
This deliverable is part of a project that has received funding from the ECSEL JU under grant agreement No 692474.
¢Ƙƛǎ Wƻƛƴǘ ¦ƴŘŜǊǘŀƪƛƴƎ ǊŜŎŜƛǾŜǎ ǎǳǇǇƻǊǘ ŦǊƻƳ ǘƘŜ 9ǳǊƻǇŜŀƴ ¦ƴƛƻƴΩǎ IƻǊƛȊƻƴ нлнл ǊŜǎŜŀǊŎƘ ŀƴŘ ƛƴƴƻǾŀǘƛƻƴ
programme and from Spain, Czech Republic, Germany, Sweden, Italy, United Kingdom and France.

ECSEL Research and Innovation actions (RIA)

AMASS
Architecture-driven, Multi-concern and Seamless Assurance and

Certification of Cyber-Physical Systems

Prototype for multi-concern assurance (c)
D4.6

Work Package: WP4 Multi-Concern Assurance

Dissemination level: PU = Public

Status: Final

Date: 31 August 2018

Responsible partner: Thomas Gruber (AIT)

Contact information: Thomas.gruber@ait.ac.at

Document reference: AMASS_D4.6_WP4_AIT_1.0

PROPRIETARY RIGHTS STATEMENT

This document contains information, which is proprietary to the AMASS consortium. Permission to reproduce any
content for non-commercial purposes is granted, provided that this document and the AMASS project are credited
as source.

mailto:Thomas.gruber@ait.ac.at

Contributors

Reviewers

Names Organisation

Thomas Gruber, Christoph Schmittner, Sebastian
Chlup, Korbinian Christl, Siddhartha Verma,
Abdelkader Shaaban

AIT Austrian Institute of Technology GmbH
(AIT)

Alejandra Ruiz, Garazi Juez Tecnalia Research & Innovation (TEC)

Barbara Gallina, Irfan Sljivo, Zulqarnain Haider Maelardalen Hoegskola (MDH)

Stefano Puri Intecs (INT)

Stefano Tonetta, Alberto Debiasi Fondazione Bruno Kessler (FBK)

Jan Mauersperger, Nino Gabriel ANSYS (KMT)

Names Organisation

Garazi Juez (Peer reviewer) Tecnalia Research & Innovation (TEC)

Marc Sango (Peer reviewer) All4Tec (A4T)

Barbara Gallina (TC reviewer) Maelardalen Hoegskola (MDH)

Jose Luis de la Vara (TC reviewer) Universidad Carlos III de Madrid (UC3)

Alejandra Ruiz (TC reviewer) Tecnalia Research & Innovation (TEC)

Cristina Martinez (Quality Manager) Tecnalia Research & Innovation (TEC)

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 3 of 68

TABLE OF CONTENTS

Executive Summary (*) .. 7

1. Introduction (*) .. 9

2. Implemented Functionality (*) ... 12

2.1 Scope (*) ... 12

2.2 Implemented Requirements - Overview (*) ... 13
2.2.1 Requirements implemented in the Assurance Case Editor in OpenCert (*) 15
2.2.2 Requirements realized in EPF-Composer & BVR Tool (*) .. 17
2.2.3 Requirements implemented in CHESS (*) .. 17
2.2.4 Requirements implemented in WEFACT (*) ... 23
2.2.5 Requirements implemented in the FMVEA tool (**) .. 26
2.2.6 Requirements implemented in the ANP tool (**) .. 27
2.2.7 Requirements implemented in the Concerto-FLA extension (**) 28
2.2.8 Requirements implemented in MORETO (**) .. 29
2.2.9 Requirements implemented in Medini Analyzer (**) ... 30

2.3 Installation and User Manuals (*) ... 31

3. Implementation Description (*) ... 33

3.1 Assurance Case Editor from OpenCert ... 33
3.1.1 Description of Features Implemented in P1 ... 33
3.1.2 Description of Features Implemented in P2 (**) .. 34
3.1.3 Source Code Description ... 34

3.2 EPF-Composer Tool ... 36
3.2.1 Description of Realized Features ... 36
3.2.2 Source Code / Interface Description .. 36

3.3 CHESS Tool (*) ... 37
3.3.1 Description of Features Implemented in P1 ... 37
3.3.2 Description of Features Implemented in P2 (**) .. 37
3.3.3 Source Code Description (*) .. 38

3.4 WEFACT Tool (*) .. 39
3.4.1 Description of Features Implemented in P1 ... 39
3.4.2 Description of Features Implemented in P2 (**) .. 41
3.4.3 Interface Module Description (*) ... 41

3.5 FMVEA Tool (**) .. 48
3.5.1 Description of Features Implemented in P2 (**) .. 48
3.5.2 Interface Module Description (**) ... 48

3.6 Analytical Network Process (ANP) Tool (**) ... 51
3.6.1 Description of Features Implemented in P2 (**) .. 51
3.6.2 Interface Module Description (**) ... 51

3.7 Concerto FLA extension (**) .. 52
3.7.1 Description of Features Implemented in P2 (**) .. 52
3.7.2 Source Code Description (**) .. 54

3.8 MORETO tool (**) .. 56
3.8.1 Description of Features Implemented in P2 (**) .. 56
3.8.2 Interface Module Description (**) ... 59

3.9 Medini Analyzer (**) ... 60

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 4 of 68

3.9.1 Description of Features Implemented in P2 (**) .. 60
3.9.2 Interface Module Description (**) ... 61

4. Conclusion (*)... 62

Abbreviations and Definitions ... 64

References (*) .. 66

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 5 of 68

List of Figures

Figure 1. AMASS Reference (High-Level) Architecture (Prototype P2) .. 9
Figure 2. Initiating the argument-fragment generation (Step 1) ... 19
Figure 3. Selecting the source analysis context (Step 2) ... 20
Figure 4. Selecting the destination assurance case folder on the CDO repository (Step 3) 21
Figure 5. Generation successfully completed with argument-fragments for each block 22
Figure 6. An example of the generated argument-fragment .. 23
Figure 7. WEFACT user interface example after importing a process model ... 24
Figure 8. Tool modules for Assurance Case Management Component ... 33
Figure 9. Tool module from Contract Management Component .. 34
Figure 10. Assurance Case Specification plugins .. 36
Figure 11. Contract profile supporting modelling of concerns .. 37
Figure 12. The parameterized architecture and the configurations are used to generate the

architecure instances. For each instance, a set of contract-based analyses is performed.
Their results will be compared and integrated in a report format .. 38

Figure 13. Argument Generator plugin source ... 39
Figure 14. WEFACT Activity Diagram ... 41
Figure 15. Relation between WEFACT low level activity results and the CACM .. 42
Figure 16. Relation modelled between WEFACT activity results on high level and the CACM

evidences .. 42
Figure 17. The WEFACT Metamodel .. 43
Figure 18. Structure of the FMVEA tool including the interfacing with them AMASS platform. 48
Figure 19. Class diagram of the Expression class. ... 49
Figure 20. Class diagram of the FMVEA model editor... 50
Figure 21. User Interface of the FMVEA model editor. .. 50
Figure 22. Approach overview of co-analysis via ConcertoFLA ... 53
Figure 23. Security meta model and its relation to dependability profile of CHESSML 54
Figure 24. ConcertoFLA plugins along with highlights referring to the extended plugins and source 55
Figure 25. Fault tree generator plugin and source.. 56
Figure 26. Options for requirements generation in MORETO ... 56
Figure 27. Example for the MORETO External Layer ... 57
Figure 28. Example for the MORETO Intermediate Layer ... 58
Figure 29. Example for the MORETO Internal Layer. .. 59
Figure 30. Model transformation at the interface between MORETO and the AMASS platform. 60
Figure 31. Import path between AMASS and medini.. 60

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 6 of 68

List of Tables

Table 1. Requirements implemented in the third prototype of the AMASS platform (P2) 13
Table 2. Requirements implemented in the Assurance Case Editor... 15
Table 3. Requirements [partly] implemented in WEFACT ... 24
Table 4. Requirements implemented in the FMVEA tool... 26
Table 5. Requirements implemented in the ANP tool ... 27
Table 6. Requirements implemented in the Concerto-FLA tool ... 28
Table 7. Requirements implemented in the MORETO tool .. 29
Table 8. Requirements implemented in the Medini Analyzer tool .. 30
Table 9. Available installation documentation and user manuals for external tools implemented in

iteration 2 and 3.. 31
Table 10. WefactProject mapping .. 44
Table 11. RequirementObject mapping .. 45
Table 12. WorkflowTool mapping... 46
Table 13. ProcessObject mapping ... 46

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 7 of 68

Executive Summary (*)

This deliverable, D4.6 Prototype for multi-concern assurance (c), is the third output of the task T4.3
Implementation for Multi-Concern Assurance. Based on the results from the task T2.2 AMASS Reference
Tool Architecture and Integration, the task T4.3 develops a prototype tooling for multi-concern assurance.
Particular attention is paid to support the architectural approach to assurance being developed in WP3
and to implement the requirements for tooling aimed at supporting the multi-concern approach,
developed in WP4. The task 4.3 has been carried out iteratively, in close connection with the conceptual
tasks (T4.2 Conceptual Approach for Multi-Concern Assurance as well as those in the other WPs, namely
T3.2, T5.2 and T6.2), with validation results from the implementation being used to guide further
refinement of the conceptual approach. The implementation is closely guided by the requirements [38] of
the case studies, which are used to validate the prototype.

The first prototype iteration (Prototype Core) released the basic building blocks as a
consolidation/integration of previous projects OPENCOSS [1] and SafeCer [2]. The developed tools in the
first prototype (Prototype Core) supported the following two functional areas:

¶ Argumentation Editor

¶ Argument Patterns Editor

The second prototype iteration (P1) extended the previous functionality by the following functional parts:

¶ Support for contract-based multi-concern assurance by CHESS, and

¶ Multi-concern assurance workflow support by WEFACT [21] based on

¶ Standards conformant assurance process modelling by EPF-C [9].

The release at hand is the third prototype iteration (P2), which extends the previous functionalities by
further functional parts and adds additional external tools as listed in the following:

¶ Support for contract-based multi-concern assurance by CHESS.

¶ Further extensions to CHESS regarding Contract-based trade-off analysis in parameterized
architectures.

¶ Concerto-FLA extension.

¶ Failure Mode, Vulnerabilities and Effect Analysis (FMVEA) tool.

¶ Analytical Network Process (ANP) tool prototype.

¶ MORETO tool.

¶ Medini Analyzer.

This document has the purpose to present the added functional parts in detail, which are partly Open
Source tools integrated in the AMASS platform and partly external tools, for which the binding via an open
source interface module is given.

CHESS and EPF-C are already used in other contexts of the AMASS ARTA platform; therefore, references to
the comprehensive specifications elsewhere are given and a short description is included in this document
pointing out the particularity of the tool in context with the WP4 task of multi-concern assurance. The BVR
Tool is used in AMASS for managing the variability. Its selection and integration are part of WP6-work,
where variability management for enabling systematic reuse is in focus.

In the context of WP4, the role of BVR Tool is related to managing the variability when co-engineering
(cross-concern) is in focus. For this reason, it is mentioned in this deliverable as well.

The WEFACT workflow engine as an external tool was integrated via an open source interface module in
iteration two and is described in detail in the document at hand. In the third iteration, specifications of the
additional external tools FMVEA, MORETO, Medini Analyzer and the ANP tool prototype have been
added. This includes references to the open source interface, information about the technology used and
a description of the mapping between the tool-internal database and the AMASS CACM. In most cases,
existing open interfaces could be used for coupling the external tools to the AMASS platform.

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 8 of 68

Important parts of D4.6 are:

¶ Executables of or references to the external tools WEFACT, FMVEA, MORETO, Medini Analyzer
and the ANP tool prototype,

¶ User manuals and installation instructions, and

¶ where applicable, source code of the interface modules (e.g. in [18]).

Pointers to these parts are intended to be provided with D2.5 [45].

This deliverable represents an update of AMASS D4.5 [51] which was released in m19; the sections
modified with respect to D4.5 have been marked with (*) in the headlines, those which are new with (**).

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 9 of 68

1. Introduction (*)

The AMASS approach focuses on the development and consolidation of an open and holistic assurance
and certification framework for CPS, which constitutes the evolution of the OPENCOSS [1] and SafeCer [2]
approaches towards an architecture-driven, multi-concern assurance, reuse-oriented, and seamlessly
interoperable tool platform.

The expected tangible AMASS results are:

a) The AMASS Reference Tool Architecture, which extends the OPENCOSS and SafeCer conceptual,
modelling and methodological frameworks for architecture-driven and multi-concern assurance,
as well as for further cross-domain and intra-domain reuse capabilities and seamless
interoperability mechanisms (based on OSLC specifications [14]).

b) The AMASS Open Tool Platform, which corresponds to a collaborative tool environment
supporting CPS assurance and certification. This platform represents a concrete implementation
of the AMASS Reference Tool Architecture, with a capability for evolution and adaptation, which is
released as an open technological solution by the AMASS project. AMASS openness is based on
both standard OSLC APIs with external tools (e.g. engineering tools including V&V tools) and on
open-source release of the AMASS building blocks.

c) The Open AMASS Community, which will manage the project outcomes, for maintenance,
evolution and industrialisation. The Open Community will be supported by a governance board,
and by rules, policies, and quality models. This includes support for AMASS base tools (tool
infrastructure for database and access management, among others) and extension tools
(enriching AMASS functionality). As Eclipse Foundation is part of the AMASS consortium, the
Polarsys/Eclipse community (www.polarsys.org) is a strong candidate to host AMASS Open Tool
Platform.

To achieve the AMASS results, as depicted in Figure 1, the multiple challenges and corresponding
scientific and technical project objectives are addressed by different work-packages.

Figure 1. AMASS Reference (High-Level) Architecture (Prototype P2)

http://www.polarsys.org/

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 10 of 68

Since AMASS targets high-risk objectives, the AMASS Consortium decided to follow an incremental
approach by developing rapid and early prototypes. The benefits of following a prototyping approach are:

¶ Better assessment of ideas by initially focusing on a few aspects of the solution.

¶ Ability to change critical decisions based on practical and industrial feedback (case studies).

AMASS has provided three prototype iterations:

1. During the first prototyping iteration (Prototype Core), the AMASS Platform Basic Building Blocks

(see Figure 1), were aligned, merged and consolidated at TRL41.

2. During the second prototyping iteration (Prototype P1), the AMASS-specific Building Blocks were
developed and benchmarked at TRL4; this comprises the blue basic building blocks as well as the
green building blocks in Figure 1. Regarding multi-concern assurance, in this second prototype,
the specific building blocks provide functionalities regarding system dependability co-
analysis/assessment, dependability assurance modelling or contract-based multi-concern
assurance.

3. Finally, at the third prototyping iteration (Prototype P2), all AMASS building blocks have been
integrated in a comprehensive toolset operating at TRL5. Functionalities specific for multi-concern
assurance developed for the second prototype were improved and integrated with functionalities
from other technical work packages.

Each of these iterations has the following three prototyping dimensions:

¶ Conceptual/research development: development of solutions from a conceptual perspective.

¶ Tool development: development of tools implementing conceptual solutions.

¶ Case study development: development of industrial case studies using the tool-supported
solutions. The application of the building blocks in the case studies for the first prototype was
described in D1.1 [22], for the second prototype in D1.5 [46]. In the third iteration P2,
implementations applying WEFACT and FMVEA are under elaboration in CS1 and CS3, MORETO is
used in CS1, Medini Analyzer in CS3. The application of Concerto-FLA is contained in CS4, and
CHESS with OCRA is applied for contract-based multi-concern assurance in CS1, CS5, CS9 and
CS10. Finally, the OpenCert Assurance Case Editor is used in more than half of the case studies.

As part of the Prototype Core, WP4 provided the implementation of ǘƘŜ ōŀǎƛŎ ōǳƛƭŘƛƴƎ ōƭƻŎƪ άAssurance
Case Specificationέ όFigure 1). An update of the respective Assurance Case Editor is given in section 3.1.

This deliverable reports the tool and interface module development ƻŦ ǘƘŜ άMulti-concern Assuranceέ
building blocks and explains the final implementation. This refers to the following functionalities:

¶ Support for contract-based multi-concern assurance and for trade-off analysis based on
parameterized architectures by the internal tool CHESS,

¶ Standards conformant assurance process modelling by the internal tool EPF-C, and

¶ Multi-concern assurance workflow supporting combined activity execution for different multi-
concern assurance functions by means of the external tool WEFACT,

¶ Safety-security co-analysis by the external tool FMVEA,

¶ Failure-Logic Analysis with the internal tool Concerto-FLA,

¶ Trade-off analysis with the prototypic external ANP (Analytical Network Process) tool,

¶ Security analysis and requirements allocation with the external tool MORETO, and

¶ Safety-security co-analysis by the external tool Medini Analyzer.

1 In the context of AMASS, the EU H2020 definition of TRL is used, see
https://ec.europa.eu/research/participants/data/ref/h2020/other/wp/2016_2017/annexes/h2020-wp1617-annex-
g-trl_en.pdf

https://ec.europa.eu/research/participants/data/ref/h2020/other/wp/2016_2017/annexes/h2020-wp1617-annex-g-trl_en.pdf
https://ec.europa.eu/research/participants/data/ref/h2020/other/wp/2016_2017/annexes/h2020-wp1617-annex-g-trl_en.pdf

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 11 of 68

With respect to the EPF-C and CHESS tools, this deliverable contains short descriptions and refers to other
deliverables in which the mentioned tools are already described for a different context. For the external
tool WEFACT, which is integrated via the mentioned interface module, this deliverable presents the WP4
functionality and describes the interface and its mapping to the CACM in detail. The WP6-related
functions for process-based argument generation are mentioned only shortly and a reference to the
descriptions in WP6 are given.

Other important parts of this deliverable are:

¶ Installable AMASS Platform tools or open-source interface module for the third prototype,

¶ User Manuals and installation instructions, and

¶ Source code description.

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 12 of 68

2. Implemented Functionality (*)

2.1 Scope (*)

This third prototype of the Multi-concern assurance module has the purpose to extend the functionality of
the second prototype by additional developments and to provide interface modules yet missing in the
second iteration (P1). It completes the full scope of multi-concern assurance-related functions with
internal and external tools.

The following tool functions were already integrated in the first iteration of the AMASS platform:

¶ OpenCert ς AMASS Core edition supporting (only) "Assurance case specificationέΣ ŀƴŘ

¶ CHESS - AMASS Core edition supporting contract modelling with OCRA.

In the second iteration of the AMASS platform (prototype P1), the following tools were integrated or
extended with respect to functionality:

1. OpenCert ς AMASS P1 edition supports, ƛƴ ŀŘŘƛǘƛƻƴ ǘƻ ά!ǎǎǳǊŀƴŎŜ /ŀǎŜ {ǇŜŎƛŦƛŎŀǘƛƻƴέΥ

¶ ά5ŜǇŜƴŘŀōƛƭƛǘȅ !ǎǎǳǊŀƴŎŜ aƻŘŜƭƭƛƴƎέΣ ŀƴŘ

¶ ǇŀǊǘƭȅ ά/ƻƴǘǊŀŎǘςbased multi-concern assuranceέ

2. CHESS - supports additionally ά/ƻƴǘǊŀŎǘ-Based Multi-ŎƻƴŎŜǊƴ !ǎǎǳǊŀƴŎŜέ

3. EPF-Composer ς supports:

¶ άCo-assessment, Cross-Concern Reuseέ (shared with WP6, the process model is made
vary with respect to the desired concern by BVR Tool), and

¶ Assurance process modelling and tailoring to the individual project (resulting process
model is used by WEFACT)

4. WEFACT - supports the assurance process workflow (this concerns several WPs).

¶ In WP4, the capability of combining analysis tools, targeting different concerns, is in focus.

The following tools, described in deliverable D4.3 [25], have been integrated in the third iteration of the
AMASS platform (prototype P2):

¶ Further extensions to CHESS regarding Contract-based trade-off analysis in parameterized
architectures and support for contract-based multi-concern assurance,

¶ Concerto-FLA ς Extension of the Concerto-FLA tool (see [33], [34]) allowing Failure Logic Analysis
(FLA) not only for safety but also for security-related failure modes,

¶ FMVEA tool ς supports model-based system-dependability co-analysis and ςassessment,

¶ ANP (Analytical Network Process) tool prototype ς supports trade-off analyses between various
quality attributes based on an ANP using coloured Petri Nets,

¶ MORETO - supports security analysis and manual or standards-based automated generation of
security requirements,

¶ Medini Analyzer - supports the assurance process workflow and allows safety and security
analyses.

A few tools were mentioned in earlier iterations of this deliverable as potential candidates for the
integration with the AMASS platform as WP4 functionalities, but finally the following decisions were
taken:

The Farkle tool, which verifies learning algorithms based on volume testing, supports product assurance
for a very specific case; its use is being investigated but not planned to be integrated with the AMASS
platform.

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 13 of 68

The AMT2.0 (Analogue Monitoring Tool), which ǎǳǇǇƻǊǘǎ ά/ƻƴǘǊŀŎǘ-Based Multi-concern AǎǎǳǊŀƴŎŜέ ōȅ
generating monitors for observing properties of nodes a network, has been identified as a tool supporting
architecture-based assurance and is therefore now described in WP3.

2.2 Implemented Requirements - Overview (*)

The WP4 tools contained in the final iteration P2 of the AMASS platform provide solutions for a set of
AMASS requirements as defined in deliverable D2.1 [16]. Apart from the WP4 requirements, these tools
fulfil also several requirements related to other work packages. The following Table 1 lists all these
requirements including the WP4 tools that fulfil them.

Table 1. Requirements implemented in the third prototype of the AMASS platform (P2)

Requirement No Name Description Tool

WP4_ACS_001 Assurance case edition
The system shall be able to edit an assurance case in a
scalable way.

OpenCert

WP4_ACS_002
Argumentation
architecture

The system shall be able to edit a modular structure
(argument architecture) associated with a system
and/or component.

OpenCert

WP4_ACS_003
(Core
implementation
improved)

Drag and drop
argumentation
patterns

The system shall be able to instantiate in the actual
assurance case an argument pattern (concerning safety
and security) selected from the list of patterns stored.

OpenCert

WP4_ACS_005
Provide a structured
language to the text
inside the claims

The system could be able to provide support for
language formalization inside argument claims.

OpenCert

WP4_ACS_006
Provide guidelines for
argumentation

The system could be able to provide guidelines about
the assurance case edition based on the
system/component development phase status.

OpenCert, WEFACT

in a specific way2)

WP4_ACS_007
Argumentation
import/export

The system could be able to import/export
argumentations to SACM [5].

OpenCert

WP4_ACS_008
Traceability of the
dependability case

The system should provide the dependability case
reviewers the ability of tracing an overall dependability
case (GSN) goal to the requirement within the
dependability profile for a given system element and
the attribute of interest with which goal is associated.

OpenCert, WEFACT
(partly)

WP4_ACS_010
Composition of the
overall argument

The system should provide the capability of generating
a compositional assurance case argument.

OpenCert

WP4_ACS_011
Assurance case status
report

The system could provide the capability for querying
the assurance case in order to detect: 1) undeveloped
goals, 2) fallacies.

WEFACT

WP4_ACS_013

Provide quantitative
confidence metrics
about an assurance
case in a report

The system could produce a status report indicating a
quantitative confidence metric for assurance case.

WEFACT

WP4_CAC_010
Contract-based trade-
off analysis

The system could provide the capability to evaluate
safety and security requirements on different system
architectures to perform trade-off analysis based on
the contract specification.

ANP tool (partly),
CHESS

WP4_DAM_001
Capability to model
relationships between
concerns

The system shall be able to provide an assurance case
which records the relationships between dependability
attributes and how they are affected because of design
decisions.

OpenCert

WP4_DAM_002

Capability to capture
conflicts occurring
during system
development and the

The system shall provide the capability for modelling a
dependability case that captures the conflicts that
occur during system development and the trade-off
process to justify why the taken design decisions are

OpenCert, ANP tool

2 For an explanation see section 2.2.4.

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 14 of 68

Requirement No Name Description Tool

trade-off process the most optimal ones.

WP4_CMA_0013

The AMASS tools must
support specification of
variability at the
argumentation level

The system shall provide the capability for modelling
arguments in the assurance case about multi-concern
and multi-context.
The multi-concern and multi-context argumentation
could follow a variability modelling a solution. If GSN-
like modelling elements are considered, the diamond
for representing alternatives as well as the octagon for
extrinsic variability could be considered. (1)

BVR Tool +
OpenCert

WP4_CMA_002
Component contracts
must support multiple
concerns

The system shall provide a contract specification
language that supports the formalisation of both safety
and security requirements.

CHESS

WP4_CMA_003
Contract based multi-
concern assurance

The system must support features that support
contract based assurance with respect to multiple
concerns; i.e. it must be possible to specify relations
between safety contracts, security contracts and other-
concerns-related contracts in order to take care of the
influence of system modifications for mitigating the
risks associated with one quality attribute on the
contract belonging to another quality attribute.

OpenCert

WP4_SDCA_001
System dependability
co-architecturing and
co-design

The system shall provide features, which allow
architecture modelling collaboration and co-designing
a system or component with a balanced combination
of different goals addressing various quality attributes.

ANP tool,
Concerto-FLA

WP4_SDCA_002
System dependability
co-verification and co-
validation

The system shall support efficient system or
component co-verification and co-validation with
respect to multiple quality attributes. (2)

WEFACT, Medini
Analyzer, Safety

Architect,
CHESS, FMVEA

WP4_SDCA_003
The system shall allow
combinations of safety
and security analysis

The system shall allow combinations of safety and
security analysis.

WEFACT, Medini
Analyzer, Safety

Architect,
ANP tool,FMVEA,

Concerto-FLA,
MORETO

WP3_APL_004
Architectural Patterns
suggestions

The system could provide the user suggestions about a
certain safety/security mechanism stored as
architectural patterns.

MORETO

WP3_SC_005
Requirements
allocation

The system must provide the capability for allocating
requirements to parts of the component model. More
in general, requirements traceability shall be enabled.

MORETO

WP3_VVA_006

Automatic provision of
HARA/TARA-artifacts

The system shall provide the capability for automating
HARA (Hazard Analysis Risk Assessment)/TARA (Threat
Assessment & Remediation Analysis)-related artefacts
(e.g., FTA, FMEA, attack trees).

FMVEA, MORETO,
MediniAnalyze,
SafetyArchitect,

CHESS

WP3_VVA_009

Capability to connect
to tools for test case
generation based on
assurance
requirements
specification of a
component/system

The system shall be able to connect to external tools to
execute the test cases already specified.

WEFACT

WP5_CW_004
Collaborative re-
certification needs &
consequences analysis

The AMASS Tool Platform shall support the
collaboration among assurance managers and
assurance engineers for re-certification needs &
consequences analysis.

WEFACT, OpenCert

WP5_CW_005
Collaborative system
V&V

The AMASS Tool Platform shall support the
collaboration among systems engineers for system
V&V.

WEFACT

3 This requirement is shared between WP4 and WP6.

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 15 of 68

Requirement No Name Description Tool

WP5_CW_007
Collaborative
assurance evidence
management

The AMASS Tool Platform shall support the
collaboration among assurance managers and systems
engineers for assurance evidence management. (3)

WEFACT, OpenCert

WP5_EM_016
Evidence report
generation

The AMASS Tool Platform shall be able to
automatically generate reports, checklists, and
evidence for certification purposes.

WEFACT

WP5_CM_001 Modelling of standards

The AMASS tools shall be able to model a set of
industrial standards (including the parts, objectives,
practices, goals/requirements, criticality levels from
the standards)

MORETO, WEFACT

WP5_CM_002
Tailoring of Standards
models to specific
projects

The AMASS tools shall enable the tailoring of Standards
models to specific project (e.g., by establishing the
parts of the Standard that apply to a given assurance
project).

WEFACT

WP6_CM_008
Process Compliance
(informal)
management

The AMASS tools shall enable users to visualize process
compliance. This means showing the links between the
ǊŜǉǳƛǊŜƳŜƴǘǎ ŀƴŘ ǘƘŜ ŀǇǇƭƛŎŀƴǘΩǎ ŜǾƛŘŜƴŎŜ όŘǳǊƛƴƎ ǘƘŜ
planning as well as execution phase).

This visualization could be done via compliance maps
(matrix) or via arguments aimed at justifying the
satisfaction of the requirements coming from the
standards. (3)

WEFACT,
OpenCert, EPF-C

WP6_PPA_003
Semi-automatic
generation of process
arguments

The system should be able to semi-automatic generate
fragments of an assurance case for process arguments
based on the process followed to develop a
component/system.

WEFACT

(1) Functionality mainly described in D6.2 [28].
(2) WEFACT allows combining V&V activities (e.g. calls to test tools) in one complex activity.
(3) Partially implemented.

Column "Requirement No" refers to the IDs in the deliverable D2.1 [16].

Each tool together with the implementation that implements requirements is shortly outlined in the
following tool specific sections.

2.2.1 Requirements implemented in the Assurance Case Editor in OpenCert (*)

The Assurance Case Editor is part of the OpenCert project. It includes one of the basic building blocks for
AMASS, the Assurance Case specification block. In this iteration, we have extended it in order to cover
more of the requirements elicited for WP4 and solve some of the problems identified during the
validation of previous prototype Core. Some of the requirements are covered partially and planned to be
improved in future iterations.

Requirements implemented in the Assurance Case Editor in OpenCert are included in Table 2.

Table 2. Requirements implemented in the Assurance Case Editor

Requirement No Name Description

WP4_ACS_001 Assurance case edition
The system shall be able to edit an assurance case in a scalable
way.

WP4_ACS_002 Argumentation architecture
The system shall be able to edit a modular structure (argument
architecture) associated with a system and/or component.

WP4_ACS_003
Drag and drop argumentation
patterns

The system shall be able to instantiate in the actual assurance
case an argument pattern (concerning safety and security)
selected from the list of patterns stored.

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 16 of 68

WP4_ACS_005
Provide a structured language to the
text inside the claims

The system could be able to provide support for language
formalisation inside argument claims.

WP4_ACS_007 Argumentation import/export
The system could be able to import/export argumentations to
SACM.

WP4_ACS_010 Composition of the overall argument
The system should provide the capability of generating a
compositional assurance case argument.

WP4_DAM_001
Capability to model relationships
between concerns

The system shall be able to provide an assurance case which
records the relationships between dependability attributes and
how they are affected because of design decisions.

WP4_DAM_002
Capability to capture conflicts
occurring during system development
and the trade-off process

The system shall provide the capability for modelling a
dependability case, which captures the conflicts that occur during
system development, explicitly show the dependencies of a design
decision in relation with other assertions.

Some of the requirements were implemented in the core prototype and lately improved in the second
iteration. In the third iteration (P2), no further changes were needed, implementation has focused in
resolving bugs.

WP4_ACS_001: Assurance case edition

This requirement was previously covered in Prototype Core.

WP4_ACS_002: Argumentation architecture

This requirement is focused on functionality άAssurance case structure navigationέΣ ǿƘƛŎƘ ǿŀǎ ŀƭǊŜŀŘȅ
implemented in Prototype Core. Assurance Case editor lets the user include argument modules in the
diagram. This concept permits to encapsulate arguments (claims, strategies and evidences inside them).
To see the encapsulated arguments, the user just needs to double click on the argument module and a tab
with the argument diagram containing the arguments will be opened. All the elements inside the
argument module are included in the model. The idea is to make feasible to apply modular
argumentation concepts. We are able to encapsulate arguments of the same kind in argument modules.
The way of classification might differ depending on the user. The user might want to encapsulate process
arguments in an argument module, product arguments in another argument module and confidence
arguments in another argument module, or rather to align the argumentation with the different
components from the different suppliers that form the system and the adequacy of its integration.

WP4_ACS_003: Drag and drop argumentation patterns

This requirement was implemented in Prototype Core. However, one of the feedback comments received
mentioned that the argument patterns needs to be stored locally as files before. With the new
improvement the argument patterns can be stored either locally as files, or stored in a common
repository. The user has a view where (s)he can browse the folders including patterns, select one, drag
ŦǊƻƳ ǘƘŜ άǘŜƳǇƭŀǘŜǎέ ǾƛŜǿ ŀƴŘ Řrop it in the actual diagram. The editor will copy the elements in the
model and the position of the elements in the diagrams in a transparent way to the user.

WP4_ACS_005: Provide a structured language to the text inside the claims

This requirement was already covered in Prototype Core. There have not been any improvements
regarding this requirement as there was no feedback from the case studies.

WP4_ACS_007 Argumentation import/export

This requirement has been covered briefly in the second iteration (Prototype P1). The user could provide
a file storing an argument model specified using SACM to the actual argument model. Similarly, an
argument model created in the Assurance Case editor can be exported to a file.

WP4_ACS_010: Composition of the overall argument

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 17 of 68

This requirement was partially covered in previous prototype (Prototype Core) and improved in prototype
P1. In Prototype Core, in the argumentation diagram, the user could explicitly include the argument
contract figure to show that there is a rationale behind the composition of the linked argument modules.
An argument contract should be linked with at least two or more argument modules. With the new
improvements in P1 the arguments that show the rationale for the connection are connected. A new
argument diagram is associated with the contract figure and can be shown and edited when double
clicking in the contract figure.

WP4_DAM_001: Capability to model relationships between concerns

This requirement has been covered in the second iteration (Prototype P1). In deliverable D4.2 [24] the
άŘŜǇŜƴŘŜƴŎȅ ǊŜƭŀǘƛƻƴǎƘƛǇέ Ƙŀǎ ōŜŜƴ ǇǊŜǎŜƴǘŜŘΦ ¢ƘŜ ƴŜǿ ƛƳǇƭŜƳŜƴǘŀǘƛƻƴǎ ǘǊƛŜŘ ǘƻ ŎƻǾŜǊ ǘƘƛǎ ƴŜǿ
dependency relationship concept. No further development was needed in prototype P2.

2.2.2 Requirements realized in EPF-Composer & BVR Tool (*)

As it was recalled in D4.3 [25], EPF Composer is the tool that implements the EPF (Eclipse Process
Framework) [9] approach for supporting customizable (software) process engineering frameworks.

In AMASS, the EPF approach and its tool support have been integrated as core building block. Within WP6,
D6.2 [28] and D6.3 [47], EPF-C has been strengthened via integration with the BVR tool [3],[4]. This
integration is beneficial not only for general reuse but more specifically for co-assessment and cross-
concern reuse, focusing on the interplay of safety and security in line with WP4 objectives (see
requirement WP4_CMA_001). This integration permits a user to model SiSoPLs (Security-informed Safety-
oriented Process Lines). During the co-assessment, safety and security engineers are in the position to
identify and systematize the overlapping region (commonality) and the variations.

An initial exploration of co-assessment and cross-concern reuse is documented in D6.2 [28] and D6.3 [47] .
D4.7 [27], instead, includes in-depth guidance on how to benefit from such integration in the context of
multi-concern (co-) assessment. Additional guidelines are expected to be provided in the final version
D4.8 [57].

EPF Composer has also be strengthened with respect to compliance management. In the context of WP6,
functionalities for generation of process-based arguments as well as compliance checking have been
designed and implemented. These functionalities are relevant also in the context of WP4 (see
requirement: WP6_PPA_003) since they have the potential of enabling the generation of co-assessment-
related arguments as well as co-assessment proofs.

2.2.3 Requirements implemented in CHESS (*)

2.2.3.1 Modelling different concerns for system components (*)

Different concerns/properties for system components can be represented in the architecture model by
using the CHESS modelling language (CHESSML [35]) and then analysed (WP4_SDCA_001 requirement). In
particular, (a subset of) MARTE [36] is available in CHESSML to allow modelling of timing concerns.
Moreover, a dependability profile has been incorporated in CHESSML to allow modelling of safety
properties (e.g. fault, error, failure and failure propagation); see Section 3.7.

In the context of AMASS, the extension of CHESS [15] to cover the modelling and analysis of security
aspects has been investigated, in particular by considering what is already available from other modelling
tools (e.g. Safety Architect provided by ALL4TEC), trying to understand if specific integration at modelling
language and/or tool can be realized. Moreover, CHESSML has been extended to cover the modelling of
security aspects and co-analysis is supported via the extension of ConcertoFLA (see Section 3.7).

The concept of component contract, the latter also available in CHESSML, can also be used to model
properties of different concerns (WP4_CMA_002, WP4_CMA_003 requirements). Contracts can be

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 18 of 68

derived according to obtained analysis results; for instance, a safety contract about failure propagation
between input and output ports of a given component could be derived from CHESS by executing failure
propagation analysis, the latter enabled by the failures-related information stored in the model by using
the CHESS dependability profile. In the same manner, performance contract about worst-case response
time of a ŎƻƳǇƻƴŜƴǘΩǎ operation could be derived after worst-case response time analysis performed in
CHESS by using the timing MARTE annotations. Contracts can also be created as formalisation of system
components requirements by using dedicated languages, for instance the temporal logic ones currently
proposed in WP3.

To better represent the concern addressed by a given contract, CHESSML has been extended to support
the notion of concern (e.g. safety, security, performance) attached to component contract. It is worth
noting that the concern tag could also be derived automatically from the requirement(s) which is(are)
formalised by given contract, assuming that the requirement comes with such information too. The
assurance engineer can then use the information of concern attached to contracts to have a better
understanding of the dependencies between concerns along the system architecture. For instance, he/she
could reason about the relationships modelled for contracts, e.g. contracts refinement, to argue if a
contract of a given concern depends on (is decomposed by in case of contracts refinement) contracts
related to other concerns. CHESS has been extended also to compare the results of analysis applied in
different architectures to for contract-based trade-off analysis (WP4_CAC_010). This comparison is
enhanced by the parametrization of the architecture in which different architectures correspond to
different configuration / assignments to the parameters. Each parameter can be a symbolic
representation of a design choice. Contract-based trade-off analysis provides a characterization of which
design choices affect the fulfilment of system and component contracts.

Additional guidelines including illustrative figures are expected to be provided in the final version D4.8
[57].

2.2.3.2 Additional CHESS Functionalities (*)

In addition to the features for modelling different concerns for system components, CHESS was used for
further features supporting modelling dependability aspects and semi-automatic generation of product
arguments. For these developments, no implementation work was needed anymore in iteration 3.
Nevertheless, they were elaborated at least conceptually and documented in D4.3 [25] In the following, a
short description of these features is given.

Modelling dependability aspects (**)

As it was documented in D3.3 [23], CHESS implements the conceptual metamodel called SafeConcert [29].
{ŀŦŜ/ƻƴŎŜǊǘ ŜƴŀōƭŜǎ ŘŜǇŜƴŘŀōƛƭƛǘȅ ŀǊŎƘƛǘŜŎǘǎ ǘƻ ƳƻŘŜƭ ŘŜǇŜƴŘŀōƛƭƛǘȅΩǎ ƛƴŦƻǊƳŀǘƛƻƴ ƴŜŎŜǎǎŀǊȅ ǘƻ ŎƻƴŘǳŎǘ
dependability analysis. SafeConcert is a subset of CHESSML (which in turn is an extension of SySML [30]),
the meta-model used in CHESS toolset to enable component-based systems design. ConcertoFLA [31]
allows users (system architects and dependability engineers) to decorate component-based architectural
models (specified using CHESSML) with dependability-related information, execute Failure Logic Analysis
(FLA) techniques, and get the results back-propagated onto the original model. Both SafeConcert and
ConcertoFLA have been extended to support the modelling and analysis of security aspects (see Section
3.7 for details).

Semi-automatic generation of product arguments (**)

The Argument Generator plugin is implemented in CHESS. It generates a set of argument-fragments from
the selected CHESS model and stores them in the corresponding destination assurance case in the CDO
repository stated in the OpenCert preferences. Components in the CHESS model are decorated with
contracts that are primarily used to verify that the model satisfies a particular requirement. The contract
check is performed in OCRA from CHESS. To assure that the requirement is satisfied with sufficient
confidence, we need to assure confidence in the contracts as well. Hence, we provided support in CHESS

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 19 of 68

for enriching the contracts with assurance information. Argument Generator uses that information and
creates an argument-fragment for each component and its related contracts. To support multi-concern
assurance, we have extended the contracts and requirements specification in CHESS with a concern
attribute to indicate that the particular contract/requirement is related to the selected concern. Based on
this information, we generate argument-fragments that are concern-specific by filtering the component
elements based on the concern tag. Currently, we indicated the concern in the name of the argument-
fragment file. However, we are searching for a way to capture the concerns in the argumentation
metamodel. The attached screenshots (Figure 1- Figure 6) illustrate the usage of the Argument Generator
plugin. Further improvements of the generation are under way.

Figure 2. Initiating the argument-fragment generation (Step 1)

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 20 of 68

Figure 3. Selecting the source analysis context (Step 2)

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 21 of 68

Figure 4. Selecting the destination assurance case folder on the CDO repository (Step 3)

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 22 of 68

Figure 5. Generation successfully completed with argument-fragments for each block

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 23 of 68

Figure 6. An example of the generated argument-fragment

2.2.4 Requirements implemented in WEFACT (*)

WEFACT is an external tool for assurance workflow execution. It can use a process model defined in EPF-C
or use process activities defined in WEFACT itself. In WEFACT, the activities of the EPF model are
associated with V&V activities and respective tools, and WEFACT eventually executes these activities,
keeping track of changes of associated artefacts (e.g. software modules under test) and the associated
requirements. In this way, WEFACT supports continuous impact management in the event of changing
requirements, models or implementations and triggers then only those re-assurance activities which are
necessary as a consequence of the changes.

Figure 7 shows the WEFACT user interface after importing a process model, which appears in the "Process
Explorer" in the lower left corner. In the middle the selected requirements is displayed, to the right the
associated verification process and its status can be seen. More details can be found in D4.3 [25].

