for temporary works

• Accident analysis

• System of system reuse

Regarding the artefact types involved in evidence change impact analysis, Table 2 shows the median
frequency (5-point Likert scale: never, few projects, some projects, most projects, and every project) with

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 30 of 85

which different artefact types trigger impact analysis and are affected by changes in the body of the safety
evidence.

Table 2. Role of different artefact types in evidence change impact analysis

 Impact Analysis Trigger Affected by Changes

System Lifecycle Plans Some projects Few projects

Reused Components Information Few projects-Some projects Few projects

Personnel Competence Specifications Few projects Few projects

Safety Analysis Results Most projects Some projects

Assumptions and Operation
Conditions Specifications

Some projects Some projects

Requirements Specifications Most projects Some projects

Architecture Specifications Some projects Some projects

Design Specifications Most projects Some projects

Traceability Specifications Most projects Some projects

Test Case Specifications Most projects Some projects

Tool-Supported V&V Results Some projects Few projects

Manual V&V Results Some projects Most projects

Source Code Most projects Some projects

Safety Cases Some projects Some projects

3.2 OSLC KM

Following, the methodology to apply the OSLC KM approach will be presented through a case study based
on a Linked Data architecture in which different software components and tools are integrated to provide a
service for software reuse. This case is presented following the next steps:

1. Motivation and rationale

2. Selection of software artefacts and tool providers

3. Implementation of a Linked Data architecture for integration and interoperability

4. Results and discussion

5. Research Limitations and Lessons Learnt

3.2.1 Motivation and Rationale

An organization developing a cyber-physical system, a rugged computer, is looking for a solution to
integrate all tools involved in the development lifecycle. Instead of using a complete ALM or PLM suite,
they follow a decentralized and federated approach where different tool providers can be found.

They use a requirements management tool (RMT) for gathering and storing stakeholder and system
requirements. These requirements are written using boilerplates in combination with a requirements
quality checking tool to ensure correctness, consistency and completeness. They also have tools for
software (UML) and dynamic systems modelling. Besides, changes and issues that can occur during the
project are also registered and managed as well as the test cases and their results. A continuous integration
server is another tool that provides to the development team a way to monitor changes in source control
and trigger any failure during the build-phase. Finally, the software artefacts that are released are expected
to be reused in other products.

In this context, the organization is looking for the best way to integrate and reuse all the artefacts that are
being continuously generated. Currently, ad-hoc integrations are being made. For instance, the

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 31 of 85

requirements quality checking connects to the RMT through an interface that offers requirements under a
non-standard protocol and data model. Moreover, and due to the cost of the licenses, the organization is
seeking new RMT providers but, so far, they have not made any decision due to the integration costs of the
new tool in the development lifecycle.

On the other hand, it is not possible to unify names in all artefacts that are generated. Sometimes
requirements contain entities that do not appear in the models or test cases, preventing the possibility of
recovering traceability links. Thus, the cost of reusing any existing artefact is becoming higher due to the
fact that is not possible to completely trace a component from its inception to the final release. In
conclusion, this organization is facing the following issues:

1. Lack of a product breakdown structure to drive the development lifecycle.

2. Name mismatches.

3. Point-to-point and ad-hoc integrations between a client and a tool provider.

4. A plethora of heterogeneous protocols and data models (most of them non-standard ones).

5. Impossibility of reusing artefacts since traces cannot be recovered.

6. Lack of a software knowledge repository to store and search for artefacts (metadata and contents).

7. Poor documentation mechanisms. Lack of graphical view of artefact dependencies.

8. Standalone applications not ready for a collaborative web environment.

9. Vendor lock-in.

Due to all these reasons, they are interested in a holistic and standard approach that can tackle these
issues, easing the development lifecycle and boosting the reuse of existing and future artefacts.

3.2.2 Selection of Software Artefacts and Tool Providers

Building on the previous scenario, some tools have been identified to carry out the functionality required in
the development lifecycle, see a summary in Table 3:

• Concept and Requirement Pattern. A domain vocabulary comprising concepts and relationships is used
to ensure that requirements only contain domain terminology. A domain expert has devised this
vocabulary, as well as the product breakdown structure in which the composition of the product under
development is formalized. The creation of a domain vocabulary requires a great effort in terms of time
and human resources. That is why a domain vocabulary is expected to be reused in further
developments. On the other hand, a requirement pattern is defined as a sequence of restrictions with
place-holders for specific terms and values. It constitutes a particular knowledge statement that can be
syntactically and semantically described using the domain concepts and relationships. The use of
patterns for easing the writing of requirements is a widely used practice that helps engineers to avoid
inconsistent specifications. Both, concepts and requirement patterns, are knowledge items that are
stored in the Knowledge Manager tool. This tool implements the OSLC KM specification and knowledge
items can now be accessed as web information resources following the Linked Data principles.

• Quality Metrics. More specifically, requirements quality metrics are a set of quantitative measures that
serve engineers to verify the quality of a requirements specification (consistency, completeness and
correctness). They are based on the INCOSE (International Council on Systems Engineering) guidelines
for writing good requirements. The current set comprises 58 different metrics that are mainly focused
on consistency. These metrics have been implemented in the Requirements Quality Analyzer (RQA) tool,
and an OSLC interface has been implemented to expose these metrics through a REST and RDF
interface.

• Change/Issue. Tracking of changes and issues in a software project is a key activity for allowing
individuals or teams of developers to keep track of existing bugs in their software products. Most
software project repositories, such as Github or Bitbucket, contain a service for tracking issues. In this
case study, Bugzilla has been selected as change/issue service provider. This service has been already
wrapped in an OSLC interface implementing the OSLC Change Management 2.0 specification.

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 32 of 85

• Test. This is a kind of artefact generated during the development lifecycle for testing software at
different levels and with different purposes. Commonly tests are executed in a test plan to ensure that a
program, module or interface with an associated control data is operating in the proper way. There are
different types of testing techniques such as unit testing, performance testing, functional testing or
black and white box testing. In this case study, the IBM Quality Manager application within the IBM Jazz
Platform has been selected for accessing test cases and plans. This service implements the OSLC Quality
Management 2.0 specification.

• Software Model. A conceptual model is a model comprising different concepts, relationships and
documentation. Models are used to represent people’s knowledge or understanding about a particular
domain or situation. UML provides a graphical notation to draw diagrams to represent software models.
Basically, it is possible to have static (e.g. classes) and dynamic (e.g. states) diagrams. In this case study,
the OSCL adapter on top of the Magic Draw tool (a UML 2.0 metamodel compliant tool) has been
selected to access UML models. This OSLC layer has been released as part of the work within the OSLC
MBSE Working Group at OMG.

• Dynamic System Model. It is a particular type of model that represents relationships through
mathematical equations. For instance, an electric circuit model is a kind of Dynamic System Model used
to define and simulate the behaviour of a circuit. The Modelica language, a non-proprietary, object-
oriented, equation-based language to model complex physical systems, has been selected to define
dynamic system models. In this case, there is neither OSLC specification nor formal ontology to
represent and share dynamic system models. That is why the OSLC KM specification will be used for
these purposes, boosting the interoperability among tools in the development lifecycle.

• Automation Resource. In the context of OSLC, an automation resource is a kind of resource managed by
a service. They are usually part of an automation plan that generates some result. As an example, the
use of a tool for continuous integration can be seen as a service that automatically manages a set of
resources (e.g. source code, third-party libraries or test cases) for building a project (result). In this case
study, the Jenkins/Hudson CI service and the OSLC adapter implementing the OSLC Automation
Resource 2.0 specification have been selected for demonstration purposes.

According to this configuration, there is a set of OSLC-based services that are expected to consume and
provide different domains or types of artefact. In the specific case of dynamic system models, the Modelica
language has not been promoted to the OSLC initiative yet, so any client aiming at consuming a Dynamic
System Model should implement its own parser and interpreter of the language. The main advantages of
having a common data shape for any knowledge item or software artefact seems clear when no shape is
already defined or when a common software knowledge repository is required (i.e. when information must
be stored under the same model).

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 33 of 85

Table 3. Artefacts, tool provider and OSLC adapters

ID Type of Artefact Tool (Provider) OSLC Domain OSLC Adapter

1 Concept and
Requirement Pattern

knowledgeMANAGER

(The Reuse Company Inc.)
Knowledge Management
(OSLC KM)

OSLC4NET5

2 Requirement IBM DNG (Doors Next
Generation) (IBM)

Requirement
Management (OSLC RM)

Eclipse Lyo6

3 Quality metric Requirements Quality
Analyzer

(The Reuse Company Inc.)

Estimation and
Measurement metrics

 (OSLC EMS)

OSLC4NET

4 Change/Issue Bugzilla

(Mozilla)
Change Management
(OSLC CM)

Eclipse Lyo7

5 Test IBM DNG Quality Manager

(IBM)
Quality Management
(OSCL QM)

Eclipse Lyo8

6 Software Model Magic Draw

(No Magic Inc.)

MBSE

(OSLC KM)
Eclipse Lyo9

7 Dynamic System
Model

Open Modelica

(Open Modelica Association)
Not available Not available

8 Automation
Resource

Jenkins/Hudson CI

(Jenkins CI)
Automation (OSLC AM) Eclipse Lyo10

3.2.3 Implementation of a Linked Data architecture for Integration and
Interoperability in a Software Reuse Environment

In order to design and implement a Linked Data architecture it is necessary to take into account the
federated and distributed character of information and services. In this light, there is an increasing interest
in the creation of methodologies, best practices/recipes and lifecycles, design of URIs, design patterns,
publication of RDF datasets and vocabularies and establishment of Linked Data profiles. In particular, the
proposed Linked Data architectures correspond to a REST architecture where service providers exchange
data about information resources; artefacts in the case of software reuse. Data is generated on-the-fly and
the design of URIs and data management is delegated in these third-party services.

To do so, the aforementioned service providers for the different OSLC domains are depicted in Figure 13.
Every provider offers an interface that is compliant with the W3C Linked Data Platform Recommendation
(OSLC APIs have been tested for this purpose in the recommendation). In this specification, a Linked Data
Platform Container is a collection of information resources, in this case, artefacts. They are offered as
Linked Data Platform and RDF resources, so it is possible to access and manage them through HTTP
protocols (REST-based fashion). Thus, it is possible to easily exchanged artefacts data between the different
consumers and providers. From a logical point of view, this architecture is based on a set of federated
services that are deployed in a distributed environment.

5 https://oslc4net.codeplex.com/
6 https://jazz.net/library/article/1382
7 http://wiki.eclipse.org/Lyo/BuildBugzilla
8 https://jazz.net/products/rational-quality-manager/
9 http://wiki.eclipse.org/Lyo/MagicDraw
10 https://wiki.eclipse.org/Lyo/JenkinsPlugin

https://oslc4net.codeplex.com/
https://jazz.net/library/article/1382
http://wiki.eclipse.org/Lyo/BuildBugzilla
https://jazz.net/products/rational-quality-manager/
http://wiki.eclipse.org/Lyo/MagicDraw
https://wiki.eclipse.org/Lyo/JenkinsPlugin

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 34 of 85

Figure 13. A federated and distributed architecture of OSLC-based services and providers

In this particular case study, the OSLC KM provider consumes the information resources from the specific
services layer and offers an interface to index and search artefacts. Following, a scenario-based approach is
used to briefly explain some of the possibilities of this architecture.

• Requirements quality checking. Figure 14 depicts the visualization of requirements quality metrics
within the Jazz Platform. The client takes a selected requirement in IBM DNG (OSLC RM), sends a
request to the OSLC EMS (Key Performance Indicators-KPI) service and receives the set of quality
metrics. To calculate these metrics, the OSLC EMS provider (RQA) also requests to the OSLC KM the set
of concepts, requirements patterns and the product breakdown structure. Thus, it is possible to
establish the quality of a requirement according to a set of vocabulary-based metrics. On the other
hand, the OSLC KM provider consumes the information about a requirement to offer an index and
retrieval service. The requirement is also linked to a test (OSLC QM) or an issue (OSLC CM) and this
information can be retrieved through the search interface of the OSLC KM.

Figure 14. Integration between IBM Doors DNG and Requirements Quality Metrics through OSLC

• Requirements authoring. As it has been previously presented, the use of patterns is a common practice
to guide the writing of requirements. Figure 15 shows the creation of an “IntelliSense” service within
the CK Editor (a web-based editor). The client requests the set of patterns through OSLC to the OSLC

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 35 of 85

KM provider. Then, patterns are used to constrain the textual description of the requirement offering a
new context-aware text completion feature.

Figure 15. Implementation of “IntelliSense” capabilities through OSLC in CK Editor

• Indexing and retrieval of non-OSLC artefacts. In this third case, there is an electrical circuit created
with the Open Modelica Editor, see Figure 16. Since there is not OSLC specification for representing
such information, the OSLC KM data shape can be used instead. A processor of the Modelica language
has been implemented to transform the electrical circuit into an OSLC KM data shape that is now
available in the Knowledge Manager, see Figure 17. Thus, it is possible to index, link and search the
circuit in the software knowledge repository reusing the capabilities of the Knowledge Manager and
exposing results through the OSLC KM interface. Furthermore, this approach can be followed for any
piece of (RDF-encoded) data.

Figure 16. A Low-pass filter circuit edited in Open Modelica

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 36 of 85

Figure 17. The Low-pass filter circuit Artefact indexed in Knowledge Manager

Building on the abovementioned scenarios, Listing 8 presents some simplified RDF code snippets11 of the
different OSLC domains as Linked Data (coloured links). Sub-Figure 18 presents a simple product
breakdown structure that can be encoded in OSLC KM as Sub-Listing 3 shows. There is also a system
requirement for the handheld component that is presented in Sub-Listing 4. This requirement contains links
to the elements in the PBS, a link to a change request that has been registered in Sub-Listing 6 and a link to
the physical circuit that physically implements part of the handheld functionality, see Sub-Listing 7. On the
other hand, it is possible to check the quality of requirements. A quality metric regarding the number of
words is depicted in Sub-Listing 5 and linked to the handheld component in the PBS.

Finally, and since the different artefacts generated during the development lifecycle are linked together
building an underlying knowledge graph, it is possible to perform select queries through the OSLC query
capabilities (depending on the service provider), an SPARQL interface or even natural language (if
Knowledge Manager is used). For instance, if we want to reuse all components without defects and which
requirements quality metrics are high (having more than 30 words in the indicator “number of words”), we
can formulate the next SPARQL query, see Listing 9 (in this example SPARQL is used as kind of abstract
syntax).

In conclusion, this explanation through a case study has presented a real use case in which different
artefacts are generated during the development lifecycle. Following the OSLC and Linked Data principles,
information resources (artefacts) are exposed through a REST interface and can be gathered and integrated
within a common repository. This repository also offers an interface (OSLC KM) that eases the search of
existing artefacts and representation (metadata and contents) of those artefacts that do not have a RDF
representation. Thus, it is possible to enhance reuse capabilities of artefacts since all of them are
represented under the same paradigm.

11 The prefixed of the different RDF vocabularies have been gathered from the prefix.cc service.

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 37 of 85

Rugged

Computer

Handheld

Main Unit ... Add-in

Sub-Figure 18. Preferred visualization and PBS of a
“Rugged Computer”

:device a oslc_km:Artefact;

 oslc_km:preferred-visualization

<URI_TO_FIGURE_11>;

 oslc_km:interpretation :PBS.

 oslc_km:observations :RuggedComputerKPI;

 oslc_km:term :device_term.

:device_term a oslc_km:Term, skos:Concept

 skos:prefLabel “Rugged Computer”@en;

 skos:narrower :handheld;

 skos:closeMatch

<http://dbpedia.org/resource/Rugged_computer>.

:handheld a oslc_km:Artefact;

 oslc_km:term :handeld_term.

:handeld_term a oslc_km:Term, skos:Concept;

 skos:prefLabel “Handheld”@en.

:rsph1 a oslc_km: Relationship;
 oslc_km:from :car;

 rdfs:label “has-part”;

 oslc_km:to:braking_system.

Sub-Listing 3. Partial example of a PBS and a controlled
vocabulary as OSCL KM artefacts.

:r1 a oslc-rm:Requirement;

 dcterms:title “The handheld device

shall support usage to determine water

service/ consumption for the more than
79,000 meter connections to

residential, commercial and industrial

customers inside a 72 square mile

area”;

…

oslc_rm:uses :device;

oslc_rm:uses :handheld;

oslc_rm:affectedBy :c1;

oslc_rm:implementedBy :f1;

.

Sub-Listing 4. Partial example of a requirement
following the OSCL RM specification.

:o1 a qb:observation ;

 qb:dataset :RuggedComputerKPI;

 sdmx-concept:obsStatus

 sdmx-code:obsStatus-E;

 :ref-artefact :r1.

 :ref-indicator :NWords.

 :value "32"^^xsd:double .

…

:NWords a Ios_kpi:KPI

…

dcterms:title “Number of Words”.

Sub-Listing 5. Partial example of an observation in the OSLC
EMS (KPI) vocabulary

:c1 a oslc-cm:ChangeRequest;

 dcterms:title “Defect detected in

handheld to propertly determine water

service”;

 oslc_cm:status “Closed”;

oslc_cm:affectsRequirement :r1;

dcterms:subject :device;

dcterms:subject :handheld;

oslc_cm:tracksChangeSet <GIT_URI>;

…

.

Sub-Listing 6. Partial example of a change request
following the OSCL CM specification.

:f1 a oslc_km:Artefact;

 oslc_km:preferred-visualization

<URI_TO_FIGURE_9>;

 oslc_km:term :f1_term.

:f1_term a oslc_km:Term, skos:Concept

 skos:prefLabel “Lower Pass Filter”@en;

…

.

Sub-Listing 7. Partial example of the lower pass filter as and
OSLC KM artefact.

Listing 8. Software reuse environment through Linked Data (RDF code snippets in Turtle syntax)

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 38 of 85

SELECT ?component WHERE{

 ?component rdf:type oslc_km:Artefact.

 :device skos:narrower ?component.

 ?requirement rdf:type oslc-rm:Requirement.

 OPTIONAL {

 ?requirement oslc_rm:affectedBy ?change.

 ?change oslc_cm:status ?status.

 FILTER regex(?status,'^Closed,'i').

 }

 ?observation :ref-artefact ?component.

 ?observation :ref-indicator :NWords.

 ?observation :value ?value.

 FILTER (?value >= 30).

}

Listing 9. SPARQL query to gather components without defects and with high-quality requirements

3.2.4 Results and Discussion

The development of a Linked Data-based architecture following the guidelines of OSLC has generated
several positive effects. The aforementioned issues that the organization under study was facing are now
mitigated, see Table 4. This is mainly due to the use of standards and a common data shape for knowledge
management. Although some of the artefacts in this case study are beyond software reuse they are part of
usual development lifecycles.

3.2.5 Limitations and Lessons Learnt

Some key limitations of the presented work must be outlined. The first one depends on the number and
type of services and defined resources. This case study has been conducted in a closed world and, more
specifically, eight different types of artefacts and service providers have been tested.

A new OSLC domain, OSLC KM, has been defined and implemented for knowledge management. This
domain takes inspiration from existing W3C recommendations so that, in a broader and real scope, this
specification could change to meet real industry requirements.

In the same manner, new service providers and domains are expected to be integrated in this case study to
ensure the representation capabilities of the OSLC KM specification. However, this work presents an
industry-oriented case study based on a real environment for software and knowledge reuse.

Building on the previous comment, we cannot figure out either the internal budget, methodologies, tools,
domain vocabularies, experience and background of particular organizations. We merely observe and re-
use existing public and on-line knowledge sources to provide a demonstrative case study of an OSLC-based
architecture for software reuse.

On the other hand, it seems clear that after a long time, software reuse is an active research area in which
a good number of challenges and open issues can be found. The emerging application of the OSLC
principles to enable interoperability among tools in the development lifecycle is providing a new
opportunity for enhancing software reuse techniques. Assuming that interoperability will be reached in
terms of data models and protocols for exchanging artefacts, it is necessary to provide data models for
representing both metadata and contents of any artefact.

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 39 of 85

Table 4. Issues in the case study and mitigating factors

ID Issue Description Mitigation

1 Lack of a product breakdown
structure (PBS) to drive the
development lifecycle.

The possibility of defining and sharing a PBS under the
OSLC initiative enables practitioners the management of
complex processes in the development lifecycle.

2 Name mismatches. A common domain vocabulary can now be shared and
reused in other tools.

3 Point-to-point and ad-hoc integrations
between a client and a tool provider.

This is a common side-effect of reusing standards and
software knowledge repository. Consumers can ask the
repository for a particular artefact, and once the metadata
(e.g. information access) and contents are gathered, they
can directly request data to the real provider.

4 A plethora of heterogeneous
protocols and data models (most of
them non-standard ones).

Although each tool can have its internal data model, there
is a unified and shared input/output interface based on
RDF.

5 Impossibility of reusing artefacts since
traces cannot be recovered.

Having the possibility of representing any artefact under
the same data model can help to recover traces.

6 Lack of a software knowledge
repository to store and search for
artefacts (metadata and contents).

Any piece of software or knowledge can now be
represented using concepts and relationships.

7 Poor documentation mechanisms.

Lack of graphical view of artefact
dependencies.

As a side-effect, the implementation of the OSLC KM
specification on top the Knowledge Manager provides also
a mechanism for visualizing artefacts or even generating
documentation templates.

8 Standalone applications not ready for
a collaborative web environment.

The use of services in a federated architecture enables
practitioners the deployment of applications in different
locations making the development lifecycle more flexible
and scalable. On the contrary, performance, security and
privacy issues can emerge avoiding the proper
development a collaborative environment for software
development.

9 Vendor lock-in. The use of a standard layer for exchanging data and
information avoids a complete vendor lock-in. It is possible
to easily change the provider of a service if it also
implements that particular OSLC specification.

In this light, RDF has demonstrated to be a very good candidate as an input/output data model. Actually,
one of the main and well-known drawbacks of RDF is that just a few tools natively work in RDF. However,
other languages such as RDFS or OWL, designed for representing logical statements, lack of the proper
constructors to represent any piece of knowledge based on other paradigms. Although it is possible to
define a RDFS or OWL vocabulary for a particular domain, the reality is that most of the time domain
experts do not really need an underlying formal logic but a flexible language for representing concepts and
relationships. In this sense, the use of SRL as a language to represent metadata and contents of any artefact
has been demonstrated to be flexible and practical (including native tool support).

In the context of data validation, previous section (motivation) has outlined the increasing interest of
checking data consistency and integrity of RDF graphs. In software reuse environment, this approach can
be applied to matchmaking of software artefacts.

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 40 of 85

From a technical point of view, the deployment of the tools and OSLC adapters has involved a major
technical challenge, due to the need of configuration for every tool vendor and adapter. That is why we
consider that new trends in micro services should be applied to decrease the time to deploy and test.
Furthermore, an OSLC-based architecture for software reuse also requires a new mindset to move existing
applications to a web environment in which context issues regarding authorization or authentication are
completely different.

On the other hand, a federated and distributed environment of services also implies potential issues
regarding security, privacy and performance. That is why this new paradigm must be carefully managed to
avoid well-known problems such as information loss, bottlenecks or denegation of service attacks, to name
just a few.

Finally, the OSLC initiative is continuously releasing and updating specifications, some of them have been
already promoted to OASIS standards. This also means that the industry support and commitment behind
of OSLC is strongly encouraging interoperability through the creation and use of standards.

3.2.6 Use in the AMASS platform

The application of the OSLC KM approach, presented in the previous sections, inside the AMASS platform
has created an outcome of adding new functions that allows to seamlessly incorporate new evidence
specifications from other different sources that can be generated during the development lifecycle.

The idea is to populate the project in the AMASS repository with all types of information that can be
relevant while trying to certificate the Cyber-Physical System as evidences.

Figure 19. The Evidence Manager import process using OSLC KM

For example, if the system is required by some standard, to have gone through a requirement quality
analysis process. The result of the quality analysis generated using RQA tool by TRC can be incorporated in
the project in the AMASS repository by transforming its output into a new OSLC KM instance. Now, this

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 41 of 85

OSCL KM model instance, can be easily added to the project in the AMASS repository by the mapping
created between the OSLC KM model and the AMASS Evidence Manager model.

In general, these development lifecycle engineering sources can be found in many different types and
formats.

In the frame of AMASS project, as can be seen in Figure 20, a set of OSLC KM parsers has been developed to
map such evidences in their native type and format with the AMASS Evidence Manager:

• Microsoft Excel

• Standard XMI (output from many UML tools)

• SysML from Rhapsody

• SysML from Papyrus

• SysML from Magic Draw

• SysML from Other tool providers

• Simulink

• ASCE

• FMI/FMU

• Pure Variance

• Metadata

• SQL

• XML

• SRL encoded in JSON format

Figure 20. The OSLC-KM Evidence Manager Importer Wizard showing the available OSLC-KM parsers

If any other connector should be needed, the only task needed to be executed is the creation of the OSLC
KM model from the information retrieved in the original source of the product of the development
lifecycle.

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 42 of 85

Figure 21. The OSLC-KM Evidence Manager Importer Wizard showing a connection to a Papyrus model

And, finally the parser that transforms any instance of the OSLC KM model in the AMASS Evidence Manager
model has been incorporated in the AMASS platform.

Figure 22. The OSLC-KM Evidence Manager Importer Wizard selecting the AMASS project to store the evidences

With this last parser, all the pieces needed to perform the process of importing new evidences to the
project in the AMASS repository have been completed.

3.3 V&V Manager and OSLC Automation

Integration based on OSLC Automation offers data and process integration of the tools, while any
interactive or control integration is not possible since these cannot be automated. This section describes
the solution provided by V&V Manager plug-in that allows seamlessly distribute verification and validation
of artefacts (requirements, system design, etc.) to verification servers.

Optionally, the integration of FBK V&V Tools based on OSLC Automation could be used without the V&V
Manager as described in Section 3.6.

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 43 of 85

3.3.1 SysML Elements and Corresponding OSLC Properties

Table 5 shows how the SysML elements from CHESS Requirements are mapped to OSLC properties of OSLC
Requirement resource (http://open-services.net/ns/rm#Requirement), which is referenced from OSLC
Automation Plan. This OSLC Automation Plan will be sent by V&V Manager to verification servers.

Table 5. Mapping of SysML elements to OSLC properties for OSLC Requirement resource

SysML element OSLC property Occurs Value-type Description

text dcterms:description zero-
or-one

XML Literal Descriptive text (reference:
Dublin Core) about Requirement
resource. V&V Manager expects
text in the form of
FormalProperty

id dcterms:identifier zero-
or-one

String An identifier for a Requirement
resource. This identifier may be
unique with a scope that is
defined by the RM provider.
Assigned by the service provider
when a resource is created. Not
intended for end-user display.

/derived oslc_rm:decomposes zero-
or-
many

Reference The object (Requirement) is
decomposed by the subject
(Requirement).

/derivedFrom oslc_rm:decomposedBy zero-
or-
many

Reference The subject (Requirement) is
decomposed by the object
(Requirement).

/satisfiedBy oslc_rm:satisfiedBy

zero-
or-
many

Reference The subject is satisfied by the
object. For example, a user
requirement is satisfied by a
system requirement.

/refinedBy oslc_rm:specifiedBy zero-
or-
many

Reference The subject is specified by the
object. For example, a
requirement is refined by model
or more refined requirement.

/tracedTo oslc_rm:trackedBy zero-
or-
many

Reference Resource, such as a change
request, which tracks this
requirement.

/verifiedBy oslc_rm:validatedBy zero-
or-
many

Reference Resource, such as a test case,
which validates this requirement.

Author dcterm:creator

dcterm:contributor

zero-
or-
many

AnyResource

Creator or creators/contributor
or contributors of Requirement
resource (reference: Dublin
Core). It is likely that the target
resource will be
an foaf:Person but that is not
necessarily the case.

http://open-services.net/ns/rm#Requirement
http://open-services.net/bin/view/Main/OSLCCoreSpecAppendixA#foaf_Person_Resource

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 44 of 85

SysML element OSLC property Occurs Value-type Description

<currently
missing>

dcterms:created zero-
or-one

DateTime Timestamp of Requirement
resource creation (reference:
Dublin Core)

<currently
missing>

dcterms:modified zero-
or-one

DateTime Timestamp of latest Requirement
resource modification (reference:
Dublin Core)

Type
(Functional,
Mission,
Interface,
Environmental,
Physical,
Operational,
Human Factor,
Logistics
support,
Configuration,
Design,
Verification,
Product
Assurance)

rdf:type zero-
or-
many

Resource The Requirement resource type
URIs.

• Status (Initial,
Derived, Final)

• Priority (High,
Medium, Low)

• Maturity (TBC,
TBD, Is
analysis,
Analyzed)

• Risk (High,
Medium, Low)

• /master

oslc_auto:parameterDef
inition

zero-
or-
many

AnyResource The definition of a parameter for
this Automation Plan.
parameterDefinitions are either a
local (inline) or referenced
resource and use the attributes
(the range) of
the oslc:Property resource

Similarly, Table 6 shows OSLC properties of Automation Plan OSLC resource and information of who
created the automation plan by calling the V&V Manager and when.

Table 6. Mapping of SysML elements to OSLC properties for OSLC Automation Plan resource

SysML element OSLC property Occurs Value-type Description

Author dcterm:creator

dcterm:contributor

zero-
or-
many

AnyResource

Creator or creators/contributor or
contributors of resource (reference:
Dublin Core). It is likely that the
target resource will be
an foaf:Person but that is not
necessarily the case.

Created dcterms:created zero-
or-one

DateTime Timestamp of resource creation
(reference: Dublin Core)

http://open-services.net/bin/view/Main/OSLCCoreSpecAppendixA#Value_type_Property
http://open-services.net/bin/view/Main/OSLCCoreSpecAppendixA#foaf_Person_Resource

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 45 of 85

3.3.2 Public Verification Server

While proprietary production verification servers allow distribution of verification and validation tasks,
Masaryk University created a publicly available verification server that hosts multiple verification and
validation tools that are accessible using OSLC Automation: http://pleiada01.fi.muni.cz:8080

Automation server as implemented by Honeywell is based on Facebook's C++ HTTP Libraries – Proxygen.

There are several verification and validation tools for requirement semantic analysis installed:

• Tools for requirement semantic analysis, in particular logical consistency, redundancy, and vacuity
checking:

o Looney and Remus2 for consistency and redundancy checking – created by Masaryk
University (including computation of Minimal Unsatisfiable Subsets)

• Tools mainly used for realizability checking:

o Acacia+ - a tool for solving the LTL realizability and synthesis problems

o autoCode4 – an engine that synthesizes controllers from formal specifications described
under a subset of LTL.

o Party Elli – SMT based Bounded Synthesis

o BoSy – a reactive synthesis tool based on constraint-solving

• Model checking tool:

o DIVINE – explicit state model checker

• Supporting tools:

o Z3 Theorem Prover

o SPOT – a C++14 library for LTL, ω-automata manipulation and model checking.

Tools for formal verification of system architecture and system design will be installed till the release of P2
prototype.

3.4 Ad-hoc Tool Integration

When dealing with the task of creating a new integration with a tool (Figure 23) the goal is to instantiate a
standard model within the application, in this case the meta-model of AMASS from the desired tool. If the
integration cannot be achieved by means of any standard, an ad-hoc strategy is the only way to do it.

The general idea to create an ad-hoc integration is to identify a suitable API or strategy to exchange
information with the desired source. Once this mean is identified, there should be a process to validate it,
this can be done revising all the functions needed to retrieve, and specially to send information entity by
entity and in sets to speed up the integration.

If this mean of communication fulfils all the functionality needs and its performance meets the
expectations, for example in comparison with other integrations and the user experience in the application,
then a new ad-hoc connector can be created.

Our recommendation to create the ad-hoc connector is to use an iterative approach. From our expertise
the minimum iterations to be executed are:

1. Create a façade library to retrieve the information in the programming technology desired using
the selected strategy. E.g. in our case for Integrity we have built a library in .NET exposing functions
to RQA application and when executing them consuming the Integrity WS available in the Integrity
Server.

2. Create a configuration connection set to gather all the information either from the user or
predefined settings.

http://pleiada01.fi.muni.cz:8080/

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 46 of 85

3. Instantiate the façade with all the configuration connection parameters, connecting physically to
the source and retrieving the essential minimum pieces of information by executing the essential
functions. E.g. in our case retrieving the structure of project, modules and requirements.

4. Fill up all other parts of the model with the rest of functions available in the façade.

From our expertise, the ad-hoc integration is an evolutive process, the initial releases always fulfil the initial
need of connecting to the source, but after some feedback from real users, a better understanding of the
architecture created on top of the connected source, indicates that some changes or improvements must
be done to our ad-hoc connector. Then the iterative process described is repeated to create a new release.

Figure 23. Ad-hoc connection methodology process

3.5 Papyrus Interoperability

The Papyrus extra components are not provided by default in Papyrus. The CDO model repository, RSA,
Rhapsody and ReqIF integration features are provided as Papyrus extra components. To install these
features, one must open the Papyrus discovery wizard from the Help → Install Papyrus Additional
Components menu and select the desired entry from the presented list (Figure 24). One can select many

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 47 of 85

entries at a time, and then press Finish to perform the installation. It is recommended to restart Eclipse to
integrate the changes in the environment. Others Papyrus are available as independent plugins, e.g. the
model-based simulation tool, that can be download from Papyrus development repositories.

Figure 24. Excerpt of Papyrus Additional components Discovery view

CDO model repository integration

To connect to a CDO repository (Figure 25), the user must follow the steps:

• Use the green plus (+) button in the in the CDO Repositories view.

• Fill in the information to create a new repository. A new repository is added in the view.

• Select the new repository and pick Checkout in the context menu.

• Complete the wizard. A new checkout representing the contents of the repository now appears in
the Project Explorer view.

Figure 25. How to connect to a CDO repository

To import models in CDO repository (Figure 26), the user must follow the steps:

• Select one or more models in the Project Explorer.

• Choose the Import into Repository... action in the context menu. Alternatively, just drag and drop
one or more models onto a repository.

• By default, the wizard maps incoming models to paths in the repository according to their paths in
the workspace. This mapping may be customized in the last page.

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 48 of 85

Figure 26. Import model into CDO repository

RSA integration

Here are the steps to import the RSA models into Papyrus:

• Create a new, empty general project.

• Copy the RSA .epx (profile) and .emx (model) files into the empty project folder.

• Import the RSA model (.emx file) into Papyrus by right-clicking on the .emx file and then select
“Import RSA Model/Profile”. As a result, the RSA .emx file is replaced by the Papyrus model file.

• Do the same for the .epx file. As a result, the Papyrus profile model file is created.

• Replace RSA Profile by Papyrus Profile by changing the pointer from the .epx (RSA) file to the .uml
(Payprus) file. To do so:

o Close Papyrus.

o Replace all occurrences of “ITU-T_protocol-neutral-model_profile.epx” by “ITU-T_protocol-
neutral-model_profile.profile.uml” in the model .uml file using any ASCII editor.

o Reopen Papyrus. The model is ready to be used.

Rhapsody integration

Here are the steps to import the Rhapsody models into Papyrus:

• Create a new, empty general project.

• Copy the Rhapsody *.rpy file into the empty project folder.

• Right click on the .rpy file and then select “Import Rhapsody model”. The *.rpy file is converted into
a *.umlrpy.

• The QVTO transformation are automatically called to import the model described in
the *.umlrpy file into a Papyrus model (file *.uml, *.notation and *.di).

ReqIF integration

To use the ReqIF integration feature in Papyrus, the kind of User, either user or advanced has to be
specified first. To do so, use the menu “window--> preferences--> Papyrus--> ReqIF Import”.

To import a ReqIf file (Figure 27), the user must follow the steps:

• Create a SysML model and select a package within the model.

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 49 of 85

• Select the menu Import of Eclipse.

• Select the menu Import ReqIF from Papyrus Categories.

• Select the ReqIF file to import.

• Select Requirement types of ReqIF file that you want to import.

• Or create the profile that will contain imported types for advanced user.

• The model has now imported requirements with relations.

Figure 27. Steps to Import ReqiF file into Papyrus model

 To export the Sysml requirements into a ReqIf file (Figure 28), the user must perform the following steps:

• Select the SysML model that you want to export.

• Select the export Menu from Eclipse menu.

• Select the menu export ReqIF form the papyrus Categories.

• Choose the name of the reqif file. A reqFile is generated.

Figure 28. Exported Papyrus model into ReqIF file

3.6 V&V Tool Integration

For the FBK tools, in particular OCRA,nuXmv and xSAP, it has been realized a specific OSLC Provider based
on the OSLC Automation domain. For test purposes only, a running service provider is available at the web
site http://docker-es.fbk.eu:8080.

http://docker-es.fbk.eu:8080/

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 50 of 85

More specifically:

Table 7. Example of OSLC related web addresses

OSLC Service Catalogue http://docker-es.fbk.eu:8080/oslc4j-registry/catalog

List of available Plans http://docker-es.fbk.eu:8080/eu.fbk.tools.oslc.provider/services/autoPlans

List of Requests http://docker-es.fbk.eu:8080/eu.fbk.tools.oslc.provider/services/autoRequests

List of Results http://docker-es.fbk.eu:8080/eu.fbk.tools.oslc.provider/services/autoResults

The FBK tool functionalities are made available by means of Automation Plans; the title attribute of the
Automation Plan selects the tool functionality. At the current time, the available plans are the following:

Table 8. Examples of V&V related functionality and automation plans

FBK Tool Functionality Automation Plan title

Check Contract refinement ocra_check_refinement

Check Contract Implementation ocra_check_implementation

Check Contract Validation Property ocra_check_validation_prop

Compute Fault Tree ocra_compute_fault_tree

Behaviour Model Check nuxmv_check_model

Compute Fault Tree xsap_compute_fault_tree

Compute FMEA Table xsap_compute_fmea_table

Extend Model xsap_extend_model

So if one intends to perform for example the check of a model based on contracts, he should select the
Plan that has the <dcterms:title> attribute value set to ocra_check_refinement:

All the parameters of the Plan are returned by the service provider sending the request on the Plan
instance. For example, if the ID of the plan is 1 (see the catalogue for the whole ID list), the HTML response
to the request http://docker-es.fbk.eu:8080/eu.fbk.tools.oslc.provider/services/autoPlans/1 will be as
shown in Figure 29.

Figure 29. OSLC Automation Plan

http://docker-es.fbk.eu:8080/oslc4j-registry/catalog
http://docker-es.fbk.eu:8080/eu.fbk.tools.oslc.provider/services/autoPlans
http://docker-es.fbk.eu:8080/eu.fbk.tools.oslc.provider/services/autoRequests
http://docker-es.fbk.eu:8080/eu.fbk.tools.oslc.provider/services/autoResults
http://docker-es.fbk.eu:8080/eu.fbk.tools.oslc.provider/services/autoPlans/1

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 51 of 85

So, the steps to follow for executing a given function of the FBK tools are:

1. Find in the catalogue the URI of the Automation Plan that maps the tool function.

2. Create an Automation Request that links such Plan, set the input parameters (see the Plan for their
definitions) and submit the Request to the service provider.
Once the request has been submitted, its status can be “in progress” or “completed” depending
if the request is synchronous or asynchronous.

3. When the Request is completed, ask the Service Provider for the availability of the Automation
Result that is linked to the Request.
(See the Result attribute <oslc_auto:producedByAutomationRequest>).

3.7 Seamless Tracing via OSLC for Safety Case Fragments Generation

This section assumes the existence of OSLC adaptors for tools associated to the production of inter-related
life-cycle artefacts. This assumption is necessary to guarantee the presence of a tool-chain composed of at
least two tools. For instance, the presence of OSLC adaptors for DOORS and Simulink would enable the
seamless tracing of artefacts related to requirements engineering (RM) and design (AM).

To enable the generation of safety case fragments arguing about traceable life-cycle data in compliance
with standards, standard-compliant OSLC domains need to be introduced. To introduce a new domain, two
options are at disposal, either a new domain is introduced from scratch or a new domain is obtained via
extension of a pre-existing one. When a domain already offers interesting resources, the second option is
recommended. In both cases, before applying OSLC best practices, guidelines are needed to proceed. In
this section, a set of guidelines is presented. These guidelines should be applied systematically to each
clause in order to identify and model the needed resources. These guidelines are (see Figure 30):

• Identify the work product types that are required and are expected to be compiled during the
creation of a safety case. For each listed work product, a corresponding work product type is
defined and modelled as a meta-class.

Note that in the case of ISO 26262, since each of its clauses is structured in the same way
(objectives, general, inputs for the clause, requirements and recommendation, and work products),
the identification of the work product types is straightforward since the list of work products is
clearly defined.

• Identify the text that describes relevant information for characterising the work products. Once the
text is identified, meta-attributes and/or other types are added in order to fully characterise the
work product types. The meta-attributes are used to describe the work product types. The
definition of the meta-attributes is found by analysing the requirements and recommendations
sub-clause.

• Identify the text that describes associations that inter-relate the work products. Once the text is
identified, meta-associations can be added to inter-relate the work product types.

As previously mentioned, these methodological guidelines should be applied to each clause. By doing so,
and by exploiting the information related to the expected input of each clause, it is possible to establish the
meta-association that relates one domain (e.g., QM) with other domains (e.g., AM and RM). Thus, it is
possible, domain after domain, to reproduce an OSLC-based representation of the V-model life-cycle
artefacts.

As a result, a set of inter-related meta-classes representing the targeted standard-compliant resources is
obtained. For sake of readability and communication, we suggest to first depict the domain as a class
diagram in compliance with a UML profile for OSLC.

The depicted meta-model is given in a human-readable format, which can be easily discussed with a set of
experts to get their approval. Then, we proceed with the manual translation of the UML-based
representation into an OSLC-based domain, given as RDF-Schema. Once the schema is created, an instance

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 52 of 85

can be instantiated, populated, and represented as an RDF-graph. It is worth to note that this translation
could be automated as explored.

Once a standard-compliant OSLC-based domain of domains, given as RDF-Schema, is instantiated based on
real product-related data, appropriate queries can be formulated to retrieve the necessary information to
build safety cases fragments [7].

Figure 30. Domain-of-domains creation

3.8 Collaborative Editing

Implementation wise, a server component for collaborative editing is a simple storage for EMF resources
with a REST API to control and modify them. There is no sophisticated revision control; this is out of scope
of the prototype implementation. Anyway, the server is maintaining a full change history of all changes
back to the original version. Clients may go back in time and retrieve all change sets individually to for
example replay changes or catch up with changes from other users if they run out of sync.

The API is the same for all kind of EMF based editors (graphical GMF based editors as Papyrus, generate EEF
forms but also generic property sheets generated by the EMF code generation), and does not depend on
any metamodel. Note: Due to the technical architecture of AMASS and other GMF/EMF based tools, local
modifications in the editor that initiated the modification request are typically not really deferred until the
server has processed the request. Local modifications are instead applied immediately (and recorded by
the transactional mechanism of the editor), and it is the result of this recording that is turned into a

Create a meta-class for the identified
work product type

Seamless Tracing via OSL C
for Safety Case (Fragments)

Generation

Domain-of-domains creation

Create a meta-attribute for the
identified characteristic associated to

the work product type

Create a meta-association for the
identified associations that inter-

related work product types

No more characteristics

Identify the next work product type

No more work product types

No more work isolated
work products

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 53 of 85

modification request and send to the server. The transaction commit is withheld until the modification
acknowledgement is received from the server. If the modification received from the server does not
correspond to the request, the transaction is aborted and rolled back. The editor may also play it
“optimistic” to speed up performance and not wait for any result from the server but instead continue.
Instead the editor has to reverse modifications later in case the deferred incoming response notifies a
problem or conflict on the server side.

Figure 31. Tool setup and workflow for collaborative editing

GMF and other EMF editors that support undo/redo have a so called “Transaction Domain” in place
including a “Command Stack” and a “Change Recorder” (see open EMF and GMF sources and
documentation). The transaction lifecycle and the change recorder are utilized on client side to both collect
and send change sets to the server but also apply received changes from the server. After a command (or
several commands in a compound command) were executed - so changes were made in the client and the
transaction is about to close -, all changes were recorded and are available as “Change Descriptions”. These
descriptions are transformed into applicable EMF commands, marshalled to JSON, send over the bus and
applied to the server. The same commands are then send to all other clients, unmarshalled there,
converted back to EMF commands and applied normally to the editing domain (put on the command
stack). Technically there is no difference between a command that was executed by a user interaction and
a command received from the server.

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 54 of 85

Figure 32. From change in one client, over collaborative server to change in another client

As mentioned, this approach can be easily integrated into any EMF/GMF editor. As a proof of concept, it
has been integrated into the Papyrus editor, or more precisely, it has been integrated into the ANSYS
SCADE Architect tool, which is based on Papyrus. The tool uploads a new Papyrus model from - or
downloads an existing Papyrus model to - the server (via the API) - and hooks into the EMF transactions
mechanism to send/receive commands. The same was applied to the medini FTA editor as a proof of
concept to be applicable to different types of editors.

As mentioned above, the used technology stack is a commercial product. That means, the server and the
Java glue code that makes the REST API and the BUS accessible in Java is closed source. However, the used
libraries and underlying technologies as CometD (for the mentioned BUS and libraries as Jackson for REST
access) are freely available and even open source. The approach and the technology is easily adoptable by
any tool vendor that would like to attach its editor on the same platform. Though it is not working out of
the box yet, some code changes are required. A solution that works generically for any EMF editor without
touching the code is still under investigation.

3.9 Safety/Cyber Architect Tools Integration

The Safety Architect and Cyber Architect tools are integrated with the AMASS platform as external tools to
provide support for safety and security co-analysis. The integration plugins for the transformation from
CHESS to Safety Architect are described in the deliverable D5.6 [14]. To use the Safety Architect and Cyber
Architect tools integration, the user must follow the following steps:

• Step 1: Import a CHESS model from a UML file, as illustrated in Figure 33.

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 55 of 85

Figure 33. Import from CHESS tool to Safety Architect tool

• Step 2: Import data from Cyber Architect file, as illustrated in Figure 34.

Figure 34. Import Data from Cyber Architect tool to Safety Architect tool

• Step 3: Assurance Engineers can activate the Security Viewpoint in Safety Architect tool for Safety and
Security Co-analysis. The activation of Safety & Security viewpoint in Safety Architect allows the
annotation of input and output ports of system components with Security Thread Modes (e.g.,
hydraulic fluid contamination or intentional fire) imported in previous step. The co-analysis is realized
thanks to these threat modes, failure modes (internal failure, erroneous) and logical gates, as
illustrated in Figure 35.

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 56 of 85

Figure 35. Safety & Security Viewpoint in Safety Architect tool

• Step 4: Assurance Engineers can generate the Safety & Security artefacts (e.g., Faults and Attacks
Propagation Tree) thanks to the previous Safety & Security co-analysis and the Safety Architect
propagation engine with the selection of “Safety & Security” viewpoint, as illustrated in Figure 36.

Figure 36. Safety & Security Viewpoint Selection in Safety Architect Tool

The failures and threats propagation tree generated in Safety Architect is shown in Figure 37.

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 57 of 85

Figure 37. Propagation Tree in Safety Architect Tool

The integration of AMASS platform tools (CHESS and OpenCert) with safety/security analysis tools (Safety
Architect and Cyber Architect) also supports:

• Evidence resource specification, because an assurance engineer can indicate in OpenCert the location
of the evidence resource, such as Fault/Attack Trees or FMEA/FMVEA tables, generated in Safety
Architect tool, shown in Figure 38:

Figure 38. Evidence resource location in OpenCert

• Visualization of evidence chains, because the fault/attack trees generated in Safety Architect can be
back propagate in CHESS model and displayed as chains of evidence as indicated in Figure 39:

Figure 39. A Process for system safety and security co-analysis

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 58 of 85

3.10 Data and Security Management

In a company where the AMASS Platform is deployed, there should be a general AMASS Platform
administrator. This role should be assigned to someone from the own IT services staff. This person will be
responsible of managing the users with access to the AMASS Platform.

It is important that passwords are strong enough, for that it is highly recommendable that passwords
contain at least one capital letter, one number and one special character, being no less than 8 characters
long.

As mentioned in D2.4 [19], the AMASS Platform can be used by different stakeholders. The data and
security management will mainly be used by the manufacturer group.

The Project Manager is the role that works on a compliance and assurance-based project where a product
(system or component) needs to be assessed as acceptably dependable (safety, security or other
dependability properties). The Project Manager will use the AMASS Tool Platform to check the status of the
project's goals within the planned budget, time, and resources. The Project Manager (administrator role)
can access the data with read permissions, however, will in principle not be able to modify any data.

The Assurance Manager is responsible to show compliance with a particular standard by means of an
assurance case. The Assurance Manager will use the ARTA platform to plan, structure, view, review and
assess the system structure and arguments or modules, sometimes by composing pre-existing arguments,
and reusing arguments and evidence relating to reusable components. In the same way that an Assurance
Engineer can be split in two groups (i.e. Safety and Security engineer), an Assurance Manager can be
subdivided into Safety and Security manager. The Assurance Manager (administrator role) can access the
data with read and write permissions.

The Assurance Engineer is the role responsible for executing the different V&V and assurance activities
e.g., create and/or collect the evidence to demonstrate that the product is acceptable safe/secure. An
assurance engineer can be split into Safety and Security engineer roles. The Assurance Engineer (User Role)
can access the data with read and write permissions.

The Internal Assessor is responsible for assessing the adequacy of the evidence and assurance ‘package’, in
terms of demonstrating the safety/security of the system under consideration. The Internal Assessor
(General Role) can access all the data with read permissions.

As mentioned in D2.4 [19], another stakeholder is the authority which can be the National Safety/Security
Authority, European Safety/Security Authority or the Regulator. The authority, and more specifically the
Assurance Assessor, is responsible for assessing the adequacy of the evidence and assurance ‘package’
provided by the manufacturers, in terms of justifying the safety/security of the system or component under
consideration. The Safety/Security assessor will use the AMASS tools to view workflows, arguments,
compliance checklists and evidence artefacts related to the system or component. The Assurance Assessor
(Reader Role) can only access and read the data stored under one specific assurance project.

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 59 of 85

4. Conclusions

It is not realistic to expect that a single tool will cover all needs of all CPS developers all the time. Instead,
different tools may be used for certain purposes by various users. Such complex activities as CPS
development typically require support from several tools. In order to keep the managed information
(requirements, specifications, models, code, tests, traces, etc.) concise, non-redundant, and consistent, the
employed tools should be able to communicate and understand each other. This deliverable presents the
description of various approaches to seamless interoperability of relevant tools.

The main areas related to the interoperability are the representations of the shared data, the protocols for
sending and receiving the data, and the ways of offering and invoking the services provided by the tools.
These conceptual domains and related methodologies (e.g. OSLC with RDF and HTTP, Java plugins, and
Capra) are covered by this document. The overview and insights into the existing approaches are needed
by the implementers of the sender/receiver components and of the communication channels and by the
modellers of the shared content. The process that can help to select the most appropriate approach for a
given situation is presented in the form of an EPF process in the Appendix A. Methodological Guide for
Seamless Interoperability – EPF Process Description.

The “seamless” aspect of the interoperability is stressed in order to minimize the burden imposed on the
users of the interconnected development platform components. Seamless interoperability increases the
usability of a cluster of cooperating tools, increases the understandability of the managed artefacts and
their relationships by providing more perspectives on looking at the data, and it also prevents de-
synchronization, loss or unnecessary re-entering of data.

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 60 of 85

Abbreviations and Definitions

Abbreviation Explanation

ALM Application Lifecycle Management

AM Architecture Management

API Application Programming Interface

ARTA AMASS Reference Tool Architecture

CDO Connected Data Objects

CHESS
Composition with Guarantees for High-integrity Embedded Software Components
Assembly

CM Change Management

COM Component Object Model

CPS Cyber Physical System

DNG Diversity Network Group

DOORS Dynamic Object-Oriented Requirements System

EEF Extended Editing Framework

EMF Eclipse Modelling Framework

EMS Estimation and Measurement

EPF Eclipse Process Framework

FMEA Failure Mode and Effects Analysis

FMI Functional Mock-up Interface

FMU Functional Mock-up Unit

FMVEA Failure Modes, Vulnerabilities and Effect Analysis

FTA Fault Tree Analysis

GMF Graphical Modelling Framework

KM Knowledge Management

KPI Key Performance Indicator

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

INCOSE International Council on Systems Engineering

ISO International Organization for Standardization

IT Information Technology

JSON JavaScript Object Notation

KPI Key Performance Indicator

LTL Linear Temporal Logic

MBSE Model-Based Systems Engineering

OCRA Othello Contracts Refinement Analysis

OMG Object Management Group

OPENCOSS Open Platform for EvolutioNary Certification Of Safety-critical Systems

OSLC Open Services for Lifecycle Collaboration

PBS Product Breakdown Structure

OASIS Organization for the Advancement of Structured Information Standards

OMG Object Management Group

OWL Ontology Web Language

PBS Product Breakdown Structure

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 61 of 85

PLM Product Lifecycle Management

QM Quality Management

RAT Requirements Authoring Tool

RDF Resource Description Framework

ReqIF Requirements Interchange Format

RDFS Resource Description Framework

REST Representational State Transfer

RM Requirements Management

RMS Rights Management services

RMT Requirements Management Tool

RQA Requirements Quality Analyser

RQS Requirements Quality Suite

RSA Rational Software Architect

RTE Real Time Edition

RTF Rich Text Format

SKOS Simple Knowledge Organization System

SHACL Shapes Constraint Language

SKR Software Knowledge Repository

SMT Satisfiability Modulo Theory

SW Software

SPARQL SPARQL Protocol And RDF Query Language

SRL System Representation Language

SysML System Modelling Language

TRC The REUSE Company

UML Unified Modelling Language

URI Uniform Resource Identifier

V&V Verification & Validation

W3C World Wide Web Consortium

XAT Requirements Authoring Resident Process

XML Extensible Markup Language

xSAP eXtended Safety Assessment Platform

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 62 of 85

References
[1] Capra tool: https://projects.eclipse.org/proposals/capra

[2] de la Vara, J.L., Borg, M., Wnuk, K., Moonen, L.: An Industrial Survey on Safety Evidence Change
Impact Analysis Practice. IEEE Transactions on Software Engineering 42(12): 1095 – 1117 (2016)

[3] Gallina, B., Nyberg, M.: Reconciling the ISO 26262-compliant and the Agile Documentation
Management in the Swedish Context. Critical Automotive applications: Robustness & Safety (CARS)
(2015)

[4] Gallina, B., Castellanos Ardila, J. P., Nyberg, M.: Towards Shaping ISO 26262-compliant Resources for
OSLC-based Safety Case Creation. Critical Automotive applications: Robustness & Safety (CARS)
(2016)

[5] Gallina, B., Padira, K., Nyberg, M.: Towards an ISO 26262-compliant OSLC-based tool chain enabling
continuous self-assessment. 10th International Conference on the Quality of Information and
Communications Technology- Track: Quality Aspects in Safety Critical Systems (QUATIC) (2016)

[6] Gallina, B.: Towards an ISO 26262-compliant OSLC-based Tool Chain Enabling Continuous Self-
assessment. http://safety.addalot.se/upload/2017/2-3-1%20Gallina.pdf

[7] Gallina, B., Nyberg, M.: Pioneering the Creation of ISO 26262-compliant OSLC-based Safety Cases.
WoSoCer 2017

[8] AMASS D2.1 Business cases and high-level requirements, February 2017

[9] AMASS D2.5 AMASS user guidance and methodological framework, October 2018

[10] AMASS D5.1 Baseline requirements for seamless interoperability, September 2016

[11] AMASS D5.3 Design of the AMASS tools and methods for seamless interoperability (b), September
2018

[12] AMASS D5.4 Prototype for seamless interoperability (a), March 2017

[13] AMASS D5.5 Prototype for seamless interoperability (b), November 2017

[14] AMASS D5.6 Prototype for seamless interoperability (c), September 2018

[15] OPENCOSS project. 2015. http://www.opencoss-project.eu/
[16] SafeCer Project. 2015. http://cordis.europa.eu/project/rcn/103721_en.html and

http://cordis.europa.eu/project/rcn/105610_en.html

[17] OSLC community. 2017. https://open-services.net/

[18] AMASS D1.1 Case studies description and business impact, November 2016
[19] AMASS D2.4 - AMASS reference architecture (c), May 2018
[20] https://www.reusecompany.com/knowledgemanager

https://projects.eclipse.org/proposals/capra
http://safety.addalot.se/upload/2017/2-3-1%20Gallina.pdf
https://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D2.1_Business-cases-and-high-level-requirements_AMASS_final.pdf
https://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D2.5_AMASS-user-guidance-and-methodological-framework_AMASS_Final.pdf
https://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D5.1_Baseline-and-Requirements-for-Seamless-Interoperability_AMASS_Final.pdf
https://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D5.3_Design-of-the-AMASS-tools-and-methods-for-seamless-interoperability-%28b%29_AMASS_Final.pdf
https://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D5.5_Prototype-for-seamless-interoperability-%28b%29_AMASS_Final.pdf
https://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D5.5_Prototype-for-seamless-interoperability-%28b%29_AMASS_Final.pdf
https://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D5.5_Prototype-for-seamless-interoperability-%28b%29_AMASS_Final.pdf
http://www.opencoss-project.eu/
http://cordis.europa.eu/project/rcn/103721_en.html
http://cordis.europa.eu/project/rcn/105610_en.html
https://open-services.net/
https://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D1.1_Case-studies-description-and-business-impact_AMASS_Final.pdf
https://www.amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D2.4_AMASS-reference-architecture-%28c%29_AMASS_Final.pdf
https://www.reusecompany.com/knowledgemanager
https://www.reusecompany.com/knowledgemanager
https://www.reusecompany.com/knowledgemanager

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 63 of 85

Appendix A. Methodological Guide for Seamless Interoperability
– EPF Process Description
This appendix summarises the process in the form provided by the EPF Composer. This form is highly
structured and optimized in the sense, that it instantiates an elaborated process meta-model, minimizes
duplicated data, and generates several useful views of the same information in various contexts. The work
breakdown structure is visualised in a type of activity/workflow diagram, which increases the
understandability of the process description by providing a simple overview of the process components and
their interdependence.

The top-level overview of the process that helps the implementors of the seamless interoperability to
choose the appropriate technology is depicted in the Figure 40. This process is further decomposed to the
activities shown in the Figure 41, the Figure 44, and the Figure 55.

Figure 40. Top-level overview of the process

The Figure 41 captures the initial stage of an integration of a new tool, namely the identification of the
current context –what is required and what is available.

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 64 of 85

Figure 41. Activity diagram for the first stage of the process

The Figure 42 provides details on the activity introduced in the Figure 41.

Figure 42. Description of the task Collect requirements or criteria

The Figure 43 provides details on the activity introduced in the Figure 41, including how the sections of this
deliverable are related to individual technologies.

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 65 of 85

Figure 43. Description of the task List available technologies

The Figure 44 elaborates the decision making for the selection of an appropriate implementation
technology. The figure contains one part of the decomposition of the overall process presented in the
Figure 40.

Figure 44. Activity diagram of Decision making

The Figure 45 describes one of the activities depicted in the Figure 44.

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 66 of 85

Figure 45. Description of task Create matrix

The Figure 46 shows an example of the result of the task described in the Figure 45.

Figure 46. Example of new Pugh matrix

The Figure 47 and Figure 48 contain the references to supporting materials related to the decision process.

Figure 47. Reference to the supporting material How to use the Pugh matrix

Figure 48. Reference to the supporting material Pugh matrix

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 67 of 85

The Figure 49 further describes the details of the decision-making process introduced at its top-level in the
Figure 44.

Figure 49. Description of the task Assign weight to requirements

The Figure 50 is a follow-up to the example given in the Figure 46 after performing the task described in the
Figure 49.

Figure 50. Example of Pugh matrix with weights

Another task which is part of the decision making (shown in the Figure 44) is described in the Figure 51.

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 68 of 85

Figure 51. Description of the task Estimate suitability for each requirement

The example of how the semi-product of the decision making might look is given in the Figure 52.

Figure 52. Example of the Pugh matrix with estimated suitabilities

The decision making should be completed by the task described in the Figure 53.

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 69 of 85

Figure 53. Description of the task Evaluate suitability of technology for the whole project

An example of the resulting matrix with the overall evaluation of the suitability of individual approaches in
the given context is provided by the Figure 54.

Figure 54. Example of the computed total technology values

The design and implementation activities referenced in the Figure 55 constitute a major effort. They are
not described here in detail, since they are highly dependent on the chosen approach and on the context
(the needs, the available tools). The choice of the approach is exemplified by the Figure 54.

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 70 of 85

Figure 55. Activity diagram of Design and Implementation

The Figure 56 describes the intent of the activity depicted on the Figure 55. More detailed hints about the
integration of tools can be found in the Section 3 of this deliverable.

Figure 56. Description of the task Design and implementation

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 71 of 85

Appendix B. The OSLC KM Resource Shape

B.1 Base Knowledge Management

Compliance

Table 9. Base Knowledge Management Compliance

Requirement Level Meaning

Unknown
properties and
content

MAY / MUST OSLC services MAY ignore unknown content and OSLC clients MUST preserve
unknown content

Resource
Operations

MUST OSLC service MUST support resource operations via standard HTTP
operations

Resource
Paging

MAY OSLC services MAY provide paging for resources but only when specifically
requested by service consumer

Partial Resource
Representations

MUST / MAY OSLC services MUST support request for a subset of a resource's properties
via the oslc.properties URL parameter retrieval via HTTP GET
and MAY support via HTTP PUT

Partial Update MAY OSLC services MAY support partial update of resources using patch semantics

Service Provider
Resources

MAY / MUST OSLC service providers MAY provide a Service Provider Catalog
and MUST provide a Service Provider resource

Creation
Factories

MUST / MAY OSLC service providers MUST provide at least one creation factory resource
for concepts, relationships, metaproperties, semantics and artefacts
and MAY provide creation factory resources for collections of the
aforementioned resources

Query
Capabilities

MUST OSLC service providers MUST provide query capabilities to enable clients to
query for resources

Query Syntax MUST OSLC query capabilities MUST support the OSLC Core Query Syntax

Delegated UI
Dialogs

MUST OSLC Services MUST offer delegated UI dialogs (for both creation and
selection) specified via service provider resource

UI Preview SHOULD OSLC Services SHOULD offer UI previews for resources that may be
referenced by other resources

HTTP Basic
Authentication

MAY OSLC Services MAY support Basic Authentication and SHOULD only do so only
over HTTPS

OAuth
Authentication

MAY OSLC Services MAY support OAuth and MAY indicate the required OAuth URLs
via the service provider resource

Error Responses MAY OSLC Services MAY provide error responses using Core defined error formats

RDF/XML
Representations

MUST OSLC services MUST support RDF/XML representations for OSLC Defined
Resources

XML
Representations

MUST OSLC services MUST support XML representations that conform to the OSLC
Core Guidelines for XML

JSON
Representations

MAY / MUST OSLC services MAY support JSON representations; those which
do MUST conform to the OSLC Core Guidelines for JSON

HTML
Representations

MAY OSLC services MAY provide HTML representations for GET requests

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 72 of 85

B.2 Specification Versioning

See Core Specification Version 2.0 - Specification Versioning.

Service providers that support the resource formats and services in this specification MUST add an HTTP
response header of OSLC-Core-Version with a value of 2.0. Consumers SHOULD request formats and services
defined in this document by providing a HTTP request header of OSLC-Core-Version with a value of 2.0. See
section below on Version Compatibility with OSLC KM 1.0 Specifications.

This specification reserves, for possible future use, the use of the HTTP header OSLC-KM-Version. OSLC
Providers MUST NOT use this HTTP header.

Namespaces

In addition to the namespace URIs and namespace prefixes oslc, rdf, dcterms and foaf defined in the Core
Specification Version 2.0, OSLC KM defines the namespace URI of http://trc-
research.github.io/spec/km/ with a preferred namespace prefix of oslc_km.

Furthermore, the SKOS (Simple Knowledge Organization System), a W3C Recommendation, is also defined
through the namespace: http://www.w3.org/2004/02/skos/core and prefix: skos. Other semantic-based
vocabularies will use the de facto namespace and prefix that can be searched using the service: Prefix.cc.

Resource Formats

In addition to the requirements for Core Specification Version 2.0 - OSLC Defined Resource
Representations, this section outlines further refinements and restrictions.

For HTTP GET/PUT/POST requests on all OSLC KM and OSLC Core defined resource types,

• KM Providers MUST support RDF/XML representations with media-type application/rdf+xml. KM
Consumers MUST be prepared to deal with any valid RDF/XML document.

• KM Providers MUST support XML representations with media-type application/xml. The XML
representations MUST follow the guidelines outlined in Core Specification Appendix B:
Representations and Examples.

• KM Providers MAY support JSON representations with media-type application/json. The JSON
representations MUST follow the guidelines outlined in Core Specification Appendix B:
Representations and Examples.

Additionally, for HTTP GET,

• KM Providers SHOULD provide an [X]HTML representation and a user interface (UI) preview as
defined by Core Specification Version 2.0 UI Preview

For HTTP GET response formats for Query requests,

• KM Providers MUST support RDF/XML representations with meda-type application/rdf+xml.

• KM Providers MUST support XML representations with media-type application/xml.

• KM Providers MAY support JSON representations with media-type application/json.

OSLC Providers MAY refuse to accept RDF/XML documents which do not have a top-level rdf:RDF document
element. The OSLC Core describes an example, non-normative algorithm for generating RDF/XML
representations of OSLC Defined Resources.

In addition to the resource formats defined above, providers MAY support additional resource formats; the
meaning and usage of these resource formats is not defined by this specification.

http://open-services.net/bin/view/Main/OslcCoreSpecification#Specification_Versioning
http://open-services.net/bin/view/Main/OslcCoreSpecification
http://open-services.net/bin/view/Main/OslcCoreSpecification
http://prefix.cc/
http://open-services.net/bin/view/Main/OslcCoreSpecification#OslcDefinedResourceRepresentations
http://open-services.net/bin/view/Main/OslcCoreSpecification#OslcDefinedResourceRepresentations
http://open-services.net/bin/view/Main/OSLCCoreSpecAppendixRepresentations
http://open-services.net/bin/view/Main/OSLCCoreSpecAppendixRepresentations
http://open-services.net/bin/view/Main/OSLCCoreSpecAppendixRepresentations
http://open-services.net/bin/view/Main/OSLCCoreSpecAppendixRepresentations
http://open-services.net/bin/view/Main/OslcCoreUiPreview

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 73 of 85

Authentication

See Core Specification Version 2.0 - Authentication. OSLC KM places no additional constraints on
authentication.

Error Responses

See Core Specification Version 2.0 - Error Responses. OSLC KM places no additional constraints on error
responses.

Pagination

OSLC KM service providers SHOULD support pagination of query results as defined by the OSLC Core
Specification. OSLC KM service providers MAY support pagination of a single resource's properties
as defined by the OSLC Core Specification.

Requesting Selected Properties

A client may want to request a subset of a resource's properties as well as properties from a referenced
resource. In order to support this behaviour a service provider MUST support
the oslc.properties and oslc.prefix URL parameter on a HTTP GET request on individual resource request or
a collection of resources by query. If the oslc.properties parameter is omitted on the request, or if the value
of this parameter is "*", then all resource properties MUST be provided in the response. See OSLC Core
Specification - Selective Property Values.

Updating Selected Properties

A provide MAY accept oslc.properties on a PUT with the meaning that only that subset of the resource's
properties be updated.

If the parameter oslc.properties contains a valid resource property on the request that is not provided in
the content, the server MUST treat that as a request to remove that property from the resource. If the
parameter oslc.properties contains an invalid resource property, then a 409 Conflict MUST be returned.

B.3 KM Resource Definitions

Property value types that are not defined in the following sections, are defined in Core Specification
Version 2.0 - Defining OSLC Properties.

The meaning of the columns in the following Table 10 is defined as follows. See also OSLC Core
Specification Appendix B: Common Properties for further details on Resource Shapes.

• Occurs: The multiplicity of the property (corresponds to "oslc:occurs" on an "oslc:Property"
resource).

• Read-only: Whether the Provider will accept value changes (corresponds to "oslc:readOnly" on an
"oslc:Property" resource). "Unspecified" indicates that this specification places no requirements on
a Provider's behaviour in this regard.

• Value-type: Corresponds to "oslc:valueType" on an "oslc:Property" resource.

• Representation: Corresponds to "oslc:representation" on an "oslc:Property" resource.

• Range: Corresponds to "oslc:range" on an "oslc:Property" resource. "Any" indicates that this
specification places no "oslc:range" constrains on a property. Consumers in particular should not
make assumptions about the range of such properties.

• Description: A textual description of the meaning of the property.

http://open-services.net/bin/view/Main/OslcCoreSpecification#Authentication
http://open-services.net/bin/view/Main/OslcCoreSpecification#Error_Responses
http://open-services.net/bin/view/Main/OslcCoreSpecification#Selective_Property_Values
http://open-services.net/bin/view/Main/OslcCoreSpecification#Selective_Property_Values

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 74 of 85

KM Resources

Table 10. OSLC KM: System Representation Language resources

Class Resource Shape Name Description

Artefact oslc_km:Artefact A container of relationships between concepts and
metaproperties to semantically describe any piece of
information. It is the basis for the creation of an
underlying semantic network.

Relationship oslc_km:Relationship A relationship represents a link between any set of
resources. It is possible to add semantics and it can
contain any number of elements representing binary,
ternary or even n-ary relationships.

Data oslc_km:Data An attribute-value expression that represents a property
of the artefact under description.

MetaData oslc_km:MetaData A tag-value attribute representing typical metadata
properties. Dublin Core is used here to represent such
information. Both can be any type of resource or, more
specifically, concepts.

Term oslc_km:Concept This concept follows the semantics and shape of a skos:Concept.

More specifically: "the notion of a SKOS concept is useful
when describing the conceptual or intellectual structure of
a knowledge organization system, and when referring to
specific ideas or meanings established within a KOS
(Knowledge Organization System)”.

Type oslc_km:Concept Everything has a type and a type is a kind of concept
coming from a classification. E.g. The types of UML
metamodel, such as Class, Use Case, etc.

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 75 of 85

Artefact Resource

Table 11. OSLC KM: The Artefact resource shape

Prefixed
Name

Occurs
Read
-only

Value-
type

Represent
ation

Range Description

dcterms:identifi
er

Exactly-
one

True String Inline rdfs:Literal The unique identifier for this artefact.

dcterms:title One-
or-
many

True String Inline rdfs:Literal The title of the artefact used to
display a name.

dcterms:descrip
tion

Zero-
or-
many

False String Inline rdfs:Literal The long description of this artefact
that must be explanatory enough to
understand what the artefact
contains and is used to.

dcterms:created Exactly-
one

True DateTime Inline xsd:dateTi
meStamp

The date and time in which the
artefact was created. The range is
restricted to a data time stamp,
although the Dublin Core allows us to
use any rdfs:Literal.
See: http://dublincore.org/document
s/dcmi-terms/#terms-created

dcterms:modifie
d

Zero-
or-
many

False DateTime Inline xsd:dateTi
meStamp

The moment in which the artefact
was modified or redefined. The range
is restricted to a data time stamp,
although the Dublin Core allows us to
use any rdfs:Literal.
See: http://dublincore.org/document
s/dcmi-terms/#terms-created

dcterms:creator One-
or-
many

True Resource Reference foaf:Agent The agents (people, organizations or
tools) that have defined this artefact.

oslc_km:term Zero-
or-one

False Either
Resource
or Local
Resource

Either
Reference
or Inline

oslc_km:C
oncept

The lexical form of this artefact (apart
from title and description). It is an URI
to a concept.

oslc_km:artefac
t-type

Zero-
or-one

True Either
Resource
or Local
Resource

Either
Reference
or Inline

oslc_km:C
oncept

A link to a concept describing the
type of this artefact. E.g. "Class
Diagram"

oslc_km:relatio

nships
Exactly-
one

False Either
Resource
or Local
Resource

Either
Reference
or Inline

rdf:List A list of relationships between the
concepts within the artefact. Similar
to skos:member (actually it is a kind
of syntax sugar and the meaning of
this property and skos:member is the
same).

oslc_km:metapr
operties

Zero-
or-one

False Either
Resource
or Local
Resource

Either
Reference
or Inline

Rdf:List A list of metaproperties for this
artefact identifed by tag and value. It
is a kind of wrapper for two concepts.

http://purl.org/dc/terms/identifier
http://purl.org/dc/terms/identifier
http://www.w3.org/2000/01/rdf-schema#Literal
http://purl.org/dc/terms/title
http://www.w3.org/2000/01/rdf-schema#Literal
http://purl.org/dc/terms/description
http://purl.org/dc/terms/description
http://www.w3.org/2000/01/rdf-schema#Literal
http://purl.org/dc/terms/created
http://www.w3.org/2001/XMLSchema#dateTimeStamp
http://www.w3.org/2001/XMLSchema#dateTimeStamp
http://dublincore.org/documents/dcmi-terms/#terms-created
http://dublincore.org/documents/dcmi-terms/#terms-created
http://purl.org/dc/terms/modified
http://purl.org/dc/terms/modified
http://www.w3.org/2001/XMLSchema#dateTimeStamp
http://www.w3.org/2001/XMLSchema#dateTimeStamp
http://dublincore.org/documents/dcmi-terms/#terms-created
http://dublincore.org/documents/dcmi-terms/#terms-created
http://purl.org/dc/terms/creator
http://xmlns.com/foaf/0.1/Agent
http://trc-research.github.io/spec/km/term
http://trc-research.github.io/spec/km/Concept
http://trc-research.github.io/spec/km/Concept
http://trc-research.github.io/spec/km/artifact-type
http://trc-research.github.io/spec/km/artifact-type
http://trc-research.github.io/spec/km/#Concept
http://trc-research.github.io/spec/km/#Concept
http://trc-research.github.io/spec/km/#rshps
http://trc-research.github.io/spec/km/#rshps
http://www.w3.org/1999/02/22-rdf-syntax-ns#List
http://trc-research.github.io/spec/km/metaproperties
http://trc-research.github.io/spec/km/metaproperties
http://www.w3.org/1999/02/22-rdf-syntax-ns#List

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 76 of 85

oslc_km:owned-
artefacts

Zero-
or-one

False Either
Resource
or Local
Resource

Either
Reference
or Inline

rdf:List A list of artefacts that belongs to this
artefact. It is similar to skos:member
and skos:inScheme but with artefacts
instead of concept schemes.

oslc_km:alt-
visualization

Zero-
or-
many

False Resource Reference N/A (Not
applicabl
e)

The alternative visual representation
of this artefact using SVG+CSS.

oslc_km:preferr
ed-visualization

Zero-
or-one

False Resource Reference N/A The preferred visual representation
of this artefact using SVG+CSS.

oslc_km:interpr
etation

Zero-
or-one

False Resource Either
Reference
or Inline

N/A A complete interpretation of this
artefact through a concept
description. E.g. Class diagram, etc.

oslc_km:traced-
by

Zero-
or-
many

False Resource Either
Reference
or Inline

Rdf:Resou
rce

A resource that traces this artefact.

oslc_km:traces-
to

Zero-
or-
many

False Resource Either
Reference
or Inline

Rdf:Resou
rce

A resource that is being traced by this
artefact.

oslc_km:trace-
type

Exactly-
one

True Resource Either
Reference
or Inline

oslc_km:C
oncept

A link to a concept that explains how
the trace has been created, etc. This
element must be linked to the "trace"
node (if any).

oslc_kpi:dataset Zero-
or-
many

True Resource Reference Qb:Datase
t

The link to the datasets that contain
observations that can affect this
artefact. E.g. if a requirement is an
artefact, the requirements quality
observations would be the dataset
linked to the artefact in a certain
moment of time.

dcterms:source Zero-
or-
many

True Resource Reference Rdf:Resou
rce

The set of documents that explains
why this artefact should be explained.

oslc_km:access Zero-
or-one

False Either
Resource
or Local
Resource

Either
Reference
or Inline

N/A A link to a resource describing how to
access to a HTTP-based resource for
gathering contents and convert into
an artefact. The W3C HTTP
vocabulary (a W3C note) is used to
represent the information of an HTTP
request.

oslc:valueShape Exactly-
one

False Resource Either
Reference
or Inline

rdf:Resour

ce
A link to an URI that contains the
shape of this artefact.

oslc_km:conten
ts

Zero-
or-one

False String Inline rdfs:Literal A literal representing the contents of
any artefact in RDF. These contents
are interpreted following the shape
that must be also presented in the
description of the artefact.

http://trc-research.github.io/spec/km/owned-artifacts
http://trc-research.github.io/spec/km/owned-artifacts
http://www.w3.org/1999/02/22-rdf-syntax-ns#List
http://trc-research.github.io/spec/km/alt-visualization
http://trc-research.github.io/spec/km/alt-visualization
http://trc-research.github.io/spec/km/preferred-visualization
http://trc-research.github.io/spec/km/preferred-visualization
http://trc-research.github.io/spec/km/interpretation
http://trc-research.github.io/spec/km/interpretation
http://trc-research.github.io/spec/km/traced-by
http://trc-research.github.io/spec/km/traced-by
http://www.w3.org/1999/02/22-rdf-syntax-ns#Resource
http://www.w3.org/1999/02/22-rdf-syntax-ns#Resource
http://trc-research.github.io/spec/km/traces-to
http://trc-research.github.io/spec/km/traces-to
http://www.w3.org/1999/02/22-rdf-syntax-ns#Resource
http://www.w3.org/1999/02/22-rdf-syntax-ns#Resource
http://trc-research.github.io/spec/km/trace-type
http://trc-research.github.io/spec/km/trace-type
http://trc-research.github.io/spec/km/Concept
http://trc-research.github.io/spec/km/Concept
http://trc-research.org/spec/kpi/dataset
http://purl.org/linked-data/cube#Dataset
http://purl.org/linked-data/cube#Dataset
http://purl.org/dc/terms/source
http://www.w3.org/1999/02/22-rdf-syntax-ns#Resource
http://www.w3.org/1999/02/22-rdf-syntax-ns#Resource
http://trc-research.github.io/spec/km/access
oslc:valueShape
http://www.w3.org/1999/02/22-rdf-syntax-ns#Resource
http://www.w3.org/1999/02/22-rdf-syntax-ns#Resource
http://trc-research.github.io/spec/km/contents
http://trc-research.github.io/spec/km/contents
http://www.w3.org/2000/01/rdf-schema#Literal

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 77 of 85

oslc_km:sparql-
endpoint

Zero-
or-one

False Resource Either
Reference
or Inline

xsd:anyUR
I

An URI pointing to a SPARQL
endpoint from which the contents of
an artefact will be gathered through a
DESCRIBE query.

Metadata/Data Resource

Table 12. OSLC KM: The Metaproperty resource shape

Prefixed Name Occurs
Read-
only

Value-type Representation Range Description

dcterms:identifier Exactly-
one

True String Inline rdfs:Literal The unique identifier for
this metaproperty

oslc_km:tag Exactly-
one

False Either
Resource or
Local
Resource

Either Reference
or Inline

oslc_km:Co
ncept

A tag for this metaproperty
represented through a
concept or even any
resource.

oslc_km:value Zero-or-
one

False Either
Resource or
Local
Resource

Either Reference
or Inline

oslc_km:Co
ncept

A value for this
metaproperty represented
through a concept or even
any resource.

Relationship Resource

Table 13. OSLC KM: The Relationship resource shape

Prefixed Name Occurs
Read-
only

Value-
type

Represent
ation

Range Description

dcterms:identifier Exactly-
one

True String Inline rdfs:Literal The unique identifier for this
relationship. It is now an string
but it would be better a
skos:Concept to avoid broken
links between pieces of data.

oslc_km:semantics Zero-or-
one

True Either
Resource
or Local
Resource

Either
Reference
or Inline

rdf:Property The concept (property) that
represents the semantics of this
relationship.

oslc_km:from Zero-or-
one

False Resource Either
Reference
or Inline

rdf:List The list of concepts from which a
relationship is created. It is
similar to skos:member but a
new name used to provide a
more meaningful name. Status:
the name of this property is still
open.

oslc_km:to Zero-or-
one

False Resource Either
Reference
or Inline

rdf:List The list of concepts to which a
relationship is created. It is
similar to skos:member but a
new name used to provide a
more meaningful name. Status:
the name of this property is still
open.

http://trc-research.github.io/spec/km/sparql-endpoint
http://trc-research.github.io/spec/km/sparql-endpoint
http://www.w3.org/2001/XMLSchema#anyURI
http://www.w3.org/2001/XMLSchema#anyURI
http://purl.org/dc/terms/identifier
http://www.w3.org/2000/01/rdf-schema#Literal
http://trc-research.github.io/spec/km/tag
http://trc-research.github.io/spec/km/Concept
http://trc-research.github.io/spec/km/Concept
http://trc-research.github.io/spec/km/value
http://trc-research.github.io/spec/km/Concept
http://trc-research.github.io/spec/km/Concept
http://purl.org/dc/terms/identifier
http://www.w3.org/2000/01/rdf-schema#Literal
http://trc-research.github.io/spec/km/semantics
http://www.w3.org/1999/02/22-rdf-syntax-ns#Property
http://trc-research.github.io/spec/km/from
http://www.w3.org/1999/02/22-rdf-syntax-ns#List title=
http://trc-research.github.io/spec/km/to
http://www.w3.org/1999/02/22-rdf-syntax-ns#List title=

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 78 of 85

Concept Resource

Table 14. OSLC KM: The Concept resource shape

Prefixed
Name

Occurs
Read
-only

Value-
type

Represent
ation

Range Description

skos:altLabel Zero-or-
many

False String Inline rdf:Plain
Literal

"The preferred and alternative labels are
useful when generating or creating human-
readable representations of a knowledge
organization system. These labels provide
the strongest clues as to the meaning of a
SKOS concept."
Source: http://www.w3.org/TR/skos-
reference/#labels

skos:broadMa
tch

Zero-or-
many

False Resource Reference skos:Co
ncept

This property is used to state mapping
(alignment) links between SKOS concepts
in different concept schemes, where the
links are inherent in the meaning of the
linked concepts.
Source: http://www.w3.org/TR/skos-
reference/#L4307

skos:broader Zero-or-
many

False Resource Reference skos:Co
ncept

It is a semantic relation used to assert a
direct hierarchical link between two SKOS
concepts.
Source: http://www.w3.org/TR/skos-
reference/#broader

skos:broaderT
ransitive

Zero-or-
many

False Resource Reference skos:Co
ncept

It is a property used to assert a direct
hierarchical link between two SKOS
concepts. More specifically, it is used to
both direct and indirect hierarchical links
between concepts. It is the transitive
version of skos:broader.
Source: http://www.w3.org/TR/skos-
reference/#broaderTransitive

skos:changeN

ote
Zero-or-
many

False String Inline rdf:Plain

Literal
It is an annotation property. According to
the SKOS recommendation: "There is no
restriction on the nature of this
information, e.g., it could be plain text,
hypertext, or an image; it could be a
definition, information about the scope of
a concept, editorial information, or any
other type of information. ".
Source: http://www.w3.org/TR/skos-
reference/#notes

skos:closeMat
ch

Zero-or-
many

False Resource Reference skos:Co
ncept

It is used to link two concepts that are
sufficiently similar that they can be used
interchangeably in some information
retrieval applications. In order to avoid the
possibility of "compound errors" when
combining mappings across more than two
concept schemes, skos:closeMatch is not

http://www.w3.org/2004/02/skos/core#altLabel
http://www.w3.org/1999/02/22-rdf-syntax-ns#PlainLiteral
http://www.w3.org/1999/02/22-rdf-syntax-ns#PlainLiteral
http://www.w3.org/TR/skos-reference/#labels
http://www.w3.org/TR/skos-reference/#labels
http://www.w3.org/2004/02/skos/core#broadMatch
http://www.w3.org/2004/02/skos/core#broadMatch
http://www.w3.org/2004/02/skos/core#Concept
http://www.w3.org/2004/02/skos/core#Concept
http://www.w3.org/TR/skos-reference/#L4307
http://www.w3.org/TR/skos-reference/#L4307
http://www.w3.org/2004/02/skos/core#broader
http://www.w3.org/2004/02/skos/core#Concept
http://www.w3.org/2004/02/skos/core#Concept
http://www.w3.org/TR/skos-reference/#broader
http://www.w3.org/TR/skos-reference/#broader
http://www.w3.org/2004/02/skos/core#broaderTransitive
http://www.w3.org/2004/02/skos/core#broaderTransitive
http://www.w3.org/2004/02/skos/core#Concept
http://www.w3.org/2004/02/skos/core#Concept
http://www.w3.org/TR/skos-reference/#broaderTransitive
http://www.w3.org/TR/skos-reference/#broaderTransitive
http://www.w3.org/2004/02/skos/core#changeNote
http://www.w3.org/2004/02/skos/core#changeNote
http://www.w3.org/1999/02/22-rdf-syntax-ns#PlainLiteral
http://www.w3.org/1999/02/22-rdf-syntax-ns#PlainLiteral
http://www.w3.org/TR/skos-reference/#notes
http://www.w3.org/TR/skos-reference/#notes
http://www.w3.org/2004/02/skos/core#closeMatch
http://www.w3.org/2004/02/skos/core#closeMatch
http://www.w3.org/2004/02/skos/core#Concept
http://www.w3.org/2004/02/skos/core#Concept

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 79 of 85

Prefixed
Name

Occurs
Read
-only

Value-
type

Represent
ation

Range Description

declared to be a transitive property.
Source: http://www.w3.org/TR/skos-
reference/#L4307

skos:definitio
n

Zero-or-
many

False String Inline rdf:Plain
Literal

It is an annotation property. According to
the SKOS recommendation: "There is no
restriction on the nature of this
information, e.g., it could be plain text,
hypertext, or an image; it could be a
definition, information about the scope of
a concept, editorial information, or any
other type of information. ".
Source: http://www.w3.org/TR/skos-
reference/#notes

skos:editorial
Note

Zero-or-
many

False String Inline rdf:Plain
Literal

It is an annotation property. According to
the SKOS recommendation: "There is no
restriction on the nature of this
information, e.g., it could be plain text,
hypertext, or an image; it could be a
definition, information about the scope of
a concept, editorial information, or any
other type of information. ".
Source: http://www.w3.org/TR/skos-
reference/#notes

skos:exactMat
ch

Zero-or-
many

False Resource Reference skos:Co
ncept

This property is used to link two concepts,
indicating a high degree of confidence that
the concepts can be used interchangeably
across a wide range of information
retrieval applications. It is a transitive
property, and is a sub-property of close
match.
Source: http://www.w3.org/TR/skos-
reference/#L4307

skos:example Zero-or-
many

False String Inline rdf:Plain

Literal
It is an annotation property. According to
the SKOS recommendation: "There is no
restriction on the nature of this
information, e.g., it could be plain text,
hypertext, or an image; it could be a
definition, information about the scope of
a concept, editorial information, or any
other type of information. ".
Source: http://www.w3.org/TR/skos-
reference/#notes

skos:hiddenLa
bel

Zero-or-
many

False String Inline rdf:Plain
Literal

It is a property to label concepts.
Source: http://www.w3.org/TR/skos-
reference/#labels

skos:historyN

ote
Zero-or-
many

False String Inline rdf:Plain

Literal
It is an annotation property. According to
the SKOS recommendation: "There is no
restriction on the nature of this

http://www.w3.org/TR/skos-reference/#L4307
http://www.w3.org/TR/skos-reference/#L4307
http://www.w3.org/2004/02/skos/core#definition
http://www.w3.org/2004/02/skos/core#definition
http://www.w3.org/1999/02/22-rdf-syntax-ns#PlainLiteral
http://www.w3.org/1999/02/22-rdf-syntax-ns#PlainLiteral
http://www.w3.org/TR/skos-reference/#notes
http://www.w3.org/TR/skos-reference/#notes
http://www.w3.org/2004/02/skos/core#editorialNote
http://www.w3.org/2004/02/skos/core#editorialNote
http://www.w3.org/1999/02/22-rdf-syntax-ns#PlainLiteral
http://www.w3.org/1999/02/22-rdf-syntax-ns#PlainLiteral
http://www.w3.org/TR/skos-reference/#notes
http://www.w3.org/TR/skos-reference/#notes
http://www.w3.org/2004/02/skos/core#exactMatch
http://www.w3.org/2004/02/skos/core#exactMatch
http://www.w3.org/2004/02/skos/core#Concept
http://www.w3.org/2004/02/skos/core#Concept
http://www.w3.org/TR/skos-reference/#L4307
http://www.w3.org/TR/skos-reference/#L4307
http://www.w3.org/2004/02/skos/core#example
http://www.w3.org/1999/02/22-rdf-syntax-ns#PlainLiteral
http://www.w3.org/1999/02/22-rdf-syntax-ns#PlainLiteral
http://www.w3.org/TR/skos-reference/#notes
http://www.w3.org/TR/skos-reference/#notes
http://www.w3.org/2004/02/skos/core#hiddenLabel
http://www.w3.org/2004/02/skos/core#hiddenLabel
http://www.w3.org/1999/02/22-rdf-syntax-ns#PlainLiteral
http://www.w3.org/1999/02/22-rdf-syntax-ns#PlainLiteral
http://www.w3.org/TR/skos-reference/#labels
http://www.w3.org/TR/skos-reference/#labels
http://www.w3.org/2004/02/skos/core#historyNote
http://www.w3.org/2004/02/skos/core#historyNote
http://www.w3.org/1999/02/22-rdf-syntax-ns#PlainLiteral
http://www.w3.org/1999/02/22-rdf-syntax-ns#PlainLiteral

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 80 of 85

Prefixed
Name

Occurs
Read
-only

Value-
type

Represent
ation

Range Description

information, e.g., it could be plain text,
hypertext, or an image; it could be a
definition, information about the scope of
a concept, editorial information, or any
other type of information. ".
Source: http://www.w3.org/TR/skos-
reference/#notes

skos:inSchem
e

Zero-or-
many

False Resource Reference skos:Co
nceptSc
heme

The scheme (an aggregation of one or
more SKOS concepts) to which the concept
belongs.
Source: http://www.w3.org/TR/skos-
reference/#schemes

skos:mapping
Relation

Zero-or-
many

False Resource Reference skos:Co
ncept

It is a mapping property to link concepts. It
is the superclass of other mapping
properties.
Source: http://www.w3.org/TR/skos-
reference/#mapping

skos:narrowM
atch

Zero-or-
many

False Resource Reference skos:Co
ncept

This property is used to state mapping
(alignment) links between SKOS concepts
in different concept schemes, where the
links are inherent in the meaning of the
linked concepts.
Source: http://www.w3.org/TR/skos-
reference/#mapping

skos:narrower Zero-or-
many

False Resource Reference skos:Co
ncept

It is a semantic relation used to assert a
direct hierarchical link between two SKOS
concepts.
Source: http://www.w3.org/TR/skos-
reference/#broader

skos:narrower
Transitive

Zero-or-
many

False Resource Reference skos:Co
ncept

It is a property used to assert a direct
hierarchical link between two SKOS
concepts. More specifically, it is used to
both direct and indirect hierarchical links
between concepts. It is the transitive
version of skos:broader.
Source: http://www.w3.org/TR/skos-
reference/#broaderTransitive

skos:notation Zero-or-
many

False Resource Either
Reference
or Inline

rdf:Plain
Literal

It is an annotation property. According to
the SKOS recommendation: "There is no
restriction on the nature of this
information, e.g., it could be plain text,
hypertext, or an image; it could be a
definition, information about the scope of
a concept, editorial information, or any
other type of information. ".
Source: http://www.w3.org/TR/skos-
reference/#notes

skos:prefLabel Zero-or- False String Inline rdf:Plain The preferred and alternative labels are

http://www.w3.org/TR/skos-reference/#notes
http://www.w3.org/TR/skos-reference/#notes
http://www.w3.org/2004/02/skos/core#inScheme
http://www.w3.org/2004/02/skos/core#inScheme
http://www.w3.org/2004/02/skos/core#ConceptScheme
http://www.w3.org/2004/02/skos/core#ConceptScheme
http://www.w3.org/2004/02/skos/core#ConceptScheme
http://www.w3.org/TR/skos-reference/#schemes
http://www.w3.org/TR/skos-reference/#schemes
http://www.w3.org/2004/02/skos/core#mappingRelation
http://www.w3.org/2004/02/skos/core#mappingRelation
http://www.w3.org/2004/02/skos/core#Concept
http://www.w3.org/2004/02/skos/core#Concept
http://www.w3.org/TR/skos-reference/#mapping
http://www.w3.org/TR/skos-reference/#mapping
http://www.w3.org/2004/02/skos/core#narrowMatch
http://www.w3.org/2004/02/skos/core#narrowMatch
http://www.w3.org/2004/02/skos/core#Concept
http://www.w3.org/2004/02/skos/core#Concept
http://www.w3.org/TR/skos-reference/#mapping
http://www.w3.org/TR/skos-reference/#mapping
http://www.w3.org/2004/02/skos/core#narrower
http://www.w3.org/2004/02/skos/core#Concept
http://www.w3.org/2004/02/skos/core#Concept
http://www.w3.org/TR/skos-reference/#broader
http://www.w3.org/TR/skos-reference/#broader
http://www.w3.org/2004/02/skos/core#narrowerTransitive
http://www.w3.org/2004/02/skos/core#narrowerTransitive
http://www.w3.org/2004/02/skos/core#Concept
http://www.w3.org/2004/02/skos/core#Concept
http://www.w3.org/TR/skos-reference/#broaderTransitive
http://www.w3.org/TR/skos-reference/#broaderTransitive
http://www.w3.org/2004/02/skos/core#notation
http://www.w3.org/1999/02/22-rdf-syntax-ns#PlainLiteral
http://www.w3.org/1999/02/22-rdf-syntax-ns#PlainLiteral
http://www.w3.org/TR/skos-reference/#notes
http://www.w3.org/TR/skos-reference/#notes
http://www.w3.org/2004/02/skos/core#prefLabel
http://www.w3.org/1999/02/22-rdf-syntax-ns#PlainLiteral

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 81 of 85

Prefixed
Name

Occurs
Read
-only

Value-
type

Represent
ation

Range Description

many Literal useful when generating or creating human-
readable representations of a knowledge
organization system. These labels provide
the strongest clues as to the meaning of a
SKOS concept.

"A resource has no more than one
value of skos:prefLabel per language
tag."
Source: http://www.w3.org/TR/skos-
reference/#labels

skos:related Zero-or-
one

False Resource Reference skos:Co
ncept

The property skos:related is used to assert
an associative link between two SKOS
concepts.
Source: http://www.w3.org/TR/skos-
reference/#semantic-relations

skos:relatedM
atch

Zero-or-
many

False String Reference skos:Co
ncept

This property is used to state mapping
(alignment) links between SKOS concepts
in different concept schemes, where the
links are inherent in the meaning of the
linked concepts. More specifically, it is
used to state an associative mapping link
between two concepts.

skos:scopeNo
te

Zero-or-
many

False String Inline rdf:Plain
Literal

It is an annotation property. According to
the SKOS recommendation: "There is no
restriction on the nature of this
information, e.g., it could be plain text,
hypertext, or an image; it could be a
definition, information about the scope of
a concept, editorial information, or any
other type of information. ".
Source: http://www.w3.org/TR/skos-
reference/#notes

skos:semantic
Relation

Zero-or-
many

False String Reference skos:Co
ncept

It is the super property of all mapping and
relationship properties. It is used to assert
generic semantic relationships between
concepts.

skos:topConc
eptOf

Zero-or-
many

True Resource Reference skos:Co
nceptSc
heme

It serves to state that a concept is a root of
a concept scheme.
Source: http://www.w3.org/TR/skos-
reference/#schemes

dcterms:creat
or

One-or-
many

True Resource Either
Reference
or Inline

foaf:Age
nt

The agents (people, organizations or tools)
that have defined this concept.

dcterms:contr
ibutor

Zero-or-
many

False Resource Either
Reference
or Inline

foaf:Age
nt

The agents (people, organizations or tools)
that have contributed to the definition of
this concept.

dcterms:creat
ed

Exactly- True DateTime Inline xsd:date
TimeSta

The time in which this concept has been

http://www.w3.org/1999/02/22-rdf-syntax-ns#PlainLiteral
http://www.w3.org/TR/skos-reference/#labels
http://www.w3.org/TR/skos-reference/#labels
http://www.w3.org/2004/02/skos/core#related
http://www.w3.org/2004/02/skos/core#Concept
http://www.w3.org/2004/02/skos/core#Concept
http://www.w3.org/TR/skos-reference/#semantic-relations
http://www.w3.org/TR/skos-reference/#semantic-relations
http://www.w3.org/2004/02/skos/core#relatedMatch
http://www.w3.org/2004/02/skos/core#relatedMatch
http://www.w3.org/2004/02/skos/core#Concept
http://www.w3.org/2004/02/skos/core#Concept
http://www.w3.org/2004/02/skos/core#scopeNote
http://www.w3.org/2004/02/skos/core#scopeNote
http://www.w3.org/1999/02/22-rdf-syntax-ns#PlainLiteral
http://www.w3.org/1999/02/22-rdf-syntax-ns#PlainLiteral
http://www.w3.org/TR/skos-reference/#notes
http://www.w3.org/TR/skos-reference/#notes
http://www.w3.org/2004/02/skos/core#semanticRelation
http://www.w3.org/2004/02/skos/core#semanticRelation
http://www.w3.org/2004/02/skos/core#Concept
http://www.w3.org/2004/02/skos/core#Concept
http://www.w3.org/2004/02/skos/core#topConceptOf
http://www.w3.org/2004/02/skos/core#topConceptOf
http://www.w3.org/2004/02/skos/core#ConceptScheme
http://www.w3.org/2004/02/skos/core#ConceptScheme
http://www.w3.org/2004/02/skos/core#ConceptScheme
http://www.w3.org/TR/skos-reference/#schemes
http://www.w3.org/TR/skos-reference/#schemes
http://purl.org/dc/terms/creator
http://purl.org/dc/terms/creator
http://xmlns.com/foaf/0.1/Agent
http://xmlns.com/foaf/0.1/Agent
http://purl.org/dc/terms/contributor
http://purl.org/dc/terms/contributor
http://xmlns.com/foaf/0.1/Agent
http://xmlns.com/foaf/0.1/Agent
http://purl.org/dc/terms/created
http://purl.org/dc/terms/created
http://www.w3.org/2001/XMLSchema#dateTimeStamp
http://www.w3.org/2001/XMLSchema#dateTimeStamp

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 82 of 85

Prefixed
Name

Occurs
Read
-only

Value-
type

Represent
ation

Range Description

one mp created.

dcterms:modi
fied

Zero-or-
many

False DateTim
e

Inline xsd:date
TimeSta
mp

The moment in which this concept has
been modified or redefined.

skos:member
List

Exactly-
one

False Either
Resource
or Local
Resource

Either
Reference
or Inline

rdf:List A list of skos concepts (ordered collection)
that serves to specify the components of
the pattern.

dcterms:ident
ifier

Exactly-
one

True String Inline xsd:strin
g

The unique identifier for this concept.

Relationship Labels

When a KM relationship property is to be presented in a user interface, it may be helpful to provide an
informative and useful textual label for that relationship instance. (This in addition to the relationship
property URI and the object resource URI, which are also candidates for presentation to a user.) To this
end, OSLC providers MAY suppport a dcterms:title link property in RM resource representations where a
relationship property is permitted, using the anchor approach outlined in the OSLC Core Links Guidance.

Providers and consumers should be aware that the dcterms:title of a link is unrelated to the dcterms:title of
the object resource. Indeed, links may carry other properties with names in common to the object of the
link, but there is no specified relationship between these property values.

B.4 KM Service Provider Capabilities

Service Provider Resources

Service providers MUST provide one or more oslc:ServiceProvider resources as defined by Core Specification
Version 2.0 - Service Provider Resource. Discovery of OSLC Service Provider Resources MAY be via one or
more OSLC Service Provider Catalog Resources, or may be discovered by some other and/or additional
Provider-specific means outwith the scope of this specification. The oslc:Service resources referenced by
this oslc:ServiceProvider MUST have an oslc:domain of http://trc-research.github.io/spec/km/.

Service providers MAY provide one more more oslc:ServiceProviderCatalog resources as defined by Core
Specification Version 2.0 - Service Provider Resources. Any such catalog resources MUST include at least
one oslc:domain of http://trc-research.github.io/spec/km/. Discovery of top-level OSLC Service Provider
Catalog Resources is outwith the scope of this specification.

Service providers MUST give an oslc:serviceProvider property on all OSLC Defined Resources. This
property MUST refer to an appropriate oslc:ServiceProvider resource.

Creation Factories

Service providers supporting resource creation MUST do so through oslc:CreationFactory resources, as
defined by Core Specification Version 2.0 - Creation Factories. Any such factory resources MUST be
discoverable through oslc:Service resources. Providers SHOULD provide oslc:ResourceShape resources
on oslc:CreationFactory resources as defined by OSLC Core Specification Appendix B: Common Properties -
Resource Shapes.

http://www.w3.org/2001/XMLSchema#dateTimeStamp
http://purl.org/dc/terms/modified
http://purl.org/dc/terms/modified
http://www.w3.org/2001/XMLSchema#dateTimeStamp
http://www.w3.org/2001/XMLSchema#dateTimeStamp
http://www.w3.org/2001/XMLSchema#dateTimeStamp
http://www.w3.org/2004/02/skos/core#memberList
http://www.w3.org/2004/02/skos/core#memberList
http://www.w3.org/1999/02/22-rdf-syntax-ns#List
http://purl.org/dc/terms/identifier
http://purl.org/dc/terms/identifier
http://www.w3.org/2001/XMLSchema#string
http://www.w3.org/2001/XMLSchema#string

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 83 of 85

Query Capabilities

Service providers MUST support query capabilities, as defined by Core Specification Version 2.0 - Query
Capabilities. Providers SHOULD provide oslc:ResourceShape on oslc:QueryCapability resources as defined
by OSLC Core Specification Appendix B: Common Properties - Resource Shapes.

The Query Capability MUST support these parameters:

• oslc.where
• oslc.select
• oslc.properties
• oslc.prefix

Where oslc:ResourceShape is not supported by the Query Capability, providers SHOULD use the following
guidance to represent query results:

• For RDF/XML and XML, use rdf:Description and rdfs:member as defined by Core Specification
Appendix B:Representations and Examples - RDF/XML Examples.

• For JSON the query results are contained within oslc:results array. See Core Specification Appendix
B: Representations and Examples - Guidelines for JSON.

The stability of query results is OPTIONAL (see Core Specification Version 2.0 - Stable Paging).

Delegated UIs

OSLC KM service providers MUST support the selection and creation of resources by delegated web-based

user interface dialogs Delegated UIs as defined by OSLC Core.

OSLC KM service providers MAY support the pre-filling of creation dialogs based on the definition

at Delegated UIs.

Usage Identifiers

OSLC KM service provider MAY identify the usage of various services with additional property values for

the OSLC Core defined oslc:usage property on oslc:Dialog, CreationFactory and QueryCapability.
The oslc:usage property value of http://open-services.net/ns/core#default SHOULD be used to designate the
default or primary service to be used by consumers when multiple entries are found.

There are no additional usage identifiers defined by this specification. OSLC Providers MAY provide their
own usage URIs. Such usage URIs MUST be in a non-OSLC namespace.

Media Types

To identify a format of RDF/XML, the media type used for KM resource
representations MUST be application/rdf+xml. The usage of the OSLC KM 1.0 defined media types
of application/x-oslc-km-artefact-1.0+xml, application/x-oslc-km-artefact-collection-1.0+xml, application/x-
oslc-km-service-description-1.0+xml and application/x-oslc-disc-service-provider-catalog+xml is
deprecated.

Requesting formats

KM 1.0 consumers wanting to request 1.0 resource formats will not need to change if they used 1.0 defined
media types (application/x-oslc-km*). KM 1.0 consumers should use media types as defined in this
specification for requests, excluding the OSLC KM 1.0 specific media types (application/x-oslc-km*). KM
consumers supporting should request request 1.0 media types on HTTP GET requests as usually done with

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 84 of 85

HTTP request parameter Accept giving appropriate quality (See HTTP Accept) weighting to help distinguish
their preferred content.

For additional guidance, a KM 1.0 consumer or provider MAY reference the OSLC-Core-Version HTTP header
with a value of 2.0.

B.5 Open Issues

As it has been outlined in previous sections, the main objective of this specification is to provide a way for
representing any piece of knowledge using the SRL model. Since there are a lot of techniques for
knowledge representation, it is important to emphasize that the use of SRL model is motivated because:

1. It has been specially designed for information retrieval purposes and

2. it is fully supported in the Knowledge Manager tool.

However, and with the aim of keeping backward compatibility, a mapping to existing RDF data has been
also presented and implemented. This approach allows us to provide a mechanism for those that want to
publish RDF data for which there is no shape or vocabulary (SRL could be used) and to enable a way of re-
using existing RDF data sources. Nevertheless, the transformation of RDF to SRL has been designed at a
graph level so a higher type of transformation (keeping logic formalisms if any) is under study. For instance,
an RDFS (RDF Schema) and OWL (Ontology Web Language), W3C standards for ontology construction,
mapping to SRL are ongoing work.

On the other hand, this specification can be also seen as a broader effort, containing certain parts of
existing specifications such as Asset Management and Tracked Resource Set. In this case, these
specifications should be merged reusing the existing concepts and properties. Furthermore, and in order to
support a full knowledge management strategy, the OSLC KM could be extended to:

• Support a kind of formal reasoning or underlying logic formalism.

• Include more provenance information. E.g. W3C Provenance Ontology.

• Expose more services such as traceability of quality checking of any artefact.

• Expose a general-purpose visualization service.

 AMASS Methodological Guide for Seamless Interoperability (b) D5.8 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 85 of 85

Appendix C : Document changes with respect to D5.7

New Sections:

Section Title

2.8 Collaborative Editing

2.9 Safety/Cyber Architect Tools Integration

2.10 Data and Security Management

3.2.6 Use in the AMASS Platform

3.8 Collaborative Editing

3.9 Safety/Cyber Architect Tools Integration

3.10 Data and Security Management

Appendix C Document changes with respect to D5.7

Modified Sections:

Section Title Change

 Executive Summary Minor update

2.2 OSLC KM Minor update

2.2.1 Mapping between any piece of RDF to the
OSLC KM Data Shape

Minor update

2.3 V&V Manager and OSLC Automation Minor update

3.2.5 Limitations and Lessons Learnt Minor update

3.3.1 SysML elements and corresponding OSLC
properties

Minor update

3.3.2 Public Verification Server Minor update

3.5 Papyrus Interoperability Added description about where to find the
Papyrus features.

3.6 V&V Tool Integration Added description of the integration of xSAP
tool

4 Conclusions Minor update

B.3 KM Resource Definitions Minor update

