
This deliverable is part of a project that has received funding from the ECSEL JU under grant agreement No 692474.
This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation
programme and from Spain, Czech Republic, Germany, Sweden, Italy, United Kingdom and France.

ECSEL Research and Innovation actions (RIA)

AMASS
Architecture-driven, Multi-concern and Seamless Assurance and

Certification of Cyber-Physical Systems

Prototype for multi-concern assurance (c)
D4.6

Work Package: WP4 Multi-Concern Assurance

Dissemination level: PU = Public

Status: Final

Date: 31 August 2018

Responsible partner: Thomas Gruber (AIT)

Contact information: Thomas.gruber@ait.ac.at

Document reference: AMASS_D4.6_WP4_AIT_1.0

PROPRIETARY RIGHTS STATEMENT

This document contains information, which is proprietary to the AMASS consortium. Permission to reproduce any
content for non-commercial purposes is granted, provided that this document and the AMASS project are credited
as source.

mailto:Thomas.gruber@ait.ac.at

Contributors

Reviewers

Names Organisation

Thomas Gruber, Christoph Schmittner, Sebastian
Chlup, Korbinian Christl, Siddhartha Verma,
Abdelkader Shaaban

AIT Austrian Institute of Technology GmbH
(AIT)

Alejandra Ruiz, Garazi Juez Tecnalia Research & Innovation (TEC)

Barbara Gallina, Irfan Sljivo, Zulqarnain Haider Maelardalen Hoegskola (MDH)

Stefano Puri Intecs (INT)

Stefano Tonetta, Alberto Debiasi Fondazione Bruno Kessler (FBK)

Jan Mauersperger, Nino Gabriel ANSYS (KMT)

Names Organisation

Garazi Juez (Peer reviewer) Tecnalia Research & Innovation (TEC)

Marc Sango (Peer reviewer) All4Tec (A4T)

Barbara Gallina (TC reviewer) Maelardalen Hoegskola (MDH)

Jose Luis de la Vara (TC reviewer) Universidad Carlos III de Madrid (UC3)

Alejandra Ruiz (TC reviewer) Tecnalia Research & Innovation (TEC)

Cristina Martinez (Quality Manager) Tecnalia Research & Innovation (TEC)

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 3 of 68

TABLE OF CONTENTS

Executive Summary (*) .. 7

1. Introduction (*) .. 9

2. Implemented Functionality (*) ... 12

2.1 Scope (*) ... 12

2.2 Implemented Requirements - Overview (*) ... 13
2.2.1 Requirements implemented in the Assurance Case Editor in OpenCert (*) 15
2.2.2 Requirements realized in EPF-Composer & BVR Tool (*) .. 17
2.2.3 Requirements implemented in CHESS (*) .. 17
2.2.4 Requirements implemented in WEFACT (*) ... 23
2.2.5 Requirements implemented in the FMVEA tool (**) .. 26
2.2.6 Requirements implemented in the ANP tool (**) .. 27
2.2.7 Requirements implemented in the Concerto-FLA extension (**) 28
2.2.8 Requirements implemented in MORETO (**) .. 29
2.2.9 Requirements implemented in Medini Analyzer (**) ... 30

2.3 Installation and User Manuals (*) ... 31

3. Implementation Description (*) ... 33

3.1 Assurance Case Editor from OpenCert ... 33
3.1.1 Description of Features Implemented in P1 ... 33
3.1.2 Description of Features Implemented in P2 (**) .. 34
3.1.3 Source Code Description ... 34

3.2 EPF-Composer Tool ... 36
3.2.1 Description of Realized Features ... 36
3.2.2 Source Code / Interface Description .. 36

3.3 CHESS Tool (*) ... 37
3.3.1 Description of Features Implemented in P1 ... 37
3.3.2 Description of Features Implemented in P2 (**) .. 37
3.3.3 Source Code Description (*) .. 38

3.4 WEFACT Tool (*) .. 39
3.4.1 Description of Features Implemented in P1 ... 39
3.4.2 Description of Features Implemented in P2 (**) .. 41
3.4.3 Interface Module Description (*) ... 41

3.5 FMVEA Tool (**) .. 48
3.5.1 Description of Features Implemented in P2 (**) .. 48
3.5.2 Interface Module Description (**) ... 48

3.6 Analytical Network Process (ANP) Tool (**) ... 51
3.6.1 Description of Features Implemented in P2 (**) .. 51
3.6.2 Interface Module Description (**) ... 51

3.7 Concerto FLA extension (**) .. 52
3.7.1 Description of Features Implemented in P2 (**) .. 52
3.7.2 Source Code Description (**) .. 54

3.8 MORETO tool (**) .. 56
3.8.1 Description of Features Implemented in P2 (**) .. 56
3.8.2 Interface Module Description (**) ... 59

3.9 Medini Analyzer (**) ... 60

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 4 of 68

3.9.1 Description of Features Implemented in P2 (**) .. 60
3.9.2 Interface Module Description (**) ... 61

4. Conclusion (*)... 62

Abbreviations and Definitions ... 64

References (*) .. 66

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 5 of 68

List of Figures

Figure 1. AMASS Reference (High-Level) Architecture (Prototype P2) .. 9
Figure 2. Initiating the argument-fragment generation (Step 1) ... 19
Figure 3. Selecting the source analysis context (Step 2) ... 20
Figure 4. Selecting the destination assurance case folder on the CDO repository (Step 3) 21
Figure 5. Generation successfully completed with argument-fragments for each block 22
Figure 6. An example of the generated argument-fragment .. 23
Figure 7. WEFACT user interface example after importing a process model ... 24
Figure 8. Tool modules for Assurance Case Management Component ... 33
Figure 9. Tool module from Contract Management Component .. 34
Figure 10. Assurance Case Specification plugins .. 36
Figure 11. Contract profile supporting modelling of concerns .. 37
Figure 12. The parameterized architecture and the configurations are used to generate the

architecure instances. For each instance, a set of contract-based analyses is performed.
Their results will be compared and integrated in a report format .. 38

Figure 13. Argument Generator plugin source ... 39
Figure 14. WEFACT Activity Diagram ... 41
Figure 15. Relation between WEFACT low level activity results and the CACM .. 42
Figure 16. Relation modelled between WEFACT activity results on high level and the CACM

evidences .. 42
Figure 17. The WEFACT Metamodel .. 43
Figure 18. Structure of the FMVEA tool including the interfacing with them AMASS platform. 48
Figure 19. Class diagram of the Expression class. ... 49
Figure 20. Class diagram of the FMVEA model editor... 50
Figure 21. User Interface of the FMVEA model editor. .. 50
Figure 22. Approach overview of co-analysis via ConcertoFLA ... 53
Figure 23. Security meta model and its relation to dependability profile of CHESSML 54
Figure 24. ConcertoFLA plugins along with highlights referring to the extended plugins and source 55
Figure 25. Fault tree generator plugin and source.. 56
Figure 26. Options for requirements generation in MORETO ... 56
Figure 27. Example for the MORETO External Layer ... 57
Figure 28. Example for the MORETO Intermediate Layer ... 58
Figure 29. Example for the MORETO Internal Layer. .. 59
Figure 30. Model transformation at the interface between MORETO and the AMASS platform. 60
Figure 31. Import path between AMASS and medini.. 60

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 6 of 68

List of Tables

Table 1. Requirements implemented in the third prototype of the AMASS platform (P2) 13
Table 2. Requirements implemented in the Assurance Case Editor... 15
Table 3. Requirements [partly] implemented in WEFACT ... 24
Table 4. Requirements implemented in the FMVEA tool... 26
Table 5. Requirements implemented in the ANP tool ... 27
Table 6. Requirements implemented in the Concerto-FLA tool ... 28
Table 7. Requirements implemented in the MORETO tool .. 29
Table 8. Requirements implemented in the Medini Analyzer tool .. 30
Table 9. Available installation documentation and user manuals for external tools implemented in

iteration 2 and 3.. 31
Table 10. WefactProject mapping .. 44
Table 11. RequirementObject mapping .. 45
Table 12. WorkflowTool mapping... 46
Table 13. ProcessObject mapping ... 46

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 7 of 68

Executive Summary (*)

This deliverable, D4.6 Prototype for multi-concern assurance (c), is the third output of the task T4.3
Implementation for Multi-Concern Assurance. Based on the results from the task T2.2 AMASS Reference
Tool Architecture and Integration, the task T4.3 develops a prototype tooling for multi-concern assurance.
Particular attention is paid to support the architectural approach to assurance being developed in WP3
and to implement the requirements for tooling aimed at supporting the multi-concern approach,
developed in WP4. The task 4.3 has been carried out iteratively, in close connection with the conceptual
tasks (T4.2 Conceptual Approach for Multi-Concern Assurance as well as those in the other WPs, namely
T3.2, T5.2 and T6.2), with validation results from the implementation being used to guide further
refinement of the conceptual approach. The implementation is closely guided by the requirements [38] of
the case studies, which are used to validate the prototype.

The first prototype iteration (Prototype Core) released the basic building blocks as a
consolidation/integration of previous projects OPENCOSS [1] and SafeCer [2]. The developed tools in the
first prototype (Prototype Core) supported the following two functional areas:

• Argumentation Editor

• Argument Patterns Editor

The second prototype iteration (P1) extended the previous functionality by the following functional parts:

• Support for contract-based multi-concern assurance by CHESS, and

• Multi-concern assurance workflow support by WEFACT [21] based on

• Standards conformant assurance process modelling by EPF-C [9].

The release at hand is the third prototype iteration (P2), which extends the previous functionalities by
further functional parts and adds additional external tools as listed in the following:

• Support for contract-based multi-concern assurance by CHESS.

• Further extensions to CHESS regarding Contract-based trade-off analysis in parameterized
architectures.

• Concerto-FLA extension.

• Failure Mode, Vulnerabilities and Effect Analysis (FMVEA) tool.

• Analytical Network Process (ANP) tool prototype.

• MORETO tool.

• Medini Analyzer.

This document has the purpose to present the added functional parts in detail, which are partly Open
Source tools integrated in the AMASS platform and partly external tools, for which the binding via an open
source interface module is given.

CHESS and EPF-C are already used in other contexts of the AMASS ARTA platform; therefore, references to
the comprehensive specifications elsewhere are given and a short description is included in this document
pointing out the particularity of the tool in context with the WP4 task of multi-concern assurance. The BVR
Tool is used in AMASS for managing the variability. Its selection and integration are part of WP6-work,
where variability management for enabling systematic reuse is in focus.

In the context of WP4, the role of BVR Tool is related to managing the variability when co-engineering
(cross-concern) is in focus. For this reason, it is mentioned in this deliverable as well.

The WEFACT workflow engine as an external tool was integrated via an open source interface module in
iteration two and is described in detail in the document at hand. In the third iteration, specifications of the
additional external tools FMVEA, MORETO, Medini Analyzer and the ANP tool prototype have been
added. This includes references to the open source interface, information about the technology used and
a description of the mapping between the tool-internal database and the AMASS CACM. In most cases,
existing open interfaces could be used for coupling the external tools to the AMASS platform.

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 8 of 68

Important parts of D4.6 are:

• Executables of or references to the external tools WEFACT, FMVEA, MORETO, Medini Analyzer
and the ANP tool prototype,

• User manuals and installation instructions, and

• where applicable, source code of the interface modules (e.g. in [18]).

Pointers to these parts are intended to be provided with D2.5 [45].

This deliverable represents an update of AMASS D4.5 [51] which was released in m19; the sections
modified with respect to D4.5 have been marked with (*) in the headlines, those which are new with (**).

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 9 of 68

1. Introduction (*)

The AMASS approach focuses on the development and consolidation of an open and holistic assurance
and certification framework for CPS, which constitutes the evolution of the OPENCOSS [1] and SafeCer [2]
approaches towards an architecture-driven, multi-concern assurance, reuse-oriented, and seamlessly
interoperable tool platform.

The expected tangible AMASS results are:

a) The AMASS Reference Tool Architecture, which extends the OPENCOSS and SafeCer conceptual,
modelling and methodological frameworks for architecture-driven and multi-concern assurance,
as well as for further cross-domain and intra-domain reuse capabilities and seamless
interoperability mechanisms (based on OSLC specifications [14]).

b) The AMASS Open Tool Platform, which corresponds to a collaborative tool environment
supporting CPS assurance and certification. This platform represents a concrete implementation
of the AMASS Reference Tool Architecture, with a capability for evolution and adaptation, which is
released as an open technological solution by the AMASS project. AMASS openness is based on
both standard OSLC APIs with external tools (e.g. engineering tools including V&V tools) and on
open-source release of the AMASS building blocks.

c) The Open AMASS Community, which will manage the project outcomes, for maintenance,
evolution and industrialisation. The Open Community will be supported by a governance board,
and by rules, policies, and quality models. This includes support for AMASS base tools (tool
infrastructure for database and access management, among others) and extension tools
(enriching AMASS functionality). As Eclipse Foundation is part of the AMASS consortium, the
Polarsys/Eclipse community (www.polarsys.org) is a strong candidate to host AMASS Open Tool
Platform.

To achieve the AMASS results, as depicted in Figure 1, the multiple challenges and corresponding
scientific and technical project objectives are addressed by different work-packages.

Figure 1. AMASS Reference (High-Level) Architecture (Prototype P2)

http://www.polarsys.org/

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 10 of 68

Since AMASS targets high-risk objectives, the AMASS Consortium decided to follow an incremental
approach by developing rapid and early prototypes. The benefits of following a prototyping approach are:

• Better assessment of ideas by initially focusing on a few aspects of the solution.

• Ability to change critical decisions based on practical and industrial feedback (case studies).

AMASS has provided three prototype iterations:

1. During the first prototyping iteration (Prototype Core), the AMASS Platform Basic Building Blocks

(see Figure 1), were aligned, merged and consolidated at TRL41.

2. During the second prototyping iteration (Prototype P1), the AMASS-specific Building Blocks were
developed and benchmarked at TRL4; this comprises the blue basic building blocks as well as the
green building blocks in Figure 1. Regarding multi-concern assurance, in this second prototype,
the specific building blocks provide functionalities regarding system dependability co-
analysis/assessment, dependability assurance modelling or contract-based multi-concern
assurance.

3. Finally, at the third prototyping iteration (Prototype P2), all AMASS building blocks have been
integrated in a comprehensive toolset operating at TRL5. Functionalities specific for multi-concern
assurance developed for the second prototype were improved and integrated with functionalities
from other technical work packages.

Each of these iterations has the following three prototyping dimensions:

• Conceptual/research development: development of solutions from a conceptual perspective.

• Tool development: development of tools implementing conceptual solutions.

• Case study development: development of industrial case studies using the tool-supported
solutions. The application of the building blocks in the case studies for the first prototype was
described in D1.1 [22], for the second prototype in D1.5 [46]. In the third iteration P2,
implementations applying WEFACT and FMVEA are under elaboration in CS1 and CS3, MORETO is
used in CS1, Medini Analyzer in CS3. The application of Concerto-FLA is contained in CS4, and
CHESS with OCRA is applied for contract-based multi-concern assurance in CS1, CS5, CS9 and
CS10. Finally, the OpenCert Assurance Case Editor is used in more than half of the case studies.

As part of the Prototype Core, WP4 provided the implementation of the basic building block “Assurance
Case Specification” (Figure 1). An update of the respective Assurance Case Editor is given in section 3.1.

This deliverable reports the tool and interface module development of the “Multi-concern Assurance”
building blocks and explains the final implementation. This refers to the following functionalities:

• Support for contract-based multi-concern assurance and for trade-off analysis based on
parameterized architectures by the internal tool CHESS,

• Standards conformant assurance process modelling by the internal tool EPF-C, and

• Multi-concern assurance workflow supporting combined activity execution for different multi-
concern assurance functions by means of the external tool WEFACT,

• Safety-security co-analysis by the external tool FMVEA,

• Failure-Logic Analysis with the internal tool Concerto-FLA,

• Trade-off analysis with the prototypic external ANP (Analytical Network Process) tool,

• Security analysis and requirements allocation with the external tool MORETO, and

• Safety-security co-analysis by the external tool Medini Analyzer.

1 In the context of AMASS, the EU H2020 definition of TRL is used, see
https://ec.europa.eu/research/participants/data/ref/h2020/other/wp/2016_2017/annexes/h2020-wp1617-annex-
g-trl_en.pdf

https://ec.europa.eu/research/participants/data/ref/h2020/other/wp/2016_2017/annexes/h2020-wp1617-annex-g-trl_en.pdf
https://ec.europa.eu/research/participants/data/ref/h2020/other/wp/2016_2017/annexes/h2020-wp1617-annex-g-trl_en.pdf

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 11 of 68

With respect to the EPF-C and CHESS tools, this deliverable contains short descriptions and refers to other
deliverables in which the mentioned tools are already described for a different context. For the external
tool WEFACT, which is integrated via the mentioned interface module, this deliverable presents the WP4
functionality and describes the interface and its mapping to the CACM in detail. The WP6-related
functions for process-based argument generation are mentioned only shortly and a reference to the
descriptions in WP6 are given.

Other important parts of this deliverable are:

• Installable AMASS Platform tools or open-source interface module for the third prototype,

• User Manuals and installation instructions, and

• Source code description.

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 12 of 68

2. Implemented Functionality (*)

2.1 Scope (*)

This third prototype of the Multi-concern assurance module has the purpose to extend the functionality of
the second prototype by additional developments and to provide interface modules yet missing in the
second iteration (P1). It completes the full scope of multi-concern assurance-related functions with
internal and external tools.

The following tool functions were already integrated in the first iteration of the AMASS platform:

• OpenCert – AMASS Core edition supporting (only) "Assurance case specification”, and

• CHESS - AMASS Core edition supporting contract modelling with OCRA.

In the second iteration of the AMASS platform (prototype P1), the following tools were integrated or
extended with respect to functionality:

1. OpenCert – AMASS P1 edition supports, in addition to “Assurance Case Specification”:

• “Dependability Assurance Modelling”, and

• partly “Contract–based multi-concern assurance”

2. CHESS - supports additionally “Contract-Based Multi-concern Assurance”

3. EPF-Composer – supports:

• “Co-assessment, Cross-Concern Reuse” (shared with WP6, the process model is made
vary with respect to the desired concern by BVR Tool), and

• Assurance process modelling and tailoring to the individual project (resulting process
model is used by WEFACT)

4. WEFACT - supports the assurance process workflow (this concerns several WPs).

• In WP4, the capability of combining analysis tools, targeting different concerns, is in focus.

The following tools, described in deliverable D4.3 [25], have been integrated in the third iteration of the
AMASS platform (prototype P2):

• Further extensions to CHESS regarding Contract-based trade-off analysis in parameterized
architectures and support for contract-based multi-concern assurance,

• Concerto-FLA – Extension of the Concerto-FLA tool (see [33], [34]) allowing Failure Logic Analysis
(FLA) not only for safety but also for security-related failure modes,

• FMVEA tool – supports model-based system-dependability co-analysis and –assessment,

• ANP (Analytical Network Process) tool prototype – supports trade-off analyses between various
quality attributes based on an ANP using coloured Petri Nets,

• MORETO - supports security analysis and manual or standards-based automated generation of
security requirements,

• Medini Analyzer - supports the assurance process workflow and allows safety and security
analyses.

A few tools were mentioned in earlier iterations of this deliverable as potential candidates for the
integration with the AMASS platform as WP4 functionalities, but finally the following decisions were
taken:

The Farkle tool, which verifies learning algorithms based on volume testing, supports product assurance
for a very specific case; its use is being investigated but not planned to be integrated with the AMASS
platform.

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 13 of 68

The AMT2.0 (Analogue Monitoring Tool), which supports “Contract-Based Multi-concern Assurance” by
generating monitors for observing properties of nodes a network, has been identified as a tool supporting
architecture-based assurance and is therefore now described in WP3.

2.2 Implemented Requirements - Overview (*)

The WP4 tools contained in the final iteration P2 of the AMASS platform provide solutions for a set of
AMASS requirements as defined in deliverable D2.1 [16]. Apart from the WP4 requirements, these tools
fulfil also several requirements related to other work packages. The following Table 1 lists all these
requirements including the WP4 tools that fulfil them.

Table 1. Requirements implemented in the third prototype of the AMASS platform (P2)

Requirement No Name Description Tool

WP4_ACS_001 Assurance case edition
The system shall be able to edit an assurance case in a
scalable way.

OpenCert

WP4_ACS_002
Argumentation
architecture

The system shall be able to edit a modular structure
(argument architecture) associated with a system
and/or component.

OpenCert

WP4_ACS_003
(Core
implementation
improved)

Drag and drop
argumentation
patterns

The system shall be able to instantiate in the actual
assurance case an argument pattern (concerning safety
and security) selected from the list of patterns stored.

OpenCert

WP4_ACS_005
Provide a structured
language to the text
inside the claims

The system could be able to provide support for
language formalization inside argument claims.

OpenCert

WP4_ACS_006
Provide guidelines for
argumentation

The system could be able to provide guidelines about
the assurance case edition based on the
system/component development phase status.

OpenCert, WEFACT

in a specific way2)

WP4_ACS_007
Argumentation
import/export

The system could be able to import/export
argumentations to SACM [5].

OpenCert

WP4_ACS_008
Traceability of the
dependability case

The system should provide the dependability case
reviewers the ability of tracing an overall dependability
case (GSN) goal to the requirement within the
dependability profile for a given system element and
the attribute of interest with which goal is associated.

OpenCert, WEFACT
(partly)

WP4_ACS_010
Composition of the
overall argument

The system should provide the capability of generating
a compositional assurance case argument.

OpenCert

WP4_ACS_011
Assurance case status
report

The system could provide the capability for querying
the assurance case in order to detect: 1) undeveloped
goals, 2) fallacies.

WEFACT

WP4_ACS_013

Provide quantitative
confidence metrics
about an assurance
case in a report

The system could produce a status report indicating a
quantitative confidence metric for assurance case.

WEFACT

WP4_CAC_010
Contract-based trade-
off analysis

The system could provide the capability to evaluate
safety and security requirements on different system
architectures to perform trade-off analysis based on
the contract specification.

ANP tool (partly),
CHESS

WP4_DAM_001
Capability to model
relationships between
concerns

The system shall be able to provide an assurance case
which records the relationships between dependability
attributes and how they are affected because of design
decisions.

OpenCert

WP4_DAM_002

Capability to capture
conflicts occurring
during system
development and the

The system shall provide the capability for modelling a
dependability case that captures the conflicts that
occur during system development and the trade-off
process to justify why the taken design decisions are

OpenCert, ANP tool

2 For an explanation see section 2.2.4.

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 14 of 68

Requirement No Name Description Tool

trade-off process the most optimal ones.

WP4_CMA_0013

The AMASS tools must
support specification of
variability at the
argumentation level

The system shall provide the capability for modelling
arguments in the assurance case about multi-concern
and multi-context.
The multi-concern and multi-context argumentation
could follow a variability modelling a solution. If GSN-
like modelling elements are considered, the diamond
for representing alternatives as well as the octagon for
extrinsic variability could be considered. (1)

BVR Tool +
OpenCert

WP4_CMA_002
Component contracts
must support multiple
concerns

The system shall provide a contract specification
language that supports the formalisation of both safety
and security requirements.

CHESS

WP4_CMA_003
Contract based multi-
concern assurance

The system must support features that support
contract based assurance with respect to multiple
concerns; i.e. it must be possible to specify relations
between safety contracts, security contracts and other-
concerns-related contracts in order to take care of the
influence of system modifications for mitigating the
risks associated with one quality attribute on the
contract belonging to another quality attribute.

OpenCert

WP4_SDCA_001
System dependability
co-architecturing and
co-design

The system shall provide features, which allow
architecture modelling collaboration and co-designing
a system or component with a balanced combination
of different goals addressing various quality attributes.

ANP tool,
Concerto-FLA

WP4_SDCA_002
System dependability
co-verification and co-
validation

The system shall support efficient system or
component co-verification and co-validation with
respect to multiple quality attributes. (2)

WEFACT, Medini
Analyzer, Safety

Architect,
CHESS, FMVEA

WP4_SDCA_003
The system shall allow
combinations of safety
and security analysis

The system shall allow combinations of safety and
security analysis.

WEFACT, Medini
Analyzer, Safety

Architect,
ANP tool,FMVEA,

Concerto-FLA,
MORETO

WP3_APL_004
Architectural Patterns
suggestions

The system could provide the user suggestions about a
certain safety/security mechanism stored as
architectural patterns.

MORETO

WP3_SC_005
Requirements
allocation

The system must provide the capability for allocating
requirements to parts of the component model. More
in general, requirements traceability shall be enabled.

MORETO

WP3_VVA_006

Automatic provision of
HARA/TARA-artifacts

The system shall provide the capability for automating
HARA (Hazard Analysis Risk Assessment)/TARA (Threat
Assessment & Remediation Analysis)-related artefacts
(e.g., FTA, FMEA, attack trees).

FMVEA, MORETO,
MediniAnalyze,
SafetyArchitect,

CHESS

WP3_VVA_009

Capability to connect
to tools for test case
generation based on
assurance
requirements
specification of a
component/system

The system shall be able to connect to external tools to
execute the test cases already specified.

WEFACT

WP5_CW_004
Collaborative re-
certification needs &
consequences analysis

The AMASS Tool Platform shall support the
collaboration among assurance managers and
assurance engineers for re-certification needs &
consequences analysis.

WEFACT, OpenCert

WP5_CW_005
Collaborative system
V&V

The AMASS Tool Platform shall support the
collaboration among systems engineers for system
V&V.

WEFACT

3 This requirement is shared between WP4 and WP6.

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 15 of 68

Requirement No Name Description Tool

WP5_CW_007
Collaborative
assurance evidence
management

The AMASS Tool Platform shall support the
collaboration among assurance managers and systems
engineers for assurance evidence management. (3)

WEFACT, OpenCert

WP5_EM_016
Evidence report
generation

The AMASS Tool Platform shall be able to
automatically generate reports, checklists, and
evidence for certification purposes.

WEFACT

WP5_CM_001 Modelling of standards

The AMASS tools shall be able to model a set of
industrial standards (including the parts, objectives,
practices, goals/requirements, criticality levels from
the standards)

MORETO, WEFACT

WP5_CM_002
Tailoring of Standards
models to specific
projects

The AMASS tools shall enable the tailoring of Standards
models to specific project (e.g., by establishing the
parts of the Standard that apply to a given assurance
project).

WEFACT

WP6_CM_008
Process Compliance
(informal)
management

The AMASS tools shall enable users to visualize process
compliance. This means showing the links between the
requirements and the applicant’s evidence (during the
planning as well as execution phase).

This visualization could be done via compliance maps
(matrix) or via arguments aimed at justifying the
satisfaction of the requirements coming from the
standards. (3)

WEFACT,
OpenCert, EPF-C

WP6_PPA_003
Semi-automatic
generation of process
arguments

The system should be able to semi-automatic generate
fragments of an assurance case for process arguments
based on the process followed to develop a
component/system.

WEFACT

(1) Functionality mainly described in D6.2 [28].
(2) WEFACT allows combining V&V activities (e.g. calls to test tools) in one complex activity.
(3) Partially implemented.

Column "Requirement No" refers to the IDs in the deliverable D2.1 [16].

Each tool together with the implementation that implements requirements is shortly outlined in the
following tool specific sections.

2.2.1 Requirements implemented in the Assurance Case Editor in OpenCert (*)

The Assurance Case Editor is part of the OpenCert project. It includes one of the basic building blocks for
AMASS, the Assurance Case specification block. In this iteration, we have extended it in order to cover
more of the requirements elicited for WP4 and solve some of the problems identified during the
validation of previous prototype Core. Some of the requirements are covered partially and planned to be
improved in future iterations.

Requirements implemented in the Assurance Case Editor in OpenCert are included in Table 2.

Table 2. Requirements implemented in the Assurance Case Editor

Requirement No Name Description

WP4_ACS_001 Assurance case edition
The system shall be able to edit an assurance case in a scalable
way.

WP4_ACS_002 Argumentation architecture
The system shall be able to edit a modular structure (argument
architecture) associated with a system and/or component.

WP4_ACS_003
Drag and drop argumentation
patterns

The system shall be able to instantiate in the actual assurance
case an argument pattern (concerning safety and security)
selected from the list of patterns stored.

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 16 of 68

WP4_ACS_005
Provide a structured language to the
text inside the claims

The system could be able to provide support for language
formalisation inside argument claims.

WP4_ACS_007 Argumentation import/export
The system could be able to import/export argumentations to
SACM.

WP4_ACS_010 Composition of the overall argument
The system should provide the capability of generating a
compositional assurance case argument.

WP4_DAM_001
Capability to model relationships
between concerns

The system shall be able to provide an assurance case which
records the relationships between dependability attributes and
how they are affected because of design decisions.

WP4_DAM_002
Capability to capture conflicts
occurring during system development
and the trade-off process

The system shall provide the capability for modelling a
dependability case, which captures the conflicts that occur during
system development, explicitly show the dependencies of a design
decision in relation with other assertions.

Some of the requirements were implemented in the core prototype and lately improved in the second
iteration. In the third iteration (P2), no further changes were needed, implementation has focused in
resolving bugs.

WP4_ACS_001: Assurance case edition

This requirement was previously covered in Prototype Core.

WP4_ACS_002: Argumentation architecture

This requirement is focused on functionality “Assurance case structure navigation”, which was already
implemented in Prototype Core. Assurance Case editor lets the user include argument modules in the
diagram. This concept permits to encapsulate arguments (claims, strategies and evidences inside them).
To see the encapsulated arguments, the user just needs to double click on the argument module and a tab
with the argument diagram containing the arguments will be opened. All the elements inside the
argument module are included in the model. The idea is to make feasible to apply modular
argumentation concepts. We are able to encapsulate arguments of the same kind in argument modules.
The way of classification might differ depending on the user. The user might want to encapsulate process
arguments in an argument module, product arguments in another argument module and confidence
arguments in another argument module, or rather to align the argumentation with the different
components from the different suppliers that form the system and the adequacy of its integration.

WP4_ACS_003: Drag and drop argumentation patterns

This requirement was implemented in Prototype Core. However, one of the feedback comments received
mentioned that the argument patterns needs to be stored locally as files before. With the new
improvement the argument patterns can be stored either locally as files, or stored in a common
repository. The user has a view where (s)he can browse the folders including patterns, select one, drag
from the “templates” view and drop it in the actual diagram. The editor will copy the elements in the
model and the position of the elements in the diagrams in a transparent way to the user.

WP4_ACS_005: Provide a structured language to the text inside the claims

This requirement was already covered in Prototype Core. There have not been any improvements
regarding this requirement as there was no feedback from the case studies.

WP4_ACS_007 Argumentation import/export

This requirement has been covered briefly in the second iteration (Prototype P1). The user could provide
a file storing an argument model specified using SACM to the actual argument model. Similarly, an
argument model created in the Assurance Case editor can be exported to a file.

WP4_ACS_010: Composition of the overall argument

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 17 of 68

This requirement was partially covered in previous prototype (Prototype Core) and improved in prototype
P1. In Prototype Core, in the argumentation diagram, the user could explicitly include the argument
contract figure to show that there is a rationale behind the composition of the linked argument modules.
An argument contract should be linked with at least two or more argument modules. With the new
improvements in P1 the arguments that show the rationale for the connection are connected. A new
argument diagram is associated with the contract figure and can be shown and edited when double
clicking in the contract figure.

WP4_DAM_001: Capability to model relationships between concerns

This requirement has been covered in the second iteration (Prototype P1). In deliverable D4.2 [24] the
“dependency relationship” has been presented. The new implementations tried to cover this new
dependency relationship concept. No further development was needed in prototype P2.

2.2.2 Requirements realized in EPF-Composer & BVR Tool (*)

As it was recalled in D4.3 [25], EPF Composer is the tool that implements the EPF (Eclipse Process
Framework) [9] approach for supporting customizable (software) process engineering frameworks.

In AMASS, the EPF approach and its tool support have been integrated as core building block. Within WP6,
D6.2 [28] and D6.3 [47], EPF-C has been strengthened via integration with the BVR tool [3],[4]. This
integration is beneficial not only for general reuse but more specifically for co-assessment and cross-
concern reuse, focusing on the interplay of safety and security in line with WP4 objectives (see
requirement WP4_CMA_001). This integration permits a user to model SiSoPLs (Security-informed Safety-
oriented Process Lines). During the co-assessment, safety and security engineers are in the position to
identify and systematize the overlapping region (commonality) and the variations.

An initial exploration of co-assessment and cross-concern reuse is documented in D6.2 [28] and D6.3 [47] .
D4.7 [27], instead, includes in-depth guidance on how to benefit from such integration in the context of
multi-concern (co-) assessment. Additional guidelines are expected to be provided in the final version
D4.8 [57].

EPF Composer has also be strengthened with respect to compliance management. In the context of WP6,
functionalities for generation of process-based arguments as well as compliance checking have been
designed and implemented. These functionalities are relevant also in the context of WP4 (see
requirement: WP6_PPA_003) since they have the potential of enabling the generation of co-assessment-
related arguments as well as co-assessment proofs.

2.2.3 Requirements implemented in CHESS (*)

2.2.3.1 Modelling different concerns for system components (*)

Different concerns/properties for system components can be represented in the architecture model by
using the CHESS modelling language (CHESSML [35]) and then analysed (WP4_SDCA_001 requirement). In
particular, (a subset of) MARTE [36] is available in CHESSML to allow modelling of timing concerns.
Moreover, a dependability profile has been incorporated in CHESSML to allow modelling of safety
properties (e.g. fault, error, failure and failure propagation); see Section 3.7.

In the context of AMASS, the extension of CHESS [15] to cover the modelling and analysis of security
aspects has been investigated, in particular by considering what is already available from other modelling
tools (e.g. Safety Architect provided by ALL4TEC), trying to understand if specific integration at modelling
language and/or tool can be realized. Moreover, CHESSML has been extended to cover the modelling of
security aspects and co-analysis is supported via the extension of ConcertoFLA (see Section 3.7).

The concept of component contract, the latter also available in CHESSML, can also be used to model
properties of different concerns (WP4_CMA_002, WP4_CMA_003 requirements). Contracts can be

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 18 of 68

derived according to obtained analysis results; for instance, a safety contract about failure propagation
between input and output ports of a given component could be derived from CHESS by executing failure
propagation analysis, the latter enabled by the failures-related information stored in the model by using
the CHESS dependability profile. In the same manner, performance contract about worst-case response
time of a component’s operation could be derived after worst-case response time analysis performed in
CHESS by using the timing MARTE annotations. Contracts can also be created as formalisation of system
components requirements by using dedicated languages, for instance the temporal logic ones currently
proposed in WP3.

To better represent the concern addressed by a given contract, CHESSML has been extended to support
the notion of concern (e.g. safety, security, performance) attached to component contract. It is worth
noting that the concern tag could also be derived automatically from the requirement(s) which is(are)
formalised by given contract, assuming that the requirement comes with such information too. The
assurance engineer can then use the information of concern attached to contracts to have a better
understanding of the dependencies between concerns along the system architecture. For instance, he/she
could reason about the relationships modelled for contracts, e.g. contracts refinement, to argue if a
contract of a given concern depends on (is decomposed by in case of contracts refinement) contracts
related to other concerns. CHESS has been extended also to compare the results of analysis applied in
different architectures to for contract-based trade-off analysis (WP4_CAC_010). This comparison is
enhanced by the parametrization of the architecture in which different architectures correspond to
different configuration / assignments to the parameters. Each parameter can be a symbolic
representation of a design choice. Contract-based trade-off analysis provides a characterization of which
design choices affect the fulfilment of system and component contracts.

Additional guidelines including illustrative figures are expected to be provided in the final version D4.8
[57].

2.2.3.2 Additional CHESS Functionalities (*)

In addition to the features for modelling different concerns for system components, CHESS was used for
further features supporting modelling dependability aspects and semi-automatic generation of product
arguments. For these developments, no implementation work was needed anymore in iteration 3.
Nevertheless, they were elaborated at least conceptually and documented in D4.3 [25] In the following, a
short description of these features is given.

Modelling dependability aspects (**)

As it was documented in D3.3 [23], CHESS implements the conceptual metamodel called SafeConcert [29].
SafeConcert enables dependability architects to model dependability’s information necessary to conduct
dependability analysis. SafeConcert is a subset of CHESSML (which in turn is an extension of SySML [30]),
the meta-model used in CHESS toolset to enable component-based systems design. ConcertoFLA [31]
allows users (system architects and dependability engineers) to decorate component-based architectural
models (specified using CHESSML) with dependability-related information, execute Failure Logic Analysis
(FLA) techniques, and get the results back-propagated onto the original model. Both SafeConcert and
ConcertoFLA have been extended to support the modelling and analysis of security aspects (see Section
3.7 for details).

Semi-automatic generation of product arguments (**)

The Argument Generator plugin is implemented in CHESS. It generates a set of argument-fragments from
the selected CHESS model and stores them in the corresponding destination assurance case in the CDO
repository stated in the OpenCert preferences. Components in the CHESS model are decorated with
contracts that are primarily used to verify that the model satisfies a particular requirement. The contract
check is performed in OCRA from CHESS. To assure that the requirement is satisfied with sufficient
confidence, we need to assure confidence in the contracts as well. Hence, we provided support in CHESS

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 19 of 68

for enriching the contracts with assurance information. Argument Generator uses that information and
creates an argument-fragment for each component and its related contracts. To support multi-concern
assurance, we have extended the contracts and requirements specification in CHESS with a concern
attribute to indicate that the particular contract/requirement is related to the selected concern. Based on
this information, we generate argument-fragments that are concern-specific by filtering the component
elements based on the concern tag. Currently, we indicated the concern in the name of the argument-
fragment file. However, we are searching for a way to capture the concerns in the argumentation
metamodel. The attached screenshots (Figure 1- Figure 6) illustrate the usage of the Argument Generator
plugin. Further improvements of the generation are under way.

Figure 2. Initiating the argument-fragment generation (Step 1)

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 20 of 68

Figure 3. Selecting the source analysis context (Step 2)

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 21 of 68

Figure 4. Selecting the destination assurance case folder on the CDO repository (Step 3)

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 22 of 68

Figure 5. Generation successfully completed with argument-fragments for each block

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 23 of 68

Figure 6. An example of the generated argument-fragment

2.2.4 Requirements implemented in WEFACT (*)

WEFACT is an external tool for assurance workflow execution. It can use a process model defined in EPF-C
or use process activities defined in WEFACT itself. In WEFACT, the activities of the EPF model are
associated with V&V activities and respective tools, and WEFACT eventually executes these activities,
keeping track of changes of associated artefacts (e.g. software modules under test) and the associated
requirements. In this way, WEFACT supports continuous impact management in the event of changing
requirements, models or implementations and triggers then only those re-assurance activities which are
necessary as a consequence of the changes.

Figure 7 shows the WEFACT user interface after importing a process model, which appears in the "Process
Explorer" in the lower left corner. In the middle the selected requirements is displayed, to the right the
associated verification process and its status can be seen. More details can be found in D4.3 [25].

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 24 of 68

Figure 7. WEFACT user interface example after importing a process model

In the third iteration P2, WEFACT is integrated with the AMASS platform and fulfils the following
requirements:

Table 3. Requirements [partly] implemented in WEFACT

Requirement No Name Description

WP4_ACS_006 Provide guidelines for argumentation
The system could be able to provide guidelines about the
assurance case edition based on the system/component
development phase status.

WP4_ACS_008
(1)

Traceability of the dependability case

The system should provide the dependability case reviewers
the ability of tracing an overall dependability case (GSN) goal
to the requirement within the dependability profile for a given
system element and the attribute of interest with which goal is
associated.

WP4_SDCA_002
(1)

System dependability co-verification
and co-validation

The system shall support efficient system or component co-
verification and co-validation with respect to multiple quality
attributes.

WP4_SDCA_003
(1)

The system shall allow combinations
of safety and security analysis

The system shall allow combinations of safety and security
analysis. (2)

WP3_VVA_009

Capability to connect to tools for test
case generation based on assurance
requirements specification of a
component/system

The system shall be able to connect to external tools to
execute the test cases already specified. (3)

WP5_CW_004
Collaborative re-certification needs &
consequences analysis

The AMASS Tool Platform shall support the collaboration
among assurance managers and assurance engineers for re-
certification needs & consequences analysis.

WP5_CW_005 Collaborative system V&V
The AMASS Tool Platform shall support the collaboration
among systems engineers for system V&V.

WP5_CW_007
Collaborative assurance evidence
management

The AMASS Tool Platform shall support the collaboration
among assurance managers and systems engineers for
assurance evidence management.

WP6_CM_008
Process Compliance (informal)
management

The AMASS tools shall enable users to visualize process
compliance. This means showing the links between the
requirements and the applicant’s evidence (during the
planning as well as execution phase).

This visualization could be done via compliance maps (matrix)

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 25 of 68

Requirement No Name Description
or via arguments aimed at justifying the satisfaction of the
requirements coming from the standards.

WP5_EM_016 Evidence report generation
The AMASS Tool Platform shall be able to automatically
generate reports, checklists, and evidence for certification
purposes.

WP6_CM_001 Modelling of standards
The AMASS tools shall be able to model a set of industrial
standards (including the parts, objectives, practices,
goals/requirements, criticality levels from the standards)

WP6_CM_002
Tailoring of Standards models to
specific projects

The AMASS tools shall enable the tailoring of Standards models
to specific project (e.g., by establishing the parts of the
Standard that apply to a given assurance project).

WP6_PPA_003
Semi-automatic generation of process
arguments

The system should be able to semi-automatic generate
fragments of an assurance case for process arguments based
on the process followed to develop a component/system.

1) Partly implemented, i.e. WEFACT achieves this by combining workflows.
2) WEFACT allows combined safety and security analyses by combining calls to separate safety and

security analysis tools in one activity.
3) WEFACT supports calling tools in the executed assurance activities; this includes calls to test tools.

In this sense, WEFACT can be used as a test automation engine. This feature, in fact, supports
WP3 requirement WP3_VVA_009.

In the following, the implementation in WEFACT is shortly described for each of the above mentioned
requirements.

WP4_ACS_006 Provide guidelines for argumentation

Together with EPF, WEFACT offers opportunities to guide the user through certain assurance activities at
defined points in the workflow. These assurance activities can be any activity in the lifecycle like, for
instance, safety analysis, performance analysis, software design, system test, reviews, validation activities,
etc. This functionality has been implemented in prototype P1.

WP4_ACS_008 Traceability of the dependability case

The WEFACT workflow supports the recognition of evidences which are invalidated by modification of
requirements or input artefacts of assurance activities.

WP4_SDCA_002 System dependability co-verification and co-validation

WEFACT can be instantiated as workflow engine for verification of any quality attribute. This is possible in
conformance with a process model created with EPF-C or stand-alone with WEFACT. WEFACT can, as far
as possible, automatically start tools for verifying or validating deliberate properties or quality attributes
of the system or the artefact under consideration. The UMA process model says what shall be
verified/validated, and WEFACT allows to couple this step to appropriate tool[s] and to execute the
workflow.

WP4_SDCA_003 The system shall allow combinations of safety and security analysis.

WEFACT can support processes for controlling separate as well as combined safety and security analyses.
In Iteration 2 WEFACT can be used to combine calls to separate safety and security analysis tools in a
complex analysis step. In iteration 3, combined methods for co-analysis are expected (FMVEA, Medini
Analyzer).

WP3_VVA_009 Capability to connect to tools for test case generation based on
assurance requirements specification of a component/system

WEFACT offers various bindings for tools, among others, test case generation tools. WEFACT maintains a
list of tools including their bindings; the user can associate assurance steps (process activities) with tools.

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 26 of 68

WEFACT allows interdependent sequences of tool calls so that, as an example, a successful call to a test
case generation tool can be linked to a subsequent call to a test tool executing the generated test cases.

WP5_CW_004 Collaborative re-certification needs & consequences analysis

WEFACT allows multiple users to use its database and provides - based on its continuous impact
management w.r.t. changes of requirements and system artefacts - support for efficient, resource-saving
re-certification.

WP5_CW_005 Collaborative system V&V

WEFACT supports collaborative, workflow-controlled V&V, integrated with the assurance case.

WP5_CW_007 Collaborative assurance evidence management

While and after gathering assurance evidences, WEFACT supports assurance managers and systems
engineers in tracking the progress of the evidence collection for finalizing the assurance case.

WP6_CM_008 Process Compliance (informal) management

WEFACT shows the dynamic status of compliance with Standards as the imported EPF process model is
inherently standards-compliant. While designing as well as executing the assurance workflow, WEFACT
shows at any point in time the actual fulfilment of the product requirements as well as the process
requirements from the standards.

WP5_EM_016 Evidence report generation

WEFACT creates evidences for requirements and can provide reports (currently in a textual version) about
their fulfilment status. This can be used for the certification documentation.

WP6_CM_001 Modelling of standards

WEFACT allows modelling the process steps for creating the work products in compliance with standards.

WP6_CM_002 Tailoring of Standards models to specific projects

WEFACT allows to use predefined process models (e.g. an EPF model for a specific standard) and to tailor
it to the domain-specific practices or to the individual project.

WP6_PPA_003 Semi-automatic generation of process arguments

As described in D6.3 [47], WEFACT can create Argument Fragments from modelled (typically standards-
conformant) assurance processes.

2.2.5 Requirements implemented in the FMVEA tool (**)

In the third iteration, FMVEA is integrated with the AMASS platform as external tool and fulfils the
following requirements:

Table 4. Requirements implemented in the FMVEA tool

Requirement No Name Description

WP4_SDCA_002
System dependability co-
verification and co-validation

The system shall support efficient system or component co-
verification and co-validation with respect to multiple
quality attributes.

WP4_SDCA_003

The system shall allow
combinations of safety and
security analysis

The system shall allow combinations of safety and security
analysis.

WP3_VVA_006
Automatic provision of
HARA/TARA-artifacts

The system shall provide the capability for automating
HARA (Hazard Analysis Risk Assessment)/TARA (Threat

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 27 of 68

Assessment & Remediation Analysis)-related artefacts (e.g.,
FTA, FMEA, attack trees).

In the following, the implementation in FMVEA is shortly described for each of the above-mentioned
requirements.

WP4_SDCA_003 The system shall allow combinations of safety and security analysis.

FMVEA allows combined multi-concern analyses, based on a system model, currently focused on safety
and security. Extensions towards views on more quality attributes are planned for future research
projects.

WP4_SDCA_002 The system shall support efficient system or component co-verification and co-
validation with respect to multiple quality attributes.

After implementing the necessary (e.g. architectural) mitigation measures, definition of possible threats
and failure modes the parameterized (e.g. define the focus points inside the modelled system) analysis
can be executed. Components inside the model can be selected individually, this possibility saves costs in
time.

WP3_VVA_006 Automatic provision of HARA/TARA-artifacts

FMVEA provides automated hazard and threat analyses with risk assessment using its failure and threat
database.

2.2.6 Requirements implemented in the ANP tool (**)

In the third iteration, a prototype of the ANP (Analytic Network Process) tool has been provided. Its
integration with the AMASS platform is currently (August 2018) manual, but work is ongoing to integrate
with the AMASS platform using the CHESS dependability profile. The ANP tool supports System analysis as
well as Trade-off analysis and fulfils the requirements listed in Table 5.

The system shall allow combinations of safety and security analysis.

Table 5. Requirements implemented in the ANP tool

Requirement No Name Description

WP4_CAC_0101) Contract-based trade-off analysis

The system could provide the capability to evaluate safety
and security requirements on different system architectures
to perform trade-off analysis based on the contract
specification.

WP4_DAM_002

Capability to capture conflicts
occurring during system
development and the trade-off
process

The system shall provide the capability for modelling a
dependability case which captures the conflicts that occur
during system development and the trade-off process to
justify why the taken design decisions are the most optimal
ones.

WP4_SDCA_001
System dependability co-
architecturing and co-design

The system shall provide features, which allow architecture
modelling collaboration and co-designing a system or
component with a balanced combination of different goals
addressing various quality attributes.

WP4_SDCA_003

The system shall allow
combinations of safety and
security analysis

The system shall allow combinations of safety and security
analysis.

1) Implemented in a specific way, see explanation below.

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 28 of 68

In the following, the implementation in the ANP tool is shortly explained for each of the above-mentioned
requirements.

WP4_CAC_010 Contract-based trade-off analysis

This requirement is supported in a specific way. Using patterns in the ANP tool implies a design contract
between the assumption that an architectural or design solution is implemented and the guaranteed
improvement of the achieved level of the addressed quality attributes like for instance reliability,
availability, attack or failure detection likelihood or effort needed for cracking a key.

WP4_DAM_002 Capability to capture conflicts occurring during system development and the trade-off
process

Assuming different security patterns, the ANP approach allows to determine the impact on safety. Based
on attack likelihood, failure rates and the impact, the user can choose a solution between different
variants based on a numeric risk value.

WP4_SDCA_001 System dependability co-architecturing and co-design

The ANP tool uses security patterns together with field experience data to determine a quantitative attack
likelihood measure and provides safety and security risk numbers to support choosing optimal
architectural solutions.

WP4_SDCA_003 The system shall allow combinations of safety and security analysis

The quality attributes availability and reliability are related to implementations for safety and security.
The ANP tool provides availability and reliability analysis via Time NET and can also be extended for timing
analysis, which addresses an aspect of performance analysis. Summarizing, the ANP is able to support
even a wider range of multi-concern analyses than the requirement demands.

2.2.7 Requirements implemented in the Concerto-FLA extension (**)

In the third iteration, the Concerto-FLA tool is integrated with the AMASS platform as external tool and
fulfils the following requirements.

Table 6. Requirements implemented in the Concerto-FLA tool

Requirement No Name Description

WP4_SDCA_001
System dependability co-
architecturing and co-design

The system shall provide features, which allow architecture
modelling collaboration and co-designing a system or component
with a balanced combination of different goals addressing various
quality attributes.

WP4_SDCA_003
The system shall allow combinations
of safety and security analysis

The system shall allow combinations of safety and security
analysis.

In the following, the implementation in the Concerto-FLA tool is shortly described for each of the above-
mentioned requirements.

WP4_SDCA_001 System dependability co-architecturing and co-design.

The extension of the dependability profile of CHESSML [52]discussed in Section3.7.1 enables the
modelling of security in addition to the available support of modelling of safety properties as mentioned
in Section 2.2.3.1.

WP4_SDCA_003 The system shall allow combinations of safety and security analysis.

The extension of Concerto-FLA enables co-analysis (safety and security) and the generation of FTs from
the analysis results. This extension is explained in detail in Section 3.7.1.

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 29 of 68

2.2.8 Requirements implemented in MORETO (**)

The Enterprise Architect plugin MORETO (Model-based Security Requirements Management Tool) was
used in Case Study 1 and is therefore already described in D1.5 [46]. It was decided to include it in the
third iteration P2 of the AMASS platform as an external tool. The tool is now integrated with the AMASS
platform and fulfils the following requirements (see Table 7).

Table 7. Requirements implemented in the MORETO tool

Requirement No Name Description

WP4_SDCA_0031)

The system shall allow
combinations of safety and
security analysis

The system shall allow combinations of safety and security
analysis.

WP3_VVA_0061)

Automatic provision of
HARA/TARA-artifacts

The system shall provide the capability for automating HARA
(Hazard Analysis Risk Assessment)/TARA (Threat Assessment &
Remediation Analysis)-related artefacts (e.g., FTA, FMEA, attack
trees).

WP3_SC_005

Requirements allocation The system must provide the capability for allocating requirements
to parts of the component model. More in general, requirements
traceability shall be enabled.

WP6_CM_001

Modelling of standards The AMASS tools shall be able to model a set of industrial
standards (including the parts, objectives, practices,
goals/requirements, criticality levels from the standards)

WP3_APL_004
Architectural Patterns
suggestions

The system could provide the user suggestions about a certain
safety/security mechanism stored as architectural patterns.

1) Partly implemented – restricted to the security part.

In the following, the implementation in the MORETO tool is shortly described for each of the above-
mentioned requirements.

WP4_SDCA_003 The system shall allow combinations of safety and security analysis

MORETO allows security analyses, which covers only part of WP4_SDCA_003. By WEFACT, however,
MORETO can be combined with a safety analysis tool resulting in a combined analysis.

WP3_VVA_006 Automatic provision of HARA/TARA-artefacts

After modelling the system architecture including certain security-relevant parameters, MORETO uses its
knowledge to automatically generate security requirements and a set of standards-conformant security
controls as mitigation measures. The use of the tool is, however, restricted to security.

WP3_SC_005 Requirements allocation

MORETO supports – in conformance with selected cybersecurity standards – the automatic allocation of
cybersecurity requirements to model elements, e.g. components.

WP6_CM_001 Modelling of standards

Up to now (August 2018), two cybersecurity standards, namely for IEC 62443 [48] and IEEE 1686 [49] are
supported by MORETO.

WP3_APL_004 Architectural Patterns suggestions

In automatic mode, MORETO creates security controls which represent patterns to cope with security
threats. More details about such pattern can be found in D3.6 [39]. In manual mode, it is also possible to
define own threat mitigation measures.

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 30 of 68

2.2.9 Requirements implemented in Medini Analyzer (**)

In the third iteration, the Medini Analyzer tool (for safety and cybersecurity) is used as an external tool to
the AMASS platform and fulfils the following requirements (see Table 8).

Table 8. Requirements implemented in the Medini Analyzer tool

Requirement No Name Description

WP4_SDCA_003

The system shall allow
combinations of safety and
security analysis

The system shall allow combinations of safety and security
analysis.

WP3_VVA_006

Automatic provision of
HARA/TARA-artifacts

The system shall provide the capability for automating
HARA (Hazard Analysis Risk Assessment)/TARA (Threat
Assessment & Remediation Analysis)-related artefacts (e.g.,
FTA, FMEA, attack trees).

WP3_VVA_010

Model-based safety analysis The system shall allow the user to generate fault trees and
FMEA tables from the behavioral model and the fault
injection.

WP3_SC_005

Requirements allocation The system must provide the capability for allocating
requirements to parts of the component model. More in
general, requirements traceability shall be enabled.

In the following, the implementation in the Medini Analyzer tool is shortly described for each of the
above-mentioned requirements.

WP4_SDCA_003 The system shall allow combinations of safety and security analysis

Medini supports both, safety and cyber-security analysis at the same time or separated from each other.
Both analysis can be based on the same system (SysML) model in combination. Safety and security
artefacts can have relationship or dependencies among each other (e.g. safety and security requirements,
vulnerabilities and failures, assets and system elements).

WP3_VVA_006 Automatic provision of HARA/TARA-artefacts

Medini has rich built-in capabilities to automate certain tasks in the overall tool. That automation
capabilities are covering all aspects of the tool, including system modelling but also derivation of initial
safety and security analysis stubs. These capabilities can be used to write new automations, but there are
already a few standard automations included. Example automation already included in the derivation of
fault trees from Simulink or SysML models, the derivation of TARA skeletons from Attack Trees and the
derivation of FMEA/FMEDA form sheets from system models, to name a few.

WP3_VVA_010 Model-based safety analysis

Medini analysis methods (security and safety) are solely based on system models. Analysis artefacts as
fault trees, HARA or TARA or FMEA worksheets refer to system model or failure model elements and
reflect element attributes as for example failure rates in FTA event probabilities.

WP3_SC_005 Requirements allocation

Medini supports rich traceability with different levels of semantics, from pre-defined “hard” relationships
as “Allocation” or “Contribution” relationships to generic and customizable “Trace” relations.
Requirements can be freely allocated to system elements, also to larger sets of elements as for example
required for semiconductors. The allocation can be utilized by automation features that for example
propagate Integrity Levels (as the ASIL) owned by a requirement down to the system architecture (system
model).

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 31 of 68

2.3 Installation and User Manuals (*)

It is planned to provide an exhaustive installation description with the steps necessary to install the third
prototype as well as a user manual for the internal tools in [20] together with D2.5 “AMASS user guidance
and methodological framework” [45], which will not be repeated here. That document will contain all
required steps and document references to set up the tools.

External tools have a stub description in the AMASS User Manual and possibly manuals on the tool
provider website. The entire AMASS user manual will be published in D2.5 [45], which is due in m31
(October 2018). Table 9 depicts an overview on available installation documentation and user manuals for
the external tools implemented in iterations 2 and 3.

Table 9. Available installation documentation and user manuals for external tools implemented in iteration 2 and 3

Tool Available Installation Documentation and User Manual

WEFACT https://services.medini.eu/svn/AMASS_collab/WP-
transversal/ImplementationTeam/PrototypeP2/WEFACT_UserManual.docx

https://services.medini.eu/svn/AMASS_collab/WP-
transversal/ImplementationTeam/PrototypeP2/WEFACT_Installation_Guide.docx

FMVEA https://services.medini.eu/svn/AMASS_collab/WP-
transversal/ImplementationTeam/PrototypeP2/FMVEA_UserManual.docx

https://services.medini.eu/svn/AMASS_collab/WP-
transversal/ImplementationTeam/PrototypeP2/ FMVEA _Installation_Guide.docx

ANP tool https://services.medini.eu/svn/AMASS_collab/WP-
transversal/ImplementationTeam/PrototypeP2/ANP-tool_UserManual.docx

https://services.medini.eu/svn/AMASS_collab/WP-
transversal/ImplementationTeam/PrototypeP2/ANP-tool _Installation_Guide.docx

Concerto-FLA
extension

https://services.medini.eu/svn/AMASS_collab/WP-
transversal/ImplementationTeam/PrototypeP2/Concerto-FLA -tool_UserManual.docx

https://services.medini.eu/svn/AMASS_collab/WP-
transversal/ImplementationTeam/PrototypeP2Concerto-FLA-tool
_Installation_Guide.docx

MORETO https://services.medini.eu/svn/AMASS_collab/WP-
transversal/ImplementationTeam/PrototypeP2/MORETO_UserManual.docx

https://services.medini.eu/svn/AMASS_collab/WP-
transversal/ImplementationTeam/PrototypeP2/MORETO_Installation_Guide.docx

Medini
Analyzer

https://services.medini.eu/svn/AMASS_collab/WP-
transversal/ImplementationTeam/PrototypeP2/MediniAnalyzer_UserManual.docx

https://services.medini.eu/svn/AMASS_collab/WP-
transversal/ImplementationTeam/PrototypeP2/MediniAnalyzer_Installation_Guide.docx

The Assurance Case Editor, CHESS and EPF-Composer are part of the Core platform; their description is
therefore contained in the general AMASS user manual. All other tools described in this deliverable are
external. Their documentation is available at the tool providers; nevertheless, for ease of use, the
documentation including User Manual and Installation Guide is provided to the AMASS project
participants in an internal svn directory, as shown in Table 9.

https://services.medini.eu/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeP2/WEFACT_UserManual.docx
https://services.medini.eu/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeP2/WEFACT_UserManual.docx
https://services.medini.eu/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeP2/WEFACT_Installation_Guide.docx
https://services.medini.eu/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeP2/WEFACT_Installation_Guide.docx
https://services.medini.eu/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeP2/FMVEA_UserManual.docx
https://services.medini.eu/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeP2/FMVEA_UserManual.docx
https://services.medini.eu/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeP2/%20FMVEA%20_Installation_Guide.docx
https://services.medini.eu/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeP2/%20FMVEA%20_Installation_Guide.docx
https://services.medini.eu/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeP2/ANP-tool_UserManual.docx
https://services.medini.eu/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeP2/ANP-tool_UserManual.docx
https://services.medini.eu/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeP2/ANP-tool%20_Installation_Guide.docx
https://services.medini.eu/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeP2/ANP-tool%20_Installation_Guide.docx
https://services.medini.eu/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeP2/Concerto-FLA%20-tool_UserManual.docx
https://services.medini.eu/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeP2/Concerto-FLA%20-tool_UserManual.docx
https://services.medini.eu/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeP2Concerto-FLA-tool%20_Installation_Guide.docx
https://services.medini.eu/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeP2Concerto-FLA-tool%20_Installation_Guide.docx
https://services.medini.eu/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeP2Concerto-FLA-tool%20_Installation_Guide.docx
https://services.medini.eu/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeP2/MORETO_UserManual.docx
https://services.medini.eu/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeP2/MORETO_UserManual.docx
https://services.medini.eu/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeP2/MORETO%20_Installation_Guide.docx
https://services.medini.eu/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeP2/MORETO%20_Installation_Guide.docx
https://services.medini.eu/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeP2/MediniAnalyzer_UserManual.docx
https://services.medini.eu/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeP2/MediniAnalyzer_UserManual.docx
https://services.medini.eu/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeP2/MediniAnalyzer_Installation_Guide.docx
https://services.medini.eu/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeP2/MediniAnalyzer_Installation_Guide.docx

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 32 of 68

The AMASS SVN code repository is open to AMASS partners with the same credentials as the SVN
document repository. In case that people outside the project need access, please contact the AMASS
Project Manager (alejandra.ruiz@tecnalia.com).

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 33 of 68

3. Implementation Description (*)

3.1 Assurance Case Editor from OpenCert

3.1.1 Description of Features Implemented in P1

In accordance with the deliverable D2.3 [18], the components that are part of the Assurance Case
Manager Component have been implemented within the Assurance Case Editor from OpenCert and it
covers the following blocks: the Assurance Case Management and partially the Contract-based Multi-
concern Assurance, this second one just related to argument contracts.

The Assurance Case Management block is an Eclipse-Based Argumentation Editor. It contains plugins for
editing argumentation models and plugins for management of argument patterns and module libraries.
(Please note that the term "module" used for argumentation modules differs from the "implemented
modules" described in this chapter.)

The Assurance Case Editor is responsible for the Argument model creation and edition. The purpose of
the Argument Patterns/Module Management tool is to provide services storing and instantiating modular
argumentation and patterns. The Dependability modelling tool is responsible for managing the
“dependability relationship” described in D4.2 [24].

Figure 8. Tool modules for Assurance Case Management Component

Above that, the Assurance Case Editor, also covers partially the edition or the argument contracts using
the contract-based multi-concern assurance module, from the Contract management component. It deals
with argument contracts and it is highly connected with the modular argumentation services.

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 34 of 68

Figure 9. Tool module from Contract Management Component

In this second iteration of the AMASS platform, main work has been done to consolidate the results from
the first iteration. The main problem has been the navigation associated with the modular argumentation
and the migration of the argument modules and patterns from files to database storage. The contract-
based multi-concern assurance block and the dependability modelling block, which appeared in Figure 8,
have been implemented in this second iteration.

The technologies used to develop the Assurance Case Editor are:

• To generate Editors: GMF [7], EMF [8], Eugenia [12]

• For model transformations: Epsilon (ETL) [9]

• For storage: CDO [13]

• For vocabulary: Xtext [11]

3.1.2 Description of Features Implemented in P2 (**)

As mentioned before, no new features have been implemented in the third iteration. The implementation
has focused in resolving bugs and consolidating previous developments.

3.1.3 Source Code Description

The source code of the AMASS prototype can be found in the source code SVN repository at [19].The code
for the assurance case modules second prototype will be stored together with the other basic building
blocks in the repository under “tag” to distinguish the state of the code at the time of the integrated
release.

Once all the plugins are installed, these are the necessary ones for the Assurance Case Management and
the Contract-based Multi-concern Assurance:

• GSN.figures
This plugin provides utilities to draw model elements according to the Goal Structuring Notation
(GSN) standard [6].

• org.opencert.sam.arg
In this plugin, the argumentation metamodel is defined and stored, and the Java implementation
classes for this model are generated.

• org.opencert.sam.arg.diagram
This plugin is the diagram editor itself. It manages diagrams and includes a canvas to draw on, a
palette with creation tools and default selecting and zooming capabilities, a property view and an
outline view.

• org.opencert.sam.arg.edit
The edit plugin includes adapters that provide a structured view and perform command-based
edition of the model objects.

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 35 of 68

• org.opencert.sam.arg.editor
This plugin provides the user interface to view instances of the model using several common
viewers and to add, remove, cut, copy and paste model objects, or to modify the objects in a
standard property sheet.

• org.opencert.sam.arg.export
This plugin provides adapters to export an argument model stored in the common database, to an
argument model specified using SACM in a file.

• org.opencert.sam.arg.import
This plugin provides adapters to import an argument model specified using SACM in a file to an
argument model to be stored in the common database.

• org.opencert.sam.arg.ui
This is an additional plugin. It offers several utilities such as drawing model elements not included
in the GSN standard, accessing to argument patterns and modules.

• org.opencert.sam.arg.preferences
This plugin manages the default preferences required by the Argumentation diagram editor. The
parameters which can be defined are the Modules Directory (with all argumentation modules
stored from previous argumentation phases) and the Patterns Directory (that contains all
argumentation patterns templates).

• org.opencert.sam.vocabulary
Contains the vocabulary meta model, which is part of the previous results from OPENCOSS CCL
(Common Certification Language).

• org.opencert.sam.vocabulary.edit

The edit plugin includes adapters that provide a structured view and perform command-based
edition of the model objects. It contains the CCL vocabulary meta model respective the related
EMF based tree editor and GMF based graphical editor to create and edit vocabulary models.

• org.opencert.sam.vocabulary.editor
This plugin provides the user graphical interface to view instances of the model using an EMF
based tree editor and GMF based graphical editor to create and edit vocabulary models.

In addition, the following plugins are necessary to manage the assurance project and to handle the
corresponding evidences:

• org.opencert.apm.assuranceassets
In this plugin, the assurance assets metamodel is defined and stored, and the Java
implementation classes for this model are generated.

• org.opencert.apm.assuranceassets.edit
The edit plugin includes adapters that provide a structured view and perform command-based
edition of the assurance assets model objects.

• org.opencert.evm.evidspes
In this plugin, the evidence metamodel is defined and stored, and the Java implementation
classes for this model are generated.

• org.opencert.evm.evidspec.edit
The edit plugin includes adapters that provide a structured view and perform command-based
edition of the model objects.

• org.opencert.infra.properties
This plugin contains the definition of the Property metamodel, and the Java implementation
classes for this model.

• org.opencert.infra.properties.edit

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 36 of 68

In relation with the edit plugin for evidence, this plugin contains a provider to display the model in
a user interface.

Figure 10 illustrates the list of plugins described above.

Figure 10. Assurance Case Specification plugins

3.2 EPF-Composer Tool

3.2.1 Description of Realized Features

As mentioned before, features aimed at strengthening EPF-C [9] with respect to compliance management
as well as process-related variability management via the integration with the BVR Tool were designed
and implemented in WP6. In AMASS WP4, these functionalities can be used for creating and tailoring the
project-specific assurance workflow models starting from a standard-specific models, generating process-
based arguments as well as proofs for co-assessment. Thus, in this deliverable, they are not recalled. The
reader may refer to WP6-deliverables as well as related publications.

More specifically, in WP6, a specific plugin (“Seamless Integrator”) has been conceived for interacting
with the BVR tool. This extension is described in D6.3 [47] and was also accepted for publication at SPLC-
2018 [54]. Concerning the generation of process-based arguments, a paper was accepted at QUATIC-2018
[55].

Finally, concerning the strengthening of EPF-C for compliance checking, a paper was accepted at SEAA-
2018 [56].

3.2.2 Source Code / Interface Description

EPF Composer is a publicly available tool operating on the open UMA process metamodel format. It is part
of the AMASS Core platform. Its porting was done in the context of AMASS WP6/WP7 and presented at
EclipseCon-2018 [56].

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 37 of 68

3.3 CHESS Tool (*)

3.3.1 Description of Features Implemented in P1

As introduced in section 2.2.3.1, CHESS modelling language has been extended to allow the decoration of
contract w.r.t. the concern addressed by the contract itself. In the CHESS profile for contract specification,
the information about the concern is attached to the FormalProperty entity (Figure 11), the latter
representing a (UML) constraint that can play the role of assumption or guarantee property of a given
contract. In this way, it is possible for the user to decorate the contract with information related to the
concern addressed by the contract itself (e.g. safety, security, performance).

Figure 11. Contract profile supporting modelling of concerns

CHESS functionality has been extended with an Argument Generator plugin that utilises the assurance and
concern specific information attached to the contracts and facilitates generation of argumentation
fragments for each component in the system model. As the different contracts and related assurance
information are concern specific, the Argument Generator builds concern-specific argument-fragments.

3.3.2 Description of Features Implemented in P2 (**)

Contract-based trade-off analysis in parameterized architectures

A parametrized architecture is an architecture in which the number of components, the number of ports,
the connections, and the static attributes of components depends on a (possibly infinite) set of
parameters.

The trade-off analysis implemented in P2 requires the instantiation of the parameterized architecture.

This activity takes as input the parameterized architecture and the configurations provided by the user,
i.e. the assignments of the set of parameters. For each instance of the architecture that is derived from
the configurations, one or more contract-based analyses are performed. Such analyses are described in
the D3.6 [45].

The trade-off analysis is the process that compares the contract-based analyses results and generates a
report. Figure 12 shows the input/output artefacts used to perform a trade-off analysis.

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 38 of 68

Figure 12. The parameterized architecture and the configurations are used to generate the architecure instances.
For each instance, a set of contract-based analyses is performed. Their results will be compared and integrated in a

report format

3.3.3 Source Code Description (*)

The CHESS modelling language extension presented in the previous section has been implemented in
Eclipse by extending the CHESS UML profile for contract specification, in particular by using the support
available in Papyrus for what regards the modelling of UML profiles. Then Java code representing the
profile implementation has been automatically (re)generated starting from the UML profile definition by

using Eclipse EMF4 facilities. The obtained Java code has been embedded in a dedicated plugin to allow
the usage of the CHESS profile for contract specification while modelling with the Papyrus/CHESS editor.

The Argument Generator functionality presented in the previous section has been implemented as an
eclipse plugin. The source code structure is presented in Figure 13. The plugin first prompts the selection
of the OCRA analysis context used as the source of the CHESS system model for which refinement analysis
has been performed. Then, Argumentation generation dialog is started to select the destination for the
generated argument-fragments. CHESSContract2OpencertArgumentGenerator.java performs the
information extraction from the CHESS model and argumentation creation in the selected assurance case
on the CDO repository.

4 https://www.eclipse.org/modeling/emf/

https://www.eclipse.org/modeling/emf/

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 39 of 68

Figure 13. Argument Generator plugin source

At the current stage (August 2018), the implementation of the trade-off analyses is in progress. However,
we plan to include this feature in the final release of the P2.

3.4 WEFACT Tool (*)

3.4.1 Description of Features Implemented in P1

WEFACT for Multi-concern Activities

WEFACT implements a workflow for assurance activities of various kinds, like analyses, design activities,
testing, verification, and many others. These assurance process activities can be safety-oriented, security-
oriented or performance-oriented, and they can as well address any other quality attribute. WEFACT
allows to deliberately combine such quality-attribute-oriented activities in parallel or in sequential order.
This allows, even in the absence of combined multi-concern-engineering tools, a defined structure of co-
engineering processes. As an example, WEFACT can be configured to combine a safety analysis-oriented
HARA tool with a security-oriented TARA tool, thus implementing safety-security-co-analysis with
separate tools.

3.4.1.1 Structure of WEFACT

The goal of WEFACT is to support the complete engineering lifecycle of safety and or security relevant
systems based on pre-defined processes. To achieve this goal every project in WEFACT contains
Requirements, Processes and Workflow Tools.

Requirement:

Requirements are defined as the entities needed to achieve the objectives of the project. Requirements
can be structured in different levels, where a top-level Requirement can be seen as the sum of its sublevel
Requirements. Once all sublevel Requirements are fulfilled, the top-level Requirements enter the state of
completion. A Requirement can hold a connection to predefined processes. If all processes are executed
successfully, the Requirement’s status changes to “fulfilled”.

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 40 of 68

Process:

Processes describe the steps that need to be conducted. The principal for the structure of Processes
conforms to the structure of the Requirements mentioned earlier. Top-level Processes consist of sublevel
Processes and the top-level Process reaches the status Successful once all sub-processes have been
executed without errors. Each Process can be linked to one or more Requirements. Moreover, a Workflow
Tool can be associated to a certain Process. This way the Process becomes an executable which uses
existing input and produces new output. This output can serve as input for subsequent Processes.

Workflow Tool:

A Workflow Tool represents an application or component that can be addressed via URL. By defining
Workflow Tools inside WEFACT, these applications and components can be directly invoked. Solely type
for the Workflow Tool, the path to the corresponding executable and some input arguments need to be
specified.

3.4.1.2 Integrated process execution

One of the main features of WEFACT is the option to execute processes directly from the application.
Workflow Tools can be linked to multiple Processes in the workflow. Through this connection a process
becomes equivalent to an executable.

WEFACT supports different types of process execution, manual and automatic. While manual tools
require the user to save the results to a specific location, automatic tools return the results that are
consequently evaluated and stored. The outputs of the executed processes are stored in a centralized
SVN.

After the evaluation of the Process Result, the status of the executed Process and associated
Requirements is modified.

Figure 14 shows the WEFACT Activity Diagram.

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 41 of 68

Figure 14. WEFACT Activity Diagram

3.4.1.3 Centralized SVN Storage

The biggest advantage of storing artefacts on an SVN is the fact that every participant is granted access to
the created evidence by remote access/remotely. Project partners work on the same corporate set of
artefacts that allows all partners to work collectively on a common solution rather than on independent
ones.

3.4.1.4 EPF-C Model Import

A common approach to create a process-based workflow is the utilization of the Eclipse Process
Framework Composer EPF-C [9]. EPF-C allows the user to specify a custom workflow and additional
artifacts that are integrated into the workflow. These workflows can be exported as XML file.

WEFACT is capable of importing these XML files and translates the provided content into WEFACT Process
Structure. Afterwards the imported workflow can be displayed in WEFACT, the created Processes may be
linked and carried out.

3.4.2 Description of Features Implemented in P2 (**)

As a new capability, a feature for generating process-based argument fragments out of the process model
is being developed in WEFACT. From a conceptual perspective, this functionality belongs to WP6 and is
therefore described in D6.3 [47]. The implementation and the interface specification will be contained in
D6.6 [50], which is due in m31, i.e. October 2018.

3.4.3 Interface Module Description (*)

WEFACT is an Eclipse application developed under the Eclipse-RCP. WEFACT implements an assurance
workflow based on a project specific process model previously instantiated in EPF-C. The resulting UMA-
compliant format is part of the CACM and EPF-C is part of the AMASS core platform.

WEFACT imports this UMA model and derives the WEFACT-specific execution model from EPF-C. Ex-post
modifications of the originally imported process model within WEFACT are possible but it is
recommended that these changes remain minimal. A Re-import of the changes in WEFACT into the UMA
process model created with EPC-C is currently not foreseen.

WEFACT can treat process requirements (coming e.g. from a functional safety standard) as well as product
requirements (functional and non-functional requirements related to user requirements as well as safety
and security requirements to the product as defined during the HARA/TARA lifecycle phase). In order to
enable WEFACT to control the entire assurance workflow, WEFACT must get all aforementioned
requirements in order to operate on the full set of requirements. It has to be mentioned that usually not
all requirements treated in WEFACT assurance activities are necessarily directly referenced in assurance
case arguments; especially test cases will rather be referenced in a test result document, which is cited in
a verification and validation report. The appropriate preparation of this verification/validation report is a
process requirement, whose proven and appropriate preparation provides the evidence for a respective
process argument instance. As a consequence, not all WEFACT results put into evidence model instances
need to be linked to assurance case solutions.

The following Figure 15 shows an example for the relation between WEFACT results and the CACM in case
all V&V activities are referenced as GSN solutions in the Argumentation trees of the Assurance Case.

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 42 of 68

Figure 15. Relation between WEFACT low level activity results and the CACM

An Alternative is to have all evidence model instances linked to solutions from SACM arguments; in this
case, individual V&V activities must be grouped if only one argument solution applies to them. Figure 16
shows graphically an example for the respective relation.

Figure 16. Relation modelled between WEFACT activity results on high level and the CACM evidences

More deeply staged process structures can be devised and are also possible from WEFACT side. EPF-C,
however, supports only a maximum of three layers (package=phase, task, and step), thus limiting the
applicability of such approaches in EPF-C context.

In AMASS, the argumentation for the assurance case can be manually created by means of the OpenCert
Assurance Case Editor, which operates on the project specific instance of the Structured Assurance Case

software
test tool1

V&V
activity

V&V
activity

process
verification

argument
model

instance

evidence
model

instance1

software
test tool2

V&V
activity

evidence
model

instance2
solution 1

solution 2

Argument modelled for entire verification plan[s]

.

.

test result

document1

verification

report

test result

document2
.

software
test tool1

V&V
activity

V&V
activity

process
verification

evidence
model

instance2

argument
model

instance

evidence
model

instance1

software
test tool2

V&V
activity

evidence
model

instance3

solution 1

solution 2

solution 3

Argument modelled for each individual assurance activity

.

.
.

.

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 43 of 68

Metamodel SACM, which is linked with the GSN solutions for these arguments in the respective evidence
model instance.

WEFACT provides evidences per requirement, so each evidence in the SACM instance must be traceable
to a requirement. WEFACT supports also the creation of requirements, WEFACT is further able to import
requirements from a DOORS 9.6 database and, in a future version, to import ReqIF data and requirements
from the XML file created by Papyrus from an UML Requirements Table.

A standard reference (RefStandards) pointing to a clause in e.g. a Functional Safety Standard is not
provided in WEFACT, an implementation in the EPF-based UMA process model is basically possible in
future versions.

Figure 17 shows the WEFACT Metamodel with exception of the links, which are explained separately.

Figure 17. The WEFACT Metamodel

In the following, syntax and semantics of the classes and attributes are explained in detail.

WefactObject

ait.ac.at.rcp.wefact.model.types

• id: long

• name: String

• description: String

A WefactObject represents the WEFACT base class and need not be reflected in the assurance model
instance. All WEFACT classes are derived from it.

WefactProject

ait.ac.at.rcp.wefact.model.types

• svnPath: String

• requirementObjectList: List<RequirementObject>

• processObjectList: List<ProcessObject>

• workflowToolList: List<WorkflowTool>

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 44 of 68

In terms of AMASS, a WefactProject represents an assurance project and comprises all project specific
artefacts and model instances relevant to WEFACT. It is associated with

• a path in the svn (svnPath), where the artefacts of the project are stored,

• the list of requirements (requirementObjectList), for which V&V activities are provided in
WEFACT,

• the V&V activities [to be] processed in WEFACT (processObjectList), and

• the tools associated to V&V activities and called by WEFACT (workflowToolList).

The WefactProject mapping to the CACM is depicted in the following table:

Table 10. WefactProject mapping

WEFACT CACM
comment

element Model element

svnPath n/a n/a This is the SVN base path where the project
repository is located. There is no directly
corresponding element in CACM. The
concrete SVN (etc.) locations of artefacts
are individually given in the associated
Resource location of the ManagedArtefact
instances.

requirementObjectList a) process
requiremt.&toplevel
prod.req.:UMA
metamodel

b) basic product req.:

Component MM

task, work
product

Requirement

The requirements associated with the
assurance project. The list contains toplevel
as well as sub requirements, process and
product requirements.

Details are explained in the section
“RequirementObject” further below.

processObjectList UMA metamodel task, work
product

The V-Plans and the V&V activities within
the assurance project.

workflowToolList SACM Artefact
Metamodel

Technique

RequirementObject

ait.ac.at.rcp.wefact.model.types

• linkedProcessObjectList: List<ProcessObject>

• subRequirementList: List<RequirementObject>

• workflowlevel: int

• deadline: Date

• workflowStatus: WorkflowStatus

• responsible: String

Product requirements for WEFACT can come from different sources, e.g. the CACM. I particular, they can
be:

• imported from a DOORS database,

• imported from a ReqIF file (in ARTA iteration 3),

• imported from a .xls file exported from the Papyrus UML Requirements table,

• imported from and exported into the CACM Component Metamodel,

and finally, they can be

• created in WEFACT.

Process requirements for WEFACT are usually:

• imported from the project-specific instantiation of the process model (created with EPF-C), which
corresponds to the CACM Process Metamodel instance.

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 45 of 68

and, like product requirements, they can also be

• created in WEFACT.

Requirements in WEFACT can be nested, i.e. a top-level requirement can be subdivided into sub-
requirements, which can be subdivided again and so forth. The evidence for the fulfilment of a
requirement which has sub-requirements is composed by WEFACT from the fulfilment of these sub-
requirements.

The RequirementObject mapping to the CACM is depicted in the following table:

Table 11. RequirementObject mapping

WEFACT CACM
comment

element Model element

linkedProcessObjectList SACM Artefact
Metamodel

Artefact,
Activity

Artefacts and Activities can be linked
together. The same principle applies to
WEFACT Requirements and Processes.

subRequirementList Component
Metamodel

 The Component Metamodel does not
contain a concept for nested requirements.
So, as for product requirements, only lowest
level WEFACT requirements can be mapped
to.

workflowlevel Internal only usage in WEFACT.

deadline No representation in CACM. (1)

workflowStatus ExecutedProcess
Metamodel

Executed
activity

WEFACT e.g. fulfilled, not fulfilled.
The semantics is that an instance of
ExecutedActivity is created by WEFACT if the
WEFACT activity has been successfully
completed. If the respective WEFACT V-Plan
or V&V activity becomes invalid by changes
in the corresponding requirement then the
(thereby invalidated) Executed Activity
instance is deleted. (2)
If, in turn, the involved Managed Artefact
(e.g. SW-module) changes, a new instance of
the ManagedArtefact for the new version is
created, and the history of the
ExecutedActivities remains.

responsible ExecutedProcess
Metamodel

Participant Link to CACM roles not yet provided with the
current WEFACT version, currently only
individual persons.

(1) ExecutedProcessModel . ExecutedActivity . startTime/endTime represent the duration of the
process execution already performed, not a deadline for a planned future activity.

(2) Executed activities

WorkflowTool

ait.ac.at.rcp.wefact.model.types

• subWorkflowToolList: List<WorkflowTool>

• workflowlevel: int

• toolPath. String

A Workflow tool (e.g. a test tool) in WEFACT can be started automatically from the command line with the
string given in toolPath.

The WorkflowTool mapping to the CACM is depicted in the following table:

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 46 of 68

Table 12. WorkflowTool mapping

WEFACT CACM
comment

element model element

subWorkflowToolList Represents the different versions of workflow
tools that may be requirement for certain
processes.

workflowlevel n/a Internal, only usage in WEFACT.

toolPath Managed Artefact Resource.location,
Resource.format

In order for WEFACT to find and execute a
tool, the path to the tool must be specified.

ProcessObject

ait.ac.at.rcp.wefactmodel.types

• linkedRequirementObjectlist: List<RequirementObject>

• subProcessObjectList: List<ProcessObject>

• workflowlevel: int

• input: String

• output. String

• workflowTool: VVorkflowTool

• deadline: Date

• workflowStatus: WorkflowStatus

• responsible. String

A ProcessObject can have sub-ProcessObjects. The top-level ProcessObject (without children) corresponds
to the WEFACT V-Plan.

The ProcessObject mapping to the CACM is depicted in the following table:

Table 13. ProcessObject mapping

WEFACT CACM
comment

element model element

linkedRequirementObjectlist SACM Artefact
Metamodel

Activity, Artefact The requirements proven by this
V&V activity / V-Plan.

subProcessObjectList The V&V activities contained in
this V-Plan.

workflowlevel Internal only usage in WEFACT.

input Managed Artefact Resource.location The SVN sub-directory with the
input files.

output Managed Artefact Resource.location The SVN sub-directory with the
output files.

workflowTool ExecutedProcessModel

Managed Artefact

UsedTechnique

Resource.location,
Resource.format

Reference to the WEFACT
WorkflowTool object.

deadline n/a n/a WEFACT specific, no
representation in CACM.

workflowStatus n/a n/a e.g. ready, success, failed; no
representation in CACM.

responsible ExecutedProcess
Metamodel

Participant This references a person (role
model not yet implemented in
WEFACT, link to CACM roles not
yet provided).

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 47 of 68

WEFACT Links

Links are used to represent traceability between artefacts in WEFACT like RequirementObjects,
ProcessObjects and WorkflowTools. They are not 1:1 mapped between the CACM instances and WEFACT
but the Open Source interface module controls the establishment of the respective corresponding
traceability between the objects in the CACM and those in WEFACT.

Restrictions

In the following, the restrictions applying to the WEFACT edition in the 2nd iteration of the AMASS
platform are stated:

• The data flow is yet limited to requirements import (no re-export of modified requirements to the
UMA process model).

• Consistency of WEFACT activities results with evidence model instances has to be input manually.
Or the requirements in WEFACT have to be restricted to a specific structure:

o Evidences are in a 1:1 mapping with WEFACT top level requirements.
o Nested (sub-)requirements can be used to subdivide the assurance steps into those

activities, which, after successful execution, eventually yield the evidence.

• What is needed for the latter solution is a relation between
o the activity in the project specific instance of the assurance process model created in EPF-

C, and
o the evidence metamodel instance associated to the solution in the argument metamodel

instance.

• Requirements of type contracts/claims as defined in the contract view of the Component
Metamodel are not natively supported in the current WEFACT edition.

• The Component Metamodel is currently not supporting sub-requirements; therefore, WEFACT can
only map the lowest level of WEFACT requirements in this sub-model. This is, however, basically
sufficient as the real assurance steps happen on this lowest level, and higher levels of (compound)
requirements are not directly subject to assurance steps.

WEFACT-CACM/ARTA Workflow

Here, a short description of the WEFACT workflow is given

• Inputs:
o Process model, tailored to the project from EPF-C (in UMA notation)
o Requirements - read from

• DOORS, or
• ReqIF, or
• from CACM, or
• created in WEFACT

o Assurance Objects

• Created on the WEFACT user interface:
o potentially create requirements,
o potentially alter the project-specific process model,
o Create and run Assurance Activities with tools assigned in WEFACT

• Outputs:
o Assurance output files (e.g. test result lists, FMEA sheet, …) (stored in SVN).
o A statement “PASS” or “FAIL” (within WEFACT, propagated to the requirement).

Remark:

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 48 of 68

The interface module for the functionality for process-based argument generation will be contained in
D6.6 [50].

3.5 FMVEA Tool (**)

3.5.1 Description of Features Implemented in P2 (**)

The following Figure 18 shows the structure of the FMVEA tool including the interfacing with them AMASS
platform.

Figure 18. Structure of the FMVEA tool including the interfacing with them AMASS platform.

1. Import SysML model or construct it in the FMVEA model editor
2. Definition of threats and failure modes
3. Analyse the current model with respect to threats and failure modes
4. Detected threats and failure modes result in new requirements regarding the analysed system
5. Export the defined requirements into the AMASS platform

3.5.2 Interface Module Description (**)

The FMVEA tool provides two interfaces to the AMASS platform:
1. Import of system/component models in CHESS-compatible SYSML format
2. Export of the resulting safety and security requirements regarding the analyzed model.

The following Figure 19 shows the class diagram of the threat class:

1

1
3

2

4

5

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 49 of 68

Figure 19. Class diagram of the Expression class.

FMVEA provides an Interface in the form of an input field where a user can define new rules. A rule
describes if a “Requirement” applies to the analysed system. The defined Requirements apply to the
ReqIF standard so they can be imported in AMASS. These rules follow a specific grammar defined with
“ANTLR” [53]. Before the rules are added to the database they are checked via NLP (natural language
processing).

Example:
IF (Environment [type=physical, safe=false] ISPARENTOF Node[type=physical, criticalData=true]) THEN
(Requirement1, Requirement2)

The following Figure 20 shows the class diagram of the FMVEA model editor.

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 50 of 68

Figure 20. Class diagram of the FMVEA model editor

Figure 21. User Interface of the FMVEA model editor.

Figure 21 shows the user interface for the model editor. Figure 20 shows the corresponding class diagram
for the editor. The modelled instances of the system are analysed and saved in this scheme.

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 51 of 68

3.6 Analytical Network Process (ANP) Tool (**)

3.6.1 Description of Features Implemented in P2 (**)

The ANP uses Time Net 4.4 (Stochastic Coloured Petri Nets) tool for system analysis from Technical
University of Ilmenau.

Excel VBA will use results from Time NET to automate the ANP matrix generation and analysis for trade-
off.

3.6.2 Interface Module Description (**)

This tool for now is an external tool. The graphical modelling of the system in Time NET is done manually.
Modelling is also possible with an input file in xml format. Therefore, an interface can be developed with
CHESS by transforming the CHESS dependability profile into Time NET petri net xml format, in future.

ANP (Analytical Network Process) method will use results of multi-concern co-analysis to perform a
metric-based trade-off analysis. ANP will use two existing tools. First tool is Time NET 4.4, which is latest
version of tool released in August 2017. Time NET is a software tool for the modelling and analysis of
stochastic petri nets with exponentially or non-exponentially distributed times. We will use this tool for
manual graphical modelling and analysis of system. Tool is free for research use. Tool and user manual
can be downloaded at the site below.

https://timenet.tu-ilmenau.de/template/download
http://www2.tu-ilmenau.de/sse_file/timenet/ManualHTML4/UserManual.html

The results obtained by simulation of the system model in the above tool are written in a file in xml
format. Excel VBA (Visual Basic for Application) will be used as a second tool, the results will be imported
in excel and with programming in VBA, automatic generation of ANP matrix and analysis of ANP matrix
will be achieved. This part is under development for now (6 August 2018) and is expected to be
established soon, early August.

Time NET, Coloured Stochastic Petri Nets provides a way for system analysis via simulation. Safety and
security Co-analysis in Time NET by combining failure and attack petri nets can be achieved by
quantification of attacks. An approach for discrete quantification of attack is proposed in the workshop
paper (SAFECOMP 2018) ‘A Quantitative Approach for the Likelihood of Exploits of System Vulnerabilities’.
This proposed approach will be worked on for realization after excel VBA for ANP will be realized as
mentioned in last paragraph.

The availability, reliability and performance results of system from model simulation in Time NET are
imported in excel and with VBA programming, the ANP matrix is automatically generated. The structure
of ANP matrix corresponds to hierarchal structure of the system, how component failures and attack
failures propagate in the system. And the entries of the ANP matrix signifies the relative impact of these
failures on the immediate next hierarchal level. The details of ANP approach is mentioned in detail in
D4.3, section 2.1.2.

Final ANP matrix will signify the impact of these failure causes and exploits which are on bottom of
hierarchical level to the top goal (safety, security, performance), so we know which failures critical and
what design options are available to achieve the required dependability.

One way of Trade-off analysis is that all system architecture design options are evaluated, and best design
option can be selected among these, based on evaluation result. This can be achieved by modifying
system models in Time NET corresponding to each design option and simulated for results and based on
results the desired architecture is selected. This approach is appropriate for very limited design options.

https://timenet.tu-ilmenau.de/template/download
http://www2.tu-ilmenau.de/sse_file/timenet/ManualHTML4/UserManual.html

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 52 of 68

In other case, where we don’t have very limited design options, it may not be possible or require too
much effort to evaluate all possible design option. In such cases, especially for complex interconnected
cyber-physical systems (i.e. for inter-dependability among concerns) ANP is useful because we know with
ANP analysis which failure causes or vulnerabilities are critical, and we only need to choose design options
corresponding to those failure causes or vulnerabilities which can be verified by rerunning the simulation
with the modified design option.

The petri net tool is verified by modelling case study in paper “Safety and availability of railway operation
based on state of signalling system. For ANP demonstration this simple case study will be extended to a
fictious case to add some complexity.

The model allows us to evaluate the availability and reliability of each component at each hierarchal level,
therefore we can easily check if the corresponding requirement is satisfied or not and with ANP what
design options can possibly achieve these requirements. Thus, this also enables contract-based analysis.

3.7 Concerto FLA extension (**)

ConcertoFLA [31] allows users (system architects and dependability engineers) to decorate component-
based architectural models (specified using CHESSML) with dependability-related information, execute
Failure Logic Analysis (FLA) techniques, and get the results back-propagated onto the original model. In
ConcertoFLA the support for dependability related information is enabled via SafeConcert [29], which is a
conceptual metamodel and subset of CHESSML for modelling dependability related information.

Different FLA techniques are available in the literature [37], and can be used at the early stages of the
design phase to achieve a robust architecture with respect to linear relationships. ConcertoFLA builds on
top of Failure Propagation Transformation Calculus (FPTC) [32]. Similar to FPTC, ConcertoFLA is a
compositional technique to qualitatively assess the dependability of component-based systems.
ConcertoFLA partially combines and automatizes traditional safety analysis techniques (i.e., FMEA and
FTA). ConcertoFLA allows users to calculate the failure behaviour of a component based system at system-
level, based on the specification of the failure behaviour of the individual composing components. During
the analysis, ConcertoFLA calculates the failure propagation paths and produces their representation
according to the specifications of FlaMM meta model (see [33] for FlaMM structure and corresponding
XML Schema). In ConcertoFLA terms, a component can act in four different possible ways (1) source of the
failure thus generating a failure due to internal fault, (2) sink of the failure thus avoiding the propagation
of the external fault (failure in input) through fault tolerance, (3) propagator of the failure, and (4)
transformer of the failure into a different type. ConcertoFLA rules are logical expressions, which specify
the component’s behaviour by describing the input/output relationship.

An initial exploration of the exploitation of ConcertoFLA for enabling safety and security analysis was
conducted and documented in D4.7 [27], as methodological guidelines in order to support this
exploitation. In D4.3 [25], a more in-depth exploitation is described on conceptual and design level.
Moreover, within AMASS, an initial exploration for the exploitation of the failure propagation paths for
the generation of Fault Tree (FT) was conducted. The work targeted Use Case 11 as a running example and
was accepted for publication at ICRE-2018 [34]. Based on these, following features are implemented in P2
to enable the ConcertoFLA for conducting safety and security analysis and automatically generating FT
addressing multi-concern faults/failures. A paper related to the FT generation was recently submitted to
ICSRS-2018. Another paper related to co-analysis is expected to be submitted to ICRE-2018. For this
reason, not all details are documented.

3.7.1 Description of Features Implemented in P2 (**)

 Figure 22 shows the overview of the approach for co-analysis via ConcertoFLA – three highlighted steps
to perform the co-analysis are enabled by the implementation of the following three features
respectively.

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 53 of 68

• Extension of SafeConcert (dependability profile for CHESSML) for specializing the failure
behaviour for security concern.

• Extension of ConcertoFLA to support co-analysis.

• Implementation of a plugin to automatically generating multi-concern Fault Tree (FT).

Figure 22. Approach overview of co-analysis via ConcertoFLA

Figure 23 shows the meta model extension of SafeConcert, to incorporate the constructs related to
security (illustrated using yellow colour). Threat is an event or situation that can potentially breach the
security and cause harm to an asset. Attack rises due to the associated threat and cause the actual breach,
if able to exploit a Vulnerability. The vulnerability refers to an internal weakness of a system. Threat to
security can have three different kinds referring to the breach of security properties. These properties are
Confidentiality, Integrity and Availability (CIA). In Figure 23 the ThreatType enumeration lists the kind of
threats referring to the violation of CIA which are unauthorized access, modification and denial of service
respectively. Attack has a relation to the threat, which refers to the security breach it causes, and can have
different kinds listed in the AttackType enumeration. Vulnerabilities are exploited by the attacks to cause
the above-mentioned security breaches – vulnerability can be of different kind and is listed in
VulnerabilityType enumeration. Different databases and catalogues both domain independent [41] [42]
[43] and domain specific [44] are produced, by industrial experts, system engineers and security analysts,
who have knowledge of specific domain and systems, for classifying common respective attacks and
vulnerabilities in a result of consensus. The enumerations in Figure 23 list attacks to communication
satellites missions adopted from CCSDS 350.1-G-2 [44] (attacks are referred to as threat in [44]) and
corresponding vulnerabilities which could be exploited by these attacks. These enumerations could be
customized for different domains and abstractions referring to different classifications of attacks and
vulnerabilities.

In the dependability profile of CHESSML, the above mentioned three security constructs are implemented
as a specialization of classical dependability threats (i.e., Faults, Error, and Failure). In CHESSML these
classical threats to dependability are modeled as Transitions of UML state machine diagram. The attack is
a specialized InternalPropagation referring to the erroneous transition due to an external fault. The
vulnerability is a specialized InternalFault referring to the erroneous state transition due to an internal

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 54 of 68

fault. A failure occuring due to these erroneous transitions, has a failure mode and in turn enable the
associated threat on the output port of the system. Dependability profile of CHESSML provides the
classical abstract failure modes i.e., early, late, valueSubtle, valueCoarse, Commission and Omission. The
failure modes and the related security threats enabled by them are as following:

• Commission -> Unauthorized access of a service.

• valueCoarse -> Unauhtorized modification of a service.

• Omission -> Unauthorized denial of service.

Figure 23. Security meta model and its relation to dependability profile of CHESSML

The second feature, which refers to the extension of ConcertoFLA, enables the support for co-analysis.
The extension generates failure propagation paths – failures are enriched with the information of security
related erroneous transitions (attack and vulnerability) leading to a particular failure along with the
information of the specific security breach.

The third feature, which refers to the implementation of multi-concern FT, takes these propagation paths
of enriched failures as an input and generate fault trees for each system level failure for each port of the
system. Moreover, the plugin enables the support of visualizing and editing these FTs.

3.7.2 Source Code Description (**)

The extension of dependability profile of CHESSML (i.e., SafeConcert) discussed in previous section has
been implemented in Eclipse using the Papyrus feature for modelling the UML Profiles. Eclipse Modelling
Framework (EMF) allows to automatically generate the Java code for such implemented profiles. This
profile and the generated code is implemented as an Eclipse plugin for providing the support of modelling
the implemented features using CHESS editors.

ConcertoFLA meta-model [31], which has been implemented as an Ecore model using EMF, is extended
via Ecore editor to enable the support of specialization of failures. Using EMF the Java code is
(re)generated for ConcertoFLA to allow the usage of extension while performing the co-analysis.
Moreover, a model to model transformation (CHESSML to FLAMM) is implemented using QVT-

operational5 model transformation language to transform the concern specific specialization of failure
behaviour specified via extended dependability profile to the enrichment of failures in the failure

5 https://projects.eclipse.org/projects/modeling.mmt.qvt-oml

https://projects.eclipse.org/projects/modeling.mmt.qvt-oml

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 55 of 68

propagation path represented using extended ConcertoFLA meta model. Figure 24 shows ConcertoFLA
plugins, the two highlighted plugins refer to the extension of ConcertoFLA meta model and the
implemented model to model transformation.

Figure 24. ConcertoFLA plugins along with highlights referring to the extended plugins and source

Multi-concern FT generator has been implemented as an Eclipse plugin to allow the generation,
visualization and editing of a fault tree from the ConcertoFLA co-analysis results. The plugin implements a

model to model transformation (FLAMM to EMFTA6) using Epsilon Transformation Language7 (ETL).
Figure 25 shows the source of multi-concern FT generator plugin.

6 https://gitlab.fbk.eu/CPS_Design/EST/
7 https://www.eclipse.org/epsilon/

https://gitlab.fbk.eu/CPS_Design/EST/
https://www.eclipse.org/epsilon/

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 56 of 68

Figure 25. Fault tree generator plugin and source

3.8 MORETO tool (**)

3.8.1 Description of Features Implemented in P2 (**)

The external tool MORETO (Model-based Security Requirements Management Tool) is an Enterprise
Architect (EA) plugin and as such compatible with the EA system/component model format. MORETO
supports modelling security requirements applying to nodes in a network.

MORETO is an AMASS-external tool for security requirements analysis, allocation, and management using
SysML/UML models. It is applicable to any system that can be modelled in SysML/UML (e.g. cyber-
physical production systems CPPS). The tool is implemented in Enterprise Architect MDG technology and
supports manual as well automatic security requirements generation and allocation.

MORETO provides a model editor but can as well import (EA conformant) SysML models. The models,
which capture system facts in layers of abstraction, are exploited for security analysis and documentation.
The model editor allows seamlessly navigating through layers with different level of detail. MORETO
supports security analysis on high level as well as on technical level, and requirements can be generated
manually or automatically. Figure 26 shows the options for requirements generation in MORETO.

Figure 26. Options for requirements generation in MORETO

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 57 of 68

The security requirements are an integral part of MORETO in the form of the requirements diagram.
Moreover, the tool offers the possibility to import additional requirements and functions for exporting
them to different formats. For creating security requirements manually, MORETO provides the security
requirement diagram, where the user can specify a particular security requirement, and a drag and drop
mechanism to assign it to the respective element in the model. As an alternative MORETO allows the
import of csv files.

For automatic security requirements generation, MORETO offers two different ways:

• Patterns are a feature provided by Enterprise Architect to generate a set of components which
are integrated to solve an abstract problem. It is the task of the pattern user to modify the pattern
elements to meet the specific demands.

• Scripts executed in Enterprise Architect have access to the currently open model and are a
powerful tool for querying and updating the model in situations that would otherwise require
time consuming and repetitive GUI tasks.

The automatic security requirements generation is based on expert knowledge encoded in MORETO
usualy based the prescriptions of standards. For realizing the standards, patterns were used with
MORETO; currently implementations for IEC 62443 [48] and IEEE 1686 [49] are available from AMASS Case
Study 1 [46].

MORETO supports the system modelling process in four different diagrams:

• the Block Definition Diagram (BDD) for network elements,

• the Internal Block Diagram (IBD) for detailed modelling,

• the Dataflow Diagram (DFD) for Threat Modelling, and, finally,

• the Requirement diagram for security requirements.

The modelling process in MORETO can be done on three different layers, the External Layer, the
Intermediate Layer, and the Internal Layer.

The External Layer defines a general system schematic or network architecture and allows a user to drag
and drop common network components into the workspace in order to generate the complete network
topology. Figure 27 gives an example for the External Layer.

Figure 27. Example for the MORETO External Layer

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 58 of 68

The Intermediate Layer defines the internal structure of each component inserted in the external layer
and allows a user to describe the interactions between different components of the network topology
using the Internal Block Diagram. Figure 28 presents an exemplary Intermediate Layer.

Figure 28. Example for the MORETO Intermediate Layer

The Internal Layer provides more information about the internal details of the intermediate level
components and allows a user to define the internal structure in arbitrary details, or to decompose a
block into parts or subsystems. This layer uses the internal block diagram. An example for the Internal
Layer can be seen in Figure 29.

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 59 of 68

Figure 29. Example for the MORETO Internal Layer.

More details about the concrete implementation for the application in CS1 can be found in D1.5 [46].

The current version is designed for one iteration of defining security requirements for a system. If the
system model is changed outside MORETO, information about the modifications is needed when re-
importing the model from CHESS in order to restrict the next iteration of analyses to the modified parts.
This extension is a future aspect, whose implementation can be done in a use case in the final months of
the AMASS project or in future projects beyond AMASS.

3.8.2 Interface Module Description (**)

MORETO is an Enterprise Architect (EA) Plugin. As such, it can provide its output (requirements and
system/component model) in the EA-specific dialect of SysML. CHESS, as the AMASS-internal modelling
language and environment, uses a different SysML dialect as model interchange format. The required
model transformation at the interface between MORETO and CHESS/Papyrus is accomplished with the
tool ModelBus.

ModelBus [40] was developed by the System Quality Center at Fraunhofer FOKUS Berlin. It provides a
framework for interoperability and allows the MORETO model export to CHESS/Papyrus and vice versa by
supporting Client and Server versions for model transformations, see Figure 30.

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 60 of 68

Figure 30. Model transformation at the interface between MORETO and the AMASS platform.

3.9 Medini Analyzer (**)

Medini analyze is an external tool to perform safety and security analyses - either combined or
individually - based on system models. These system models can be modelled within the tool using SysML
or imported from various sources (other SysML tools like Rational Rhapsody, or Enterprise Architect but
also BOM lists and IP design files). The software is implemented based on the Eclipse Platform as a Rich
Client. All analyses can be performed on different abstraction levels, from high level system or function
models down to hardware and even ip design (chip design) models.

The tool offers various well-known security analysis methods, for example TARA, Attack Trees and
Security FMEA. All methods are flexible with respect to used risk graphs (e.g. EVITA, CVSS/CRSS) or
processes (e.g. JASO TP-15002) but also to specific thread identification and risk assessment methods (e.g.
STRIDE based).

3.9.1 Description of Features Implemented in P2 (**)

Medini is treated as an external tool to the AMASS platform, thus is not a part of the platform but can
integrate with it. Papyrus SysML models - which might have been created with AMASS tools - can be
imported (and analysed) using the ANSYS SCADE Architect as a bridge tool. SCADE Architect is a separate
tool which is based on Papyrus itself (while medini is using its own SysML metamodel and dialect to cope
with the fact that safety engineers are typically no system engineers and interested in a certain simplified
view on the system). Medini offers an import from SACDE Architect so via that migration path Papyrus
SysML models – and thus AMSSS models – can be utilized in security analyses, as depicted by Figure 31.

Figure 31. Import path between AMASS and medini.

Enterprise
Architect

CHESS

xml
file

xml
file

MORETO

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 61 of 68

3.9.2 Interface Module Description (**)

The above-mentioned path from AMASS system models to models that can be analysed in medini is
simple and straight. Any Papyrus model that has been created using AMASS Papyrus based tools can be
loaded into the SCADE Architect (SCA) standalone tool. SCA is a rich client itself and available as a
separate tool within the SCADE/medini tool landscape. One imported, the model can be either pushed
from SCA to medini or “pulled” from medini (imported into a medini own representation). This import can
be repeated multiple times to update the system model in medini while keeping any analysis results.

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 62 of 68

4. Conclusion (*)

The first (Core) prototype, described in D4.4 [26], contained functions for Dependability Assurance
Modelling, namely the Assurance Case Editor supporting "Assurance case specification”, and the AMASS
Core edition of CHESS supporting contract modelling with OCRA.

This previous deliverable D4.5 [51] described the WP4 related part of the second AMASS prototype
iteration (P1) and contained implementations or tools covering already all functional blocks related to
WP4. Not all tools were yet integrated with the AMASS platform and the remaining ones needed still
manual integration. For the letter, integration was planned for the third iteration P2.

For Dependability Assurance Modelling, enhanced functions were added in P1 in the (at that time already
integrated) Assurance Case Editor and by integrating also EPF (Eclipse Process Framework) in the AMASS
platform. With this complete set of functionalities, no further extensions were necessary in the third
iteration (P2).

Contract-based Multi-Concern Assurance was also supported in P1 by integrated tools: Additional
respective features of the Assurance Case Editor, and new multi-concern contract features in the CHESS
integrated framework provided these functions.

Enhanced functions for contract-based Multi-Concern Assurance were provided in P2, namely two
different approaches for Contract-based Trade-off Analysis implemented in tools: a CHESS tool extension
using parameterized architectures for trade-off analysis, and a prototypic implementation of an Analytical
Network Process (ANP) using the tool TimeNET4.4 of University Illmenau/Germany.

In iteration P1, the third functional block of AMASS WP4, System Dependability Co-analysis/Assessment,
was mostly supported by external, not yet integrated tools: Medini Analyzer for safety analysis and risk
assessment and with a yet prototypic cybersecurity analysis part, Safety Architect, and the tool AMT2.0
(Analogue Monitoring Tool). The detailed description of AMT2.0, however, is contained in the WP3
documents.

In P2, additional tools and tool extensions for System Dependability Co-analysis/Assessment were
introduced: A mature commercial version of Medini Analyzer, the safety and cybersecurity co-analysis
tool FMVEA (Failure Modes, Vulnerabilities and Effects Analysis), the cybersecurity analysis and
requirements allocation tool MORETO (Model-based Security Requirements Management Tool), and
Concerto-FLA (an Extension of the Concerto tool allowing Failure Logic Analysis).

WEFACT has been integrated in AMASS in iteration P1 and controls the execution of assurance process
steps. For WP4 the main feature is to enable combined safety and security analyses by coupling separate
analysis tools for both quality attributes. However, WEFACT is capable of controlling assurance processes
of any kind and their dependencies.

In the third iteration P2, several innovations regarding multiconcern assurance have been achieved. This
comprises the automatic, standards-based generation of security requirements from an architectural
model like with MORETO, and the development of two methods for trade-off analysis between different
quality attributes: A contract-based approach with CHESS, and another one relying on an Analytical
Network Process. Another innovation is the introduction of the partly automated safety-security-co-
analsysis tools FMVEA and Medini Analyzer, and the functionality for automatically generating assurance
case arguments from the modelled assurance processes.

The multi-concern approach developed in WP4 addresses in particular the project objective O2, for
instance by providing multi-concern contracts or multi-concern trade-off analyses. Moreover, by providing
interfaces to the AMASS platform for external multi-concern assurance tools, the work described in this
deliverable is also in line with the project objective of seamless interoperability as stated in O4.

All these advances contribute significantly to the AMASS project goals; in particular the increase in
automation addresses G1 by improved design efficiency for CPS products, and the standards-based

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 63 of 68

generation of requirements contributes to G3 by reducing the assurance and certification/qualification
risks of new CPS products.

The next steps are now the validation of the tools in the case studies and the evaluation of the resulting
use case-specific multi-concern assurance processes.

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 64 of 68

Abbreviations and Definitions

For the convenience of the reader, the following table also contains definitions common to the whole
AMASS project which are contained in the AMASS glossary (deliverable D2.2 [17]).

Abbreviation Explanation

AMT Analog Monitoring Tool (a property-based monitoring tool for analog systems)

API Application Programming Interface

ARTA AMASS Reference Tool Architecture

BVR Base Variability Resolution (Language for managing variability)

CACM Common Assurance and Certification Metamodel

CCL Common Certification Language

CDO Connected Data Object

CHESSML CHESS Modelling Language

CPS Cyber-Physical Systems

DOORS Dynamic Object-Oriented Requirements System

ECSEL Electronic Components and Systems for European Leadership

EMF Eclipse Modelling Framework

EPF-C Eclipse Process Framework - Composer

ETL Epsilon Transformation Language

FLA Failure Logic Analysis

FMEA Failure Modes and Effects Analysis

FMVEA Failure Modes, Vulnerabilities and Effects Analysis

FPTC Failure Propagation Transformation Calculus

FT Fault Tree

FTA Fault Tree Analysis

GMF Graphical Modeling Framework

GSN Goal Structuring Notation

HARA Hazard Analysis and Risk Assessment

OCRA
Othello Contracts Refinement Analysis (a tool for checking refinement of
contracts specified in a linear-time temporal logic)

OMG Object Management Group

OSLC Open Services for Lifecycle Collaboration

RCP
Rich Client Platform - an Eclipse add-on framework allowing the development of Eclipse
applications

ReqIF Requirements Interchange Format (XML based standard of OMG)

SACM Structured Assurance Case Metamodel

SBVR Semantics of Business Vocabulary and Rules

SiSoPL Security-informed Safety-oriented Process Line

SPL Software Product Line

SVN Subversion

SySML Systems Modelling Language

TARA Threat Analysis and Risk Assessment

TRL Technology Readiness Level

UMA Unified Method Architecture

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 65 of 68

UML Unified Modelling Language

URL Uniform Resource Locator

V&V Verification and Validation

WEFACT Workflow Engine for Analysis, Certification and Test

WP Work Package

XML eXtensible Markup Language

Xtext open-source software framework for developing programming languages and DSLs

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 66 of 68

References (*)

[1] The OPENCOSS project http://www.opencoss-project.eu/

[2] The SafeCer project https://artemis-ia.eu/project/40-nsafecer.html

[3] OMG - Semantics of Business Vocabulary and Rules™ (SBVR™) version 1.3, 2015
http://www.omg.org/spec/SBVR/1.3

[4] BVR Base Variability Resolution – implementation of OMG CVL (Common Variability Language)
http://www.omgwiki.org/variability/doku.php .

[5] OMG - SACM - Object Management Group version 1.1, 2015 http://www.omg.org/spec/SACM/1.1

[6] Origin Consulting GSN Community Standard Version 1 (2011)

[7] Graphical Modelling Project (GMP) http://www.eclipse.org/modeling/gmp/

[8] Eclipse Modelling Framework (EMF) https://www.eclipse.org/modeling/emf/

[9] Eclipse Process Framework (EPF) http://www.eclipse.org/epf/

[10] Epsilon Transformation Language http://www.eclipse.org/epsilon/doc/etl/

[11] Xtext http://www.eclipse.org/Xtext/

[12] Eugenia http://www.eclipse.org/epsilon/doc/eugenia/

[13] CDO http://www.eclipse.org/cdo/

[14] OSLC http://open-services.net/specifications/

[15] CHESS https://www.polarsys.org/chess/publis/CHESSMLprofile.pdf

[16] AMASS D2.1 Business cases and high-level requirements, 28 February 2017.

[17] AMASS D2.2 AMASS Reference Architecture (a), 30 November 2016.

[18] AMASS D2.3 AMASS reference architecture (c), 30 September 2017.

[19] AMASS source code https://services.medini.eu/svn/AMASS_source/8

[20] AMASS Platform – Prototype Core User Manual9

[21] WEFACT http://www.ait.ac.at/en/research-fields/verification-validation/methods-and-
tools/wefact/

[22] AMASS D1.1 Case studies description and business impact, 30 November 2016

[23] AMASS D3.3 Design of the AMASS tools and methods for architecture-driven assurance (b), 31
March 2018

[24] AMASS D4.2 Design of the AMASS tools and methods for multi-concern assurance (a), 30 June 2017.

[25] AMASS D4.3 Design of the AMASS tools and methods for multi-concern assurance (b), 31 January
2018

[26] AMASS D4.4 Prototype for multi-concern assurance (a), 31 January, 2017

[27] AMASS D4.7 Methodological guide for multiconcern assurance (a), December 2017

[28] AMASS D6.2 Design of the AMASS tools and methods for intra/cross domain reuse (a), 31 October
2017.

8 The AMASS SVN code repository is open to AMASS partners with the same credentials as the SVN document
repository. In case that people outside the project need access, please contact the AMASS Project Manager
(alejandra.ruiz@tecnalia.com)
9 The current User Manual is a draft document; the final version of the manual will be integrated in D2.5 AMASS
User guidance and methodological framework (m31).

http://www.opencoss-project.eu/
https://artemis-ia.eu/project/40-nsafecer.html
http://www.omg.org/spec/SBVR/1.3
http://www.omgwiki.org/variability/doku.php
http://www.omg.org/spec/SACM/1.1
http://www.eclipse.org/modeling/gmp/
https://www.eclipse.org/modeling/emf/
http://www.eclipse.org/epf/
http://www.eclipse.org/epsilon/doc/etl/
http://www.eclipse.org/Xtext/
http://www.eclipse.org/epsilon/doc/eugenia/
http://www.eclipse.org/cdo/
http://open-services.net/specifications/
https://www.polarsys.org/chess/publis/CHESSMLprofile.pdf
https://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D2.1_Business-cases-and-high-level-requirements_AMASS_final.pdf
https://services.medini.eu/svn/AMASS_source/
http://www.ait.ac.at/en/research-fields/verification-validation/methods-and-tools/wefact/
http://www.ait.ac.at/en/research-fields/verification-validation/methods-and-tools/wefact/
https://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D1.1_Case-studies-description-and-business-impact_AMASS_Final.pdf
https://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D3.3_Design-of-the-AMASS-tools-and-methods-for-architecture-driven-assurance-%28b%29_AMASS_Final.pdf
https://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D4.3_Design-of-the-AMASS-tools-and-methods-for-multiconcern-assurance-%28b%29_AMASS_Final.pdf
https://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D4.4_Prototype-for-multiconcern-assurance-%28a%29_AMASS_final.pdf

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 67 of 68

[29] L. Montecchi and B. Gallina. SafeConcert: a Metamodel for a Concerted Safety Modeling of Socio-
Technical Systems. 5th International Symposium on Model-Based Safety and Assessment (IMBSA),
Trento, Italy, September 2017.

[30] SysML v1.4 Specification Release, September 2015. http://www.omgsysml.org/specifications.htm

[31] B. Gallina, E. Sefer and A. Refsdal, "Towards Safety Risk Assessment of Socio-Technical Systems via
Failure Logic Analysis," 2014 IEEE International Symposium on Software Reliability Engineering
Workshops, Naples, 2014, pp. 287-292.

[32] M. Wallace. Modular architectural representation and analysis of fault propagation and
transformation, vol. 141, no. 3, pp. 53–71, 2005.

[33] CONCERTO Deliverable D3.3 November 2015 Design and implementation of analysis methods for
non-functional properties – Final version

[34] B. Gallina, Z. Haider , A. Carlsson. Towards Generating ECSS-compliant Fault Tree Analysis’ Results
via ConcertoFLA. Proceedings of the 2nd International Conference on Reliability Engineering (ICRE),
Milan, Italy, December 20-22, 2017.

[35] https://www.polarsys.org/chess/publis/CHESSMLprofile.pdf

[36] http://www.omg.org/spec/MARTE

[37] L. Grunske, J. Han, “A Comparative Study into Architecture-Based Safety Evaluation Methodologies
using AADL’s Error Annex and Failure Propagation Models”, 11th IEEE High Assurance Systems
Engineering Symposium, pp. 283–292, Nanjing, China, 3-5 Dec., 2008.

[38] https://services.medini.eu/svn/AMASS_collab/WP4/D4.5_in_progress/WP4-
Requirements_Iteration2

[39] AMASS D3.6 Prototype for Architecture-Driven Assurance, 31 August 2018

[40] ModelBus https://www.modelbus.org (access July 2018)

[41] Common Attack Pattern Enumeration and Classification, https://capec.mitre.org/

[42] Common Vulnerabilities and Exposures, https://cve.mitre.org/

[43] Common Weakness Enumeration, http://cwe.mitre.org/index.html

[44] CCSDS 350.1-G-1, Report Concerning Space Data Systems Standards, Security Threats Against Space
Missions, December 2015

[45] AMASS D2.5 AMASS user guidance and methodological framework, 31 October 2018

[46] AMASS D1.5 AMASS demonstrators (b), 21 April 2018

[47] AMASS D6.3 Design of the AMASS tools and methods for intra/cross domain reuse (b), 30 July 2018.

[48] IEC 62443 Industrial communication networks – Network and system security, 2009 ff

[49] IEEE 1686-2013 – IEEE Standard for Intelligent Electronic Devices Cyber Security Capabilities, 2013

[50] AMASS D6.6 Prototype for cross/intra-domain reuse (c), October 2018

[51] AMASS D4.5 Prototype for multi-concern assurance (b), October 2017

[52] http://www.eclipse.org/proposals/polarsys.chess/

[53] www.antlr.org
[54] M. A. Javed and B. Gallina. Safety-oriented Process Line Engineering via Seamless Integration

between EPF Composer and BVR Tool. In 22nd International Systems and Software Product Line

Conference (SPLC), Sept 10-14, Gothenburg, Sweden, in press. ACM Digital Library, 2018.

[55] F. Ul Muram, B. Gallina, and L. Gómez Rodríguez. Preventing Omission of Key Evidence Fallacy in
Process-based Argumentations. In 11th International Conference on the Quality of Information and
Communications Technology (QUATIC), Coimbra, Portugal, September 4-7, 2018.

http://www.omgsysml.org/specifications.htm
https://www.polarsys.org/chess/publis/CHESSMLprofile.pdf
http://www.omg.org/spec/MARTE
https://services.medini.eu/svn/AMASS_collab/WP4/D4.5_in_progress/WP4-Requirements_Iteration2
https://services.medini.eu/svn/AMASS_collab/WP4/D4.5_in_progress/WP4-Requirements_Iteration2
https://www.modelbus.org/
https://capec.mitre.org/
https://cve.mitre.org/
http://cwe.mitre.org/index.h
https://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D1.5_AMASS-demonstrators-%28b%29_AMASS_Final.pdf
https://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D6.3_Design-of-the-AMASS-tools-and-methods-for-cross-intra-domain-reuse-%28b%29_AMASS_Final.pdf
https://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D4.5_Prototype-for-multiconcern-assurance-%28b%29_AMASS_Final.pdf
http://www.eclipse.org/proposals/polarsys.chess/
http://www.antlr.org/

 AMASS Prototype for multi-concern assurance (c) D4.6 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 68 of 68

[56] J. P. Castellanos Ardila, B. Gallina and F. Ul Muram. Enabling Compliance Checking against Safety
Standards from SPEM 2.0 Process Models. Euromicro Conference on Software Engineering and
Advanced Applications (SEAA), Prague, Czech Republic, August 29-31, 2018.

[57] AMASS D4.8 Methodological guide for multiconcern assurance (b), October 2018

