
This deliverable is part of a project that has received funding from the ECSEL JU under grant agreement No 692474.
This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme
and from Spain, Czech Republic, Germany, Sweden, Italy, United Kingdom and France.

ECSEL Research and Innovation actions (RIA)

AMASS

Architecture-driven, Multi-concern and Seamless Assurance and
Certification of Cyber-Physical Systems

Prototype for multi-concern assurance (b)
D4.5

Work Package: WP4 Multi-Concern Assurance
Dissemination level: PU = Public
Status: Final
Date: 31 October 2017
Responsible partner: Thomas Gruber (AIT)
Contact information: Thomas.gruber@ait.ac.at
Document reference: AMASS_D4.5_WP4_AIT_V1.0

PROPRIETARY RIGHTS STATEMENT

This document contains information, which is proprietary to the AMASS consortium. Permission to reproduce any
content for non-commercial purposes is granted, provided that this document and the AMASS project are credited as
source.

Contributors

Reviewers

Names Organisation
Thomas Gruber, Christoph Schmittner, Sebastian
Chlup, Korbinian Christl

AIT Austrian Institute of Technology GmbH

Alejandra Ruiz Tecnalia Research & Innovation
Barbara Gallina, Irfan Sljivo Maelardalen Hoegskola (MDH)
Stefano Puri Intecs (INT)

Names Organisation
Marc Sango (Peer-reviewer) All4Tec
Garazi Juez (Peer-reviewer) Tecnalia Research & Innovation
Cristina Martínez (Quality Manager) Tecnalia Research & Innovation
Jose Luis de la Vara (TC review) Universidad Carlos III de Madrid

 AMASS Prototype for multi-concern assurance (b) D4.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 3 of 45

TABLE OF CONTENTS

Executive Summary.. 6

1. Introduction ... 7

2. Implemented Functionality ... 9
2.1 Scope ... 9
2.2 Implemented Requirements - Overview .. 9

2.2.1 Requirements implemented in the Assurance Case Editor in OpenCert13
2.2.2 Requirements realized in EPF-Composer & BVR Tool ...14
2.2.3 Requirements implemented in CHESS ...14
2.2.4 Requirements implemented in WEFACT ...15

2.3 Installation and User Manuals .. 17
2.3.1 Internal tools ..17
2.3.2 External tools ...18

3. Implementation Description ... 19
3.1 Assurance Case Editor from OpenCert ... 19

3.1.1 Description of Implemented Features ...19
3.1.2 Source Code Description ..20

3.2 EPF-Composer Tool ... 22
3.2.1 Description of Realized Features ...22
3.2.2 Source Code / Interface Description ..22

3.3 CHESS Tool .. 22
3.3.1 Description of Implemented Features ...22
3.3.2 Source Code Description ..23

3.4 WEFACT Tool ... 24
3.4.1 Description of Implemented Features ...24
3.4.2 Interface Module Description ..26

4. Conclusion .. 33

5. Outlook and Next Steps .. 34

Abbreviations and Definitions .. 36

References ... 38

Appendix A: Additional CHESS Functionalities ... 40

 AMASS Prototype for multi-concern assurance (b) D4.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 4 of 45

List of Figures

Figure 1. AMASS Building blocks ... 7
Figure 2. Tool modules for Assurance Case Management Component ... 19
Figure 3. Tool module from Contract Management Component ... 20
Figure 4. Assurance Case Specification plugins ... 22
Figure 5. Contract profile supporting modelling of concerns ... 23
Figure 6. Argument Generator plugin source ... 24
Figure 7. WEFACT Activity Diagram .. 25
Figure 8. Relation between WEFACT low level activity results and the CACM .. 27
Figure 9. Relation modelled between WEFACT activity results on high level and the CACM evidences 27
Figure 10. The WEFACT Metamodel ... 28
Figure 11. Initiating the argument-fragment generation (Step 1) .. 41
Figure 12. Selecting the source analysis context (Step 2) ... 42
Figure 13. Selecting the destination assurance case folder on the CDO repository (Step 3) 43
Figure 14. Generation successfully completed with argument-fragments for each block 44
Figure 15. An example of the generated argument-fragment ... 45

 AMASS Prototype for multi-concern assurance (b) D4.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 5 of 45

List of Tables

Table 1. Functionality to be implemented in iterations 2 & 3 of the AMASS platform according to
D4.4 [28] ... 10

Table 2. Requirements implemented in the second prototype of the AMASS platform (P1) 11
Table 3. Requirements implemented in the Assurance Case Editor ... 13
Table 4. Requirements [partly] implemented in WEFACT ... 16
Table 5. Available installation documentation and user manuals for the tools implemented in

iteration 2 ... 18
Table 6. WefactProject mapping ... 29
Table 7. RequirementObject mapping ... 30
Table 8. WorkflowTool mapping .. 31
Table 9. ProcessObject mapping .. 31
Table 10. Functionality to be implemented in the third iteration (P2) of the AMASS platform 35

 AMASS Prototype for multi-concern assurance (b) D4.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 6 of 45

Executive Summary
This deliverable, D4.5 Prototype for multi-concern assurance (b), is the second output of the task T4.3
Implementation for Multi-Concern Assurance. Based on the results from task T2.2 AMASS Reference Tool
Architecture and Integration, task T4.3 develops a prototype tooling for multi-concern assurance. Particular
attention is paid to support the architectural approach to assurance being developed in WP3 and to
support the requirements for tooling developed in WP4. Task 4.3 is being carried out iteratively, in close
connection with the conceptual tasks (T4.2 Conceptual Approach for Multi-Concern Assurance as well as
those in the other WPs, namely T3.2, T5.2 and T6.2), with validation results from the implementation being
used to guide further refinement of the conceptual approach. The implementation is closely guided by the
requirements [43] of the case studies, which are used to validate the prototype.

The first prototype iteration (Prototype Core) released the basic building blocks as a
consolidation/integration of previous projects OPENCOSS [1] and SafeCer [2]. The developed tools in the
first prototype supported the following two functional areas:

• Argumentation Editor
• Argument Patterns Editor

The release at hand is the second prototype iteration, which extends the previous functionality by the
following functional parts:

• Support for contract-based multi-concern assurance by CHESS, and
• Multi-concern assurance workflow support by WEFACT [21] based on
• Standards conformant assurance process modelling by EPF-C [9].

This document has the purpose to present the added functional parts in detail, which are partly Open
Source tools integrated in the AMASS platform and partly external tools, for which the binding via an open
source interface module is given.

CHESS and EPF-C are already used in other contexts of the AMASS ARTA platform; therefore references to
the comprehensive specifications elsewhere are given and a short description is included in this document
pointing out the particularity of the tool in context with the WP4 task of multi-concern assurance.

The WEFACT workflow engine as an external tool is integrated via an open source interface module and
described in detail in the document at hand. This includes source code references of the open source
interface module, information about the technology used and a description of mapping between the
WEFACT-internal database and the AMASS CACM.

Other important parts of D4.5 are:
• Executable of the WEFACT tool [32].
• WEFACT user manual and installation instructions [33].
• Source code of the WEFACT-CACM interface module (in [18]).

 AMASS Prototype for multi-concern assurance (b) D4.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 7 of 45

1. Introduction
The AMASS approach focuses on the development and consolidation of an open and holistic assurance and
certification framework for CPS, which constitutes the evolution of the OPENCOSS [1] and SafeCer [2]
approaches towards an architecture-driven, multi-concern assurance, reuse-oriented, and seamlessly
interoperable tool platform.

The expected tangible AMASS results are:

a) The AMASS Reference Tool Architecture, which will extend the OPENCOSS and SafeCer
conceptual, modelling and methodological frameworks for architecture-driven and multi-concern
assurance, as well as for further cross-domain and intra-domain reuse capabilities and seamless
interoperability mechanisms (based on OSLC specifications [14]).

b) The AMASS Open Tool Platform, which will correspond to a collaborative tool environment
supporting CPS assurance and certification. This platform represents a concrete implementation of
the AMASS Reference Tool Architecture, with a capability for evolution and adaptation, which will
be released as an open technological solution by the AMASS project. AMASS openness is based on
both standard OSLC APIs with external tools (e.g. engineering tools including V&V tools) and on
open-source release of the AMASS building blocks.

c) The Open AMASS Community, which will manage the project outcomes, for maintenance,
evolution and industrialisation. The Open Community will be supported by a governance board,
and by rules, policies, and quality models. This includes support for AMASS base tools (tool
infrastructure for database and access management, among others) and extension tools (enriching
AMASS functionality). As Eclipse Foundation is part of the AMASS consortium, the Polarsys/Eclipse
community (www.polarsys.org) is a strong candidate to host AMASS Open Tool Platform.

To achieve the AMASS results, as depicted in Figure 1, the multiple challenges and corresponding scientific
and technical project objectives are addressed by different work-packages.

Figure 1. AMASS Building blocks

WP3
WP4

WP5
WP2

WP3 WP4

WP6
WP6

WP5

http://www.polarsys.org/

 AMASS Prototype for multi-concern assurance (b) D4.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 8 of 45

Since AMASS targets high-risk objectives, the AMASS Consortium decided to follow an incremental
approach by developing rapid and early prototypes. The benefits of following a prototyping approach are:

• Better assessment of ideas by initially focusing on a few aspects of the solution.
• Ability to change critical decisions based on practical and industrial feedback (case studies).

AMASS has planned three prototype iterations:
1. During the first prototyping iteration (Prototype Core), the AMASS Platform Basic Building Blocks

(see Figure 1), were aligned, merged and consolidated at TRL41.
2. During the second prototyping iteration (Prototype P1), the AMASS-specific Building Blocks have

been developed and benchmarked at TRL4; this comprises the blue basic building blocks as well as
the green building blocks in Figure 1. Regarding multi-concern assurance, in this second prototype,
the specific building blocks provide functionalities regarding system dependability co-
analysis/assessment, dependability assurance modelling or contract-based multi-concern
assurance.

3. Finally, at the third prototyping iteration (Prototype P2), all AMASS building blocks will be
integrated in a comprehensive toolset operating at TRL5. Functionalities specific for multi-concern
assurance developed for the second prototype will be improved and integrated with functionalities
from other technical work packages.

Each of these iterations has the following three prototyping dimensions:
• Conceptual/research development: development of solutions from a conceptual perspective.
• Tool development: development of tools implementing conceptual solutions.
• Case study development: development of industrial case studies using the tool-supported

solutions. The application of the building blocks in case studies for the first prototype was
described in D1.1 [22]. For the second prototype, implementations applying WEFACT in CS1 and
CS3 are under elaboration, for CS3, moreover, the application of FMVEA in iteration 3 (P2) is
planned.

As part of the Prototype Core, WP4 provided the implementation of the basic building block “Assurance
Case Specification” (Figure 1). An update of the respective Assurance Case Editor is given in section 3.1 .

This deliverable reports the tool and interface module development of the “Multi-concern Assurance”
building blocks and explains the current implementation. This refers to the following functionalities:

• Support for contract-based multi-concern assurance by the internal tool CHESS,
• Standards conformant assurance process modelling by the internal tool EPF-C, and
• Multi-concern assurance workflow supporting combined activity execution for different multi-

concern assurance functions by means of the external tool WEFACT.

With respect to the EPF-C and CHESS tools, this deliverable contains short descriptions and refers to other
deliverables in which the mentioned tools are already described for a different context. For the external
tool WEFACT, which is integrated via the mentioned interface module, this deliverable presents the
functionality and describes the interface and its mapping to the CACM in detail. Furthermore, it references
the interface module source code as well as user and installation manuals.

Other important parts of D4.5 deliverable are:
• Installable AMASS Platform tools or open-source interface module for the second prototype
• User Manuals and installation instructions
• Source code description

1 In the context of AMASS, the EU H2020 definition of TRL is used, see
https://ec.europa.eu/research/participants/data/ref/h2020/other/wp/2016_2017/annexes/h2020-wp1617-annex-g-
trl_en.pdf

https://ec.europa.eu/research/participants/data/ref/h2020/other/wp/2016_2017/annexes/h2020-wp1617-annex-g-trl_en.pdf
https://ec.europa.eu/research/participants/data/ref/h2020/other/wp/2016_2017/annexes/h2020-wp1617-annex-g-trl_en.pdf

 AMASS Prototype for multi-concern assurance (b) D4.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 9 of 45

2. Implemented Functionality

2.1 Scope

This second prototype of the Multiconcern assurance module has the purpose to complete the full scope
of multi-concern assurance-related functions with internal and external tools.

The following tool functions were already integrated in the first iteration of the AMASS platform:
• OpenCert – AMASS Core edition supporting (only) "Assurance case specification”, and
• CHESS - AMASS Core edition supporting contract modelling with OCRA.

In the second iteration of the AMASS platform (prototype P1), the following tools have been integrated or
extended with respect to functionality:

1. OpenCert – AMASS P1 edition supports, in addition to “Assurance Case Specification”:
• “Dependability Assurance Modelling”, and
• partly “Contract–based multi-concern assurance”

2. CHESS - supports additionally “Contract-Based Multi-concern Assurance”
3. EPF-Composer – supports:

• “Co-assessment, Cross-Concern Reuse” (shared with WP6), and
• Assurance process modelling and tailoring to the individual project (resulting process

model is used by WEFACT)
4. WEFACT - supports the assurance process workflow (this concerns several WPs).

• In WP4, the capability to combine tools for analyses w.r.t. different concerns is in the
focus.

The following tools, described in deliverable D4.2 [25], are envisaged to be integrated in the third iteration
of the AMASS platform (prototype P2):

• Medini Analyzer - supports the assurance process workflow and allows safety analyses and, in a
prototypic version, security analyses.

• Safety Architect – supports “System Dependability Co-analysis/Assessment” for safety and
security, in particular a combination of FTA and ATA.

• AMT2.0 - supports “Contract-Based Multi-concern Assurance” by generating monitors for
observing properties of nodes a network.

The following tool is currently (Oct. 2017) being re-developed as an Eclipse RCP application and will be
integrated with the AMASS platform in the third iteration (prototype P2):

• FMVEA - supports “System Dependability Co-Analysis/Assessment”.

The Farkle tool, which verifies learning algorithms based on volume testing, supports product assurance for
a very specific case; its use is currently being investigated in a use case (CS3) but, for the time being, not
planned to be integrated with the AMASS platform (neither second nor third iteration).

2.2 Implemented Requirements - Overview

From the requirements point of view this phase focuses on a set of AMASS requirements as defined in
deliverable D2.1 [16].

According to D4.4 [28], the following functionality shall be implemented in iterations 2 and 3:

 AMASS Prototype for multi-concern assurance (b) D4.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 10 of 45

Table 1. Functionality to be implemented in iterations 2 & 3 of the AMASS platform according to D4.4 [28]

Function name Description

Argumentation architecture The system shall be able to edit an argument architecture associated
with a system and/or component.

Semi-automatic generation of
product arguments (1)

The system shall reduce efforts of manual creation of product-based
assurance case arguments. This could be done by enabling semi-
automatic generation of product-based arguments-fragments.

Assurance case status report The system shall provide the capability for querying the assurance case
in order to detect: 1) undeveloped goals, and 2) fallacies.

Assurance case structure
navigation

The system shall let the user browse the assurance case structure.
Note: in case GSN-like modelling elements are used, this requirement
may be translated as follows: The system shall let the user navigate from
top-level assurance case overview to the nested assurance case
fragments that are encapsulated within modules.

Provide guidelines for
argumentation patterns

The system shall be able to provide guidelines to use and instantiate
argument patterns (concerning safety and security) presented in the
actual assurance case.

Compliance map generation
from argument evidences

The system shall be able to detect when a claim about a requirement
from a standard (compliance claim) is supported by an evidence and to
generate the compliance indicator in a transparent way.

Formal validation of
assumptions and context
when arguments modules are
connected

The system shall be able to indicate the validation of assumptions
contained in argument modules every time the modules are connected
and/or modified.

Provide quantitative
confidence metrics about an
assurance case in a report

The system could produce a status report indicating a quantitative
confidence metric for the assurance case.

Provide guidelines for
argumentation

The system shall be able to provide guidelines about the assurance case
edition based on the system/component development phase status.

The AMASS tools must
support specification of
variability at the
argumentation level (2)

The system shall provide the capability for modelling a multi-concern
and multi-context assurance case.

Note: variability modelling could be a solution. If GSN-like modelling
elements are considered, the diamond for representing alternatives as
well as the octagon for extrinsic variability could be considered.

Argumentation import/export The system shall be able to import/export argumentations to SACM.

(1) An implementation of this function is documented in D6.5 [31]. Here in D4.5, the focus is on multi-

concern, i.e. on those cases where contracts regarding safety as well as contracts regarding
security are applied.

(2) In addition, this requirement is in conjunction with WP6. Again, here the focus of consideration is
on variability w.r.t. different quality attributes in the sense of multi-concern.

 AMASS Prototype for multi-concern assurance (b) D4.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 11 of 45

Table 2. Requirements implemented in the second prototype of the AMASS platform (P1)

Requirement No Name Description Tool

WP4_ACS_002 Argumentation
architecture

The system shall be able to edit a modular structure (argument
architecture) associated with a system and/or component. OpenCert

WP4_ACS_003
(Core
implementation
improved)

Drag and drop
argumentation patterns

The system shall be able to instantiate in the actual assurance case
an argument pattern (concerning safety and security) selected from
the list of patterns stored.

OpenCert

WP4_ACS_005
Provide a structured
language to the text
inside the claims

The system could be able to provide support for language
formalization inside argument claims. OpenCert

WP4_ACS_006 Provide guidelines for
argumentation

The system could be able to provide guidelines about the assurance
case edition based on the system/component development phase
status.

OpenCert

WP4_ACS_007 Argumentation
import/export

The system could be able to import/export argumentations to
SACM. OpenCert

WP4_ACS_008 Traceability of the
dependability case

The system should provide the dependability case reviewers the
ability of tracing an overall dependability case (GSN) goal to the
requirement within the dependability profile for a given system
element and the attribute of interest with which goal is associated.

OpenCert

WP4_ACS_010 Composition of the
overall argument

The system should provide the capability of generating a
compositional assurance case argument. OpenCert

WP4_DAM_001
Capability to model
relationships between
concerns

The system shall be able to provide an assurance case which records
the relationships between dependability attributes and how they are
affected because of design decisions.

OpenCert

WP4_DAM_002

Capability to capture
conflicts occurring
during system
development and the
trade-off process

The system shall provide the capability for modelling a dependability
case that captures the conflicts that occur during system
development and the trade-off process to justify why the taken
design decisions are the most optimal ones.

OpenCert

WP4_CMA_001

The AMASS tools must
support specification of
variability at the
argumentation level

The system shall provide the capability for modelling arguments in
the assurance case about multi-concern and multi-context.
The multi-concern and multi-context argumentation could follow a
variability modelling a solution. If GSN-like modelling elements are
considered, the diamond for representing alternatives as well as the
octagon for extrinsic variability could be considered.

OpenCert

WP4_CMA_002
Component contracts
must support multiple
concerns

The system shall provide a contract specification language that
supports the formalisation of both safety and security requirements. CHESS

WP4_CMA_003 Contract based multi-
concern assurance

The system must support features that support contract based
assurance with respect to multiple concerns; i.e. it must be possible
to specify relations between safety contracts, security contracts and
other-concerns-related contracts in order to take care of the
influence of system modifications for mitigating the risks associated
with one quality attribute on the contract belonging to another
quality attribute.

CHESS

WP4_SDCA_002
System dependability
co-verification and co-
validation

The system shall support efficient system or component co-
verification and co-validation with respect to multiple quality
attributes. (1)

WEFACT,
Medini

Analyzer,
Safety

Architect

WP4_SDCA_003
The system shall allow
combinations of safety
and security analysis

The system shall allow combinations of safety and security analysis.
(2)

WEFACT,
Medini

Analyzer,
Safety

Architect

WP3_VVA_009

Capability to connect to
tools for test case
generation based on
assurance requirements
specification of a
component/system

The system shall be able to connect to external tools to execute the
test cases already specified.

WEFACT

 AMASS Prototype for multi-concern assurance (b) D4.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 12 of 45

Requirement No Name Description Tool

WP5_CW_004
Collaborative re-
certification needs &
consequences analysis

The AMASS Tool Platform shall support the collaboration among
assurance managers and assurance engineers for re-certification
needs & consequences analysis.

WEFACT,
OpenCert

WP5_CW_005 Collaborative system
V&V

The AMASS Tool Platform shall support the collaboration among
systems engineers for system V&V.

WEFACT

WP5_CW_007 Collaborative assurance
evidence management

The AMASS Tool Platform shall support the collaboration among
assurance managers and systems engineers for assurance evidence
management. (3)

WEFACT,
OpenCert

WP6_CM_008 Process Compliance
(informal) management

The AMASS tools shall enable users to visualize process compliance.
This means showing the links between the requirements and the
applicant’s evidence (during the planning as well as execution
phase).
This visualization could be done via compliance maps (matrix) or via
arguments aimed at justifying the satisfaction of the requirements
coming from the standards. (3)

WEFACT,
OpenCert,
EPF-C and
BVR tool

(1) WEFACT allows combining V&V activities (e.g. calls to test tools) in one complex activity.
(2) In this second iteration P1, the combination of safety and security analysis is achieved by combined

assurance activities in WEFACT, in which a separate safety and a separate security analysis tool are
called in parallel or sequentially (can be configured to the needs). In iteration 3 calls to combined
tools are foreseen (e.g. FMVEA).

(3) Partially implemented.

In particular w.r.t. WEFACT, the implementation covers also requirements belonging to work packages
other than WP4; that is why the following table of requirements implemented in the second iteration of
the AMASS platform contains not only WP4 requirements. The column "Requirement No" refers to the IDs
in the deliverable D2.1 [16].

Each tool together with the implementation done so far that implements requirements are shortly
outlined in the following tool specific sections.

 AMASS Prototype for multi-concern assurance (b) D4.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 13 of 45

2.2.1 Requirements implemented in the Assurance Case Editor in OpenCert
The Assurance Case Editor is part of the OpenCert project. It includes one of the basic building blocks for
AMASS, the Assurance Case specification block. In this iteration, we have extended it in order to cover
more of the requirements elicited for WP4 and solve some of the problems identified during the validation
of previous prototype Core. Some of the requirements are covered partially and planned to be improved in
future iterations.

Requirements implemented in the Assurance Case Editor in OpenCert are included in Table 3.

Table 3. Requirements implemented in the Assurance Case Editor

Requirement No Name Description

WP4_ACS_001 Assurance case edition The system shall be able to edit an assurance case in a scalable way.

WP4_ACS_002 Argumentation architecture The system shall be able to edit a modular structure (argument
architecture) associated with a system and/or component.

WP4_ACS_003 Drag and drop argumentation patterns
The system shall be able to instantiate in the actual assurance case
an argument pattern (concerning safety and security) selected from
the list of patterns stored.

WP4_ACS_005 Provide a structured language to the
text inside the claims

The system could be able to provide support for language
formalisation inside argument claims.

WP4_ACS_007 Argumentation import/export The system could be able to import/export argumentations to SACM.

WP4_ACS_010 Composition of the overall argument The system should provide the capability of generating a
compositional assurance case argument.

WP4_DAM_001 Capability to model relationships
between concerns

The system shall be able to provide an assurance case which records
the relationships between dependability attributes and how they are
affected because of design decisions.

WP4_DAM_002
Capability to capture conflicts occurring
during system development and the
trade-off process

The system shall provide the capability for modelling a dependability
case, which captures the conflicts that occur during system
development, explicitly show the dependencies of a design decision
in relation with other assertions.

Some of the requirements were implemented previously but have been improved in this second iteration.
Same with others, now the Assurance Case Editor has some of the functionality covered but it could be
modified in the third iteration, after getting feedback from the validation task and from the case studies’
implementers.

WP4_ACS_001: Assurance case edition
This requirement was previously covered in Prototype Core.

WP4_ACS_002: Argumentation architecture
This requirement is focused on previously commented functionality, Assurance case structure navigation.
Assurance Case editor lets the user include argument modules in the diagram. This concept permits to
encapsulate arguments (claims, strategies and evidences inside them). To see the encapsulated arguments,
the user just needs to double click on the argument module and a tab with the argument diagram
containing the arguments will be opened. All the elements inside the argument module are included in the
model. The idea is to make feasible to apply modular argumentation concepts. We are able to encapsulate
arguments of the same kind in argument modules. The way of classification might differ depending on the
user. The user might want to encapsulate process arguments in an argument module, product arguments
in another argument module and confidence arguments in another argument module, or rather to align
the argumentation with the different components from the different suppliers that form the system and
the adequacy of its integration.

 AMASS Prototype for multi-concern assurance (b) D4.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 14 of 45

WP4_ACS_003: Drag and drop argumentation patterns
This requirement was implemented in previous prototype (Prototype Core). However, one of the feedback
comments received mentioned that the argument patterns needs to be stored locally as files before. With
the new improvement the argument patterns can be stored either locally as files, or stored in a common
repository. The user has a view where (s)he can browse the folders including patterns, select one, drag
from the “templates” view and drop it in the actual diagram. The editor will copy the elements in the
model and the position of the elements in the diagrams in a transparent way to the user.

WP4_ACS_005: Provide a structured language to the text inside the claims
This requirement was covered in the previous prototype (Prototype Core). There has not been any
improvements regarding this requirement as there was no feedback from the case studies.

WP4_ACS_007 Argumentation import/export
This requirement has been covered briefly in this second iteration. The user could provide a file storing an
argument model specified using SACM to the actual argument model. Similarly, an argument model
created in the Assurance Case editor can be exported to a file.

WP4_ACS_010: Composition of the overall argument
This requirement was partially covered in previous prototype (Prototype Core). Before in the
argumentation diagram, the user could explicitly include the argument contract figure to show that there is
a rationale behind the composition of the linked argument modules. An argument contract should be
linked with at least two or more argument modules. With the new improvements the arguments that
show the rationale for the connection are connected. A new argument diagram is associated with the
contract figure and can be shown and edited when double clicking in the contract figure.

WP4_DAM_001: Capability to model relationships between concerns
This requirement has been covered in this iteration (Prototype P1). In deliverable D4.2 [26] the
“dependency relationship” has been presented. The new implementations have tried to cover this new
dependency relationship concept.

2.2.2 Requirements realized in EPF-Composer & BVR Tool
As it was recalled in D4.2 [27], EPF Composer is the tool that implements the EPF (Eclipse Process
Framework) approach for supporting customizable (software) process engineering frameworks.

In AMASS, the EPF approach and its tool support have been integrated as core building block. Within WP6,
D6.2 [30], EPF-C is currently being strengthened via integration with the BVR tool [3],[4]. This integration is
beneficial not only for general reuse but more specifically for co-assessment and cross-concern reuse,
focusing on the interplay of safety and security in line with WP4 objectives. This integration permits a user
to model SiSoPLs (Security-informed Safety-oriented Process Lines). During the co-assessment, safety and
security engineers are in the position to identify and systematize the overlapping region (commonality)
and the variations.

An initial exploration of co-assessment and cross-concern reuse is documented in D6.2 [30]. D4.7 [29],
instead, will include in-depth guidance on how to benefit from such integration in the context of multi-
concern (co-) assessment.

2.2.3 Requirements implemented in CHESS

2.2.3.1 Modelling different concerns for system components

Different concerns/properties for system components can be represented in the architecture model by
using the CHESS modelling language (CHESSML [40]) and then analysed (WP4_SDCA_001 requirement). In

 AMASS Prototype for multi-concern assurance (b) D4.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 15 of 45

particular, (a subset of) MARTE [41] is available in CHESSML to allow modelling of timing concerns.
Moreover, a dependability profile has been incorporated in CHESSML to allow modelling of safety
properties (e.g. fault, error, failure and failure propagation); see Appendix A.

In the context of AMASS, the extension of CHESS to cover the modelling and analysis of security aspects is
currently under investigation, in particular by considering what is already available from other modelling
tools (e.g. SafetyArchitect provided by All4Tec), trying to understand if specific integration at modelling
language and/or tool can be realized. For instance, modelling of security aspects could be provided in
CHESS by extending the current CHESS dependability profile (see Appendix A).

The concept of component contract, the latter also available in CHESSML, can also be used to model
properties of different concerns (WP4_CMA_002, WP4_CMA_003 requirements). Contracts can be derived
according to obtained analysis results; for instance, a safety contract about failure propagation between
input and output ports of a given component could be derived from CHESS by executing failure
propagation analysis, the latter enabled by the failures-related information stored in the model by using
the CHESS dependability profile. In the same manner, performance contract about worst-case response
time of a component’s operation could be derived after worst-case response time analysis performed in
CHESS by using the timing MARTE annotations. Contracts can also be created as formalisation of system
components requirements by using dedicated languages, for instance the temporal logic ones currently
proposed in WP3.

To better represent the concern addressed by a given contract, CHESSML has been extended to support
the notion of concern (e.g. safety, security, performance) attached to component contract. It is worth
noting that the concern tag could also be derived automatically from the requirement(s) which is(are)
formalised by given contract, assuming that the requirement comes with such information too. The
assurance engineer can then use the information of concern attached to contracts to have a better
understanding of the dependencies between concerns along the system architecture. For instance, he/she
could reason about the relationships modelled for contracts, e.g. contracts refinement, to argue if a
contract of a given concern depends on (is decomposed by in case of contracts refinement) contracts
related to other concerns.

2.2.3.2 Additional CHESS Functionalities

In addition to the features for modelling different concerns for system components, CHESS was used for
further features supporting modelling dependability aspects and semi-automatic generation of product
arguments. For these developments, no implementation work was needed anymore in iteration 2.
Nevertheless, they were elaborated at least conceptually and documented in D4.2 [26]. Here, a description
is given in Appendix A: Additional CHESS Functionalities.

2.2.4 Requirements implemented in WEFACT
WEFACT is an external tool for assurance workflow execution. It can use a process model defined in EPF-C
or use process activities defined in WEFACT itself. In WEFACT, the activities of the EPF model are
associated with V&V activities and respective tools, and WEFACT eventually executes these activities,
keeping track of changes of associated artefacts (e.g. software modules under test) and the associated
requirements. In this way, WEFACT supports continuous impact management in the event of changing
requirements, models or implementations and triggers then only those re-assurance activities which are
necessary as a consequence of the changes.

In the second iteration, WEFACT is integrated with the AMASS platform and fulfils the following
requirements:

 AMASS Prototype for multi-concern assurance (b) D4.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 16 of 45

Table 4. Requirements [partly] implemented in WEFACT

Requirement No Name Description

WP4_ACS_006 Provide guidelines for argumentation
The system could be able to provide guidelines about the
assurance case edition based on the system/component
development phase status.

WP4_ACS_008
(1) Traceability of the dependability case

The system should provide the dependability case reviewers the
ability of tracing an overall dependability case (GSN) goal to the
requirement within the dependability profile for a given system
element and the attribute of interest with which goal is
associated.

WP4_SDCA_002
(1)

System dependability co-verification
and co-validation

The system shall support efficient system or component co-
verification and co-validation with respect to multiple quality
attributes.

WP4_SDCA_003
(1)

The system shall allow combinations of
safety and security analysis

The system shall allow combinations of safety and security
analysis. (2)

WP3_VVA_009

Capability to connect to tools for test
case generation based on assurance
requirements specification of a
component/system

The system shall be able to connect to external tools to execute
the test cases already specified. (3)

WP5_CW_004 Collaborative re-certification needs &
consequences analysis

The AMASS Tool Platform shall support the collaboration among
assurance managers and assurance engineers for re-certification
needs & consequences analysis.

WP5_CW_005 Collaborative system V&V The AMASS Tool Platform shall support the collaboration among
systems engineers for system V&V.

WP5_CW_007 Collaborative assurance evidence
management

The AMASS Tool Platform shall support the collaboration among
assurance managers and systems engineers for assurance
evidence management.

WP6_CM_008 Process Compliance (informal)
management

The AMASS tools shall enable users to visualize process
compliance. This means showing the links between the
requirements and the applicant’s evidence (during the planning
as well as execution phase).
This visualization could be done via compliance maps (matrix) or
via arguments aimed at justifying the satisfaction of the
requirements coming from the standards.

1) Partly implemented.
2) WEFACT allows combined safety and security analyses by combining calls to separate safety and

security analysis tools in one activity.
3) WEFACT supports calling tools in the executed assurance activities; this includes calls to test tools.

In this sense, WEFACT can be used as a test automation engine. This feature, in fact, supports a
WP3 requirement.

In the following, the implementation in WEFACT is shortly described for each of the above mentioned
requirements.

WP4_ACS_006 Provide guidelines for argumentation
Together with EPF, WEFACT offers opportunities to guide the user through certain assurance activities at
defined points in the workflow. These assurance activities can be any activity in the lifecycle like, for
instance, safety analysis, performance analysis, software design, system test, reviews, validation activities,
etc.

WP4_ACS_008 Traceability of the dependability case
The WEFACT workflow supports the recognition of evidences which are invalidated by modification of
requirements or input artefacts of assurance activities.

 AMASS Prototype for multi-concern assurance (b) D4.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 17 of 45

WP4_SDCA_002 System dependability co-verification and co-validation
WEFACT can be instantiated as workflow engine for verification of any quality attribute. This is possible in
conformance with a process model created with EPF-C or stand-alone with WEFACT. WEFACT can, as far as
possible, automatically start tools for verifying or validating deliberate properties or quality attributes of
the system or the artefact under consideration. The UMA process model says what shall be
verified/validated, and WEFACT allows to couple this step to appropriate tool[s] and to execute the
workflow.

WP4_SDCA_003 The system shall allow combinations of safety and security analysis.
WEFACT can support processes for controlling separate as well as combined safety and security analyses.
In Iteration 2 WEFACT can be used to combine calls to separate safety and security analysis tools in a
complex analysis step. In iteration 3, combined methods for co-analysis are expected (FMVEA, Medini
Analyzer).

WP3_VVA_009 Capability to connect to tools for test case generation based on
assurance requirements specification of a component/system

WEFACT offers various bindings for tools, among others, test case generation tools. WEFACT maintains a
list of tools including their bindings; the user can associate assurance steps (process activities) with tools.
WEFACT allows interdependent sequences of tool calls so that, as an example, a successful call to a test
case generation tool can be linked to a subsequent call to a test tool executing the generated test cases.

WP5_CW_004 Collaborative re-certification needs & consequences analysis
WEFACT allows multiple users to use its database and provides - based on its continuous impact
management w.r.t. changes of requirements and system artefacts - support for efficient, resource-saving
re-certification.

WP5_CW_005 Collaborative system V&V
WEFACT supports collaborative, workflow-controlled V&V, integrated with the assurance case.

WP5_CW_007 Collaborative assurance evidence management
While and after gathering assurance evidences, WEFACT supports assurance managers and systems
engineers in tracking the progress of the evidence collection for finalizing the assurance case.

WP6_CM_008 Process Compliance (informal) management
WEFACT shows the dynamic status of compliance with Standards as the imported EPF process model is
inherently standards-compliant. While designing as well as executing the assurance workflow, WEFACT
shows at any point in time the actual fulfilment of the product requirements as well as the process
requirements from the standards.

2.3 Installation and User Manuals

2.3.1 Internal tools
The steps necessary to install the second prototype are exhaustively described in the AMASS User Manual
for all the AMASS building blocks [20] and will not be repeated here. That document contains all required
steps and document references to set up the tools. A pre-packaged distribution is being supplied in the
second iteration of the AMASS platform.

 AMASS Prototype for multi-concern assurance (b) D4.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 18 of 45

In summary, that document is a user manual of the second AMASS tool prototype implementation. The
users can find there the installation instructions, the tool environment description, and the functionalities
for not just the assurance case specification but also for the other basic building blocks.

2.3.2 External tools
External tools have a stub description in the AMASS User Manual and possibly manuals on the tool
provider website. Table 5 depicts an overview on available installation documentation and user manuals
for the tools implemented in iteration 2.

Table 5. Available installation documentation and user manuals for the tools implemented in iteration 2

Tool Available Installation Documentation and User Manual

CHESS Contained in:

https://services.medini.eu/svn/AMASS_collab/WP-
transversal/ImplementationTeam/PrototypeP1/AMASS_PrototypeP1_UserManual.doc

EPF-Composer Contained in:

https://services.medini.eu/svn/AMASS_collab/WP-
transversal/ImplementationTeam/PrototypeP1/AMASS_PrototypeP1_UserManual.doc

WEFACT https://services.medini.eu/svn/AMASS_collab/WP-
transversal/ImplementationTeam/PrototypeP1/WEFACT_UserManual.docx

https://services.medini.eu/svn/AMASS_collab/WP-
transversal/ImplementationTeam/PrototypeP1/WEFACT_Installation_Guide.docx

CHESS and EPF-Composer are part of the Core platform; their description is therefore contained in the
general AMASS user manual. WEFACT is an external tool; it is an Eclipse RCP application that is started
outside Eclipse as a separate executable file. Its documentation is available at the tool provider AIT;
nevertheless, for ease of use, its documentation including User Manual and Installation Guide is provided
to the AMASS project participants in the same directory as the AMASS-internal tools.

https://services.medini.eu/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeP1/AMASS_PrototypeP1_UserManual.doc
https://services.medini.eu/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeP1/AMASS_PrototypeP1_UserManual.doc
https://services.medini.eu/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeP1/AMASS_PrototypeP1_UserManual.doc
https://services.medini.eu/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeP1/AMASS_PrototypeP1_UserManual.doc
https://services.medini.eu/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeP1/WEFACT_UserManual.docx
https://services.medini.eu/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeP1/WEFACT_UserManual.docx
https://services.medini.eu/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeP1/WEFACT_Installation_Guide.docx
https://services.medini.eu/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeP1/WEFACT_Installation_Guide.docx

 AMASS Prototype for multi-concern assurance (b) D4.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 19 of 45

3. Implementation Description

3.1 Assurance Case Editor from OpenCert

3.1.1 Description of Implemented Features
In accordance with the deliverable D2.3 [18], the components that are part of the Assurance Case Manager
Component have been implemented within the Assurance Case Editor from OpenCert and it covers the
following blocks: the Assurance Case Management and partially the Contract-based Multi-concern
Assurance, this second one just related to argument contracts.

The Assurance Case Management block is an Eclipse-Based Argumentation Editor. It contains plugins for
editing argumentation models and plugins for management of argument patterns and module libraries.
(Please note that the term "module" used for argumentation modules differs from the "implemented
modules" described in this chapter.)

The Assurance Case Editor is responsible for the Argument model creation and edition. The purpose of the
Argument Patterns/Module Management tool is to provide services storing and instantiating modular
argumentation and patterns. The Dependability modelling tool is responsible for managing the
“dependability relationship” described in D4.2 [26].

Figure 2. Tool modules for Assurance Case Management Component

Above that, the Assurance Case Editor, also covers partially the edition or the argument contracts using the
contract-based multi-concern assurance module, from the Contract management component. It deals with
argument contracts and it is highly connected with the modular argumentation services.

 AMASS Prototype for multi-concern assurance (b) D4.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 20 of 45

Figure 3. Tool module from Contract Management Component

In this second iteration of the AMASS platform, main work has been done to consolidate the results from
the first iteration. The main problem has been the navigation associated with the modular argumentation
and the migration of the argument modules and patterns from files to database storage. The contract-
based multi-concern assurance block and the dependability modelling block, which appeared in Figure 2,
have been implemented in this second iteration.

The technologies used to develop the Assurance Case Editor are:
• To generate Editors: GMF [7], EMF [8], Eugenia [12]
• For model transformations: Epsilon (ETL) [9]
• For storage: CDO [13]
• For vocabulary: Xtext [11]

3.1.2 Source Code Description
The source code of the first AMASS prototype can be found in the source code SVN repository at
https://services.medini.eu/svn/AMASS_source.The code for the assurance case modules second prototype
will be stored together with the other basic building blocks in the repository under “tag” to distinguish the
state of the code at the time of the integrated release.

Once all the plugins are installed, these are the necessary ones for the Assurance Case Management and
the Contract-based Multi-concern Assurance:

• GSN.figures
This plugin provides utilities to draw model elements according to the Goal Structuring Notation
(GSN) standard.

• org.opencert.sam.arg
In this plugin, the argumentation metamodel is defined and stored, and the Java implementation
classes for this model are generated.

• org.opencert.sam.arg.diagram
This plugin is the diagram editor itself. It manages diagrams and includes a canvas to draw on, a
palette with creation tools and default selecting and zooming capabilities, a property view and an
outline view.

• org.opencert.sam.arg.edit
The edit plugin includes adapters that provide a structured view and perform command-based
edition of the model objects.

• org.opencert.sam.arg.editor
This plugin provides the user interface to view instances of the model using several common
viewers and to add, remove, cut, copy and paste model objects, or to modify the objects in a
standard property sheet.

https://services.medini.eu/svn/AMASS_source

 AMASS Prototype for multi-concern assurance (b) D4.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 21 of 45

• org.opencert.sam.arg.export
This plugin provides adapters to export an argument model stored in the common database, to an
argument model specified using SACM in a file.

• org.opencert.sam.arg.import
This plugin provides adapters to import an argument model specified using SACM in a file to an
argument model to be stored in the common database.

• org.opencert.sam.arg.ui
This is an additional plugin. It offers several utilities such as drawing model elements not included
in the GSN standard, accessing to argument patterns and modules.

• org.opencert.sam.arg.preferences
This plugin manages the default preferences required by the Argumentation diagram editor. The
parameters which can be defined are the Modules Directory (with all argumentation modules
stored from previous argumentation phases) and the Patterns Directory (that contains all
argumentation patterns templates).

• org.opencert.sam.vocabulary
Contains the vocabulary meta model, which is part of the previous results from OPENCOSS CCL
(Common Certification Language).

• org.opencert.sam.vocabulary.edit
The edit plugin includes adapters that provide a structured view and perform command-based
edition of the model objects. It contains the CCL vocabulary meta model respective the related
EMF based tree editor and GMF based graphical editor to create and edit vocabulary models.

• org.opencert.sam.vocabulary.editor
This plugin provides the user graphical interface to view instances of the model using an EMF
based tree editor and GMF based graphical editor to create and edit vocabulary models.

In addition, the following plugins are necessary to manage assurance project and to handle the
corresponding evidences:

• org.opencert.apm.assuranceassets
In this plugin, the assurance assets metamodel is defined and stored, and the Java implementation
classes for this model are generated.

• org.opencert.apm.assuranceassets.edit
The edit plugin includes adapters that provide a structured view and perform command-based
edition of the assurance assets model objects.

• org.opencert.evm.evidspes
In this plugin, the evidence metamodel is defined and stored, and the Java implementation classes
for this model are generated.

• org.opencert.evm.evidspec.edit
The edit plugin includes adapters that provide a structured view and perform command-based
edition of the model objects.

• org.opencert.infra.properties
This plugins contains the definition of the Property metamodel, and the Java implementation
classes for this model.

• org.opencert.infra.properties.edit
In relation with the edit plugin for evidence, this plugin contains a provider to display the model in
a user interface.

Figure 4 illustrates the list of plugins described above.

 AMASS Prototype for multi-concern assurance (b) D4.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 22 of 45

Figure 4. Assurance Case Specification plugins

3.2 EPF-Composer Tool

3.2.1 Description of Realized Features
For AMASS, no specific features were realized in EPF-C, but the original tool was used as it is available on
http://www.eclipse.org/epf/composer_architecture/. In addition, detailed documentation can be found on
this web site. In AMASS WP4, EPF-C is used for creating and tailoring the project-specific assurance
workflow model starting from a standard-specific model.

3.2.2 Source Code / Interface Description
EPF Composer is a publicly available tool operating on the open UMA process metamodel format. It is part
of the AMASS Core platform but the software has not been developed within AMASS.

3.3 CHESS Tool

3.3.1 Description of Implemented Features
As introduced in section 2.2.3.1, CHESS modelling language has been extended to allow the decoration of
contract w.r.t. the concern addressed by the contract itself. In the CHESS profile for contract specification,
the information about the concern is attached to the FormalProperty entity (Figure 5), the latter
representing a (UML) constraint that can play the role of assumption or guarantee property of a given
contract. In this way, it is possible for the user to decorate the contract with information related to the
concern addressed by the contract itself (e.g. safety, security, performance).

http://www.eclipse.org/epf/composer_architecture/

 AMASS Prototype for multi-concern assurance (b) D4.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 23 of 45

Figure 5. Contract profile supporting modelling of concerns

CHESS functionality has been extended with an Argument Generator plugin that utilises the assurance and
concern specific information attached to the contracts and facilitates generation of argumentation
fragments for each component in the system model. As the different contracts and related assurance
information are concern specific, the Argument Generator builds concern-specific argument-fragments.

3.3.2 Source Code Description
The CHESS modelling language extension presented in the previous section has been implemented in
Eclipse by extending the CHESS UML profile for contract specification, in particular by using the support
available in Papyrus for what regards the modelling of UML profiles. Then Java code representing the
profile implementation has been automatically (re)generated starting from the UML profile definition by
using Eclipse EMF2 facilities. The obtained Java code has been embedded in a dedicated plugin to allow the
usage of the CHESS profile for contract specification while modelling with the Papyrus/CHESS editor.

The Argument Generator functionality presented in the previous section has been implemented as an
eclipse plugin. The source code structure is presented in Figure 6. The plugin first prompts the selection of
the OCRA analysis context used as the source of the CHESS system model for which refinement analysis
has been performed. Then, Argumentation generation dialog is started to select the destination for the
generated argument-fragments. CHESSContract2OpencertArgumentGenerator.java performs the
information extraction from the CHESS model and argumentation creation in the selected assurance case
on the CDO repository.

2 https://www.eclipse.org/modeling/emf/

https://www.eclipse.org/modeling/emf/

 AMASS Prototype for multi-concern assurance (b) D4.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 24 of 45

Figure 6. Argument Generator plugin source

3.4 WEFACT Tool

3.4.1 Description of Implemented Features

WEFACT for Multi-concern Activities
WEFACT implements a workflow for assurance activities of various kinds, like analyses, design activities,
testing, verification, and many others. These assurance process activities can be safety-oriented, security-
oriented or performance-oriented, and they can as well address any other quality attribute. WEFACT
allows to deliberately combine such quality-attribute-oriented activities in parallel or in sequential order.
This allows, even in the absence of combined multi-concern-engineering tools, a defined structure of co-
engineering processes. As an example, WEFACT can be configured to combine a safety analysis-oriented
HARA tool with a security-oriented TARA tool, thus implementing safety-security-co-analysis with separate
tools.

3.4.1.1 Structure of WEFACT

The goal of WEFACT is to support the complete engineering lifecycle of safety and or security relevant
systems based on pre-defined processes. To achieve this goal every project in WEFACT contains
Requirements, Processes and Workflow Tools.

Requirement:
Requirements are defined as the entities needed to achieve the objectives of the project. Requirements
can be structured in different levels, where a top-level Requirement can be seen as the sum of its sublevel
Requirements. Once all sublevel Requirements are fulfilled, the top-level Requirements enter the state of
completion. A Requirement can hold a connection to predefined processes. If all processes are executed
successfully, the Requirement’s status changes to “fulfilled”.

Process:

 AMASS Prototype for multi-concern assurance (b) D4.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 25 of 45

Processes describe the steps that need to be conducted. The principal for the structure of Processes
conforms to the structure of the Requirements mentioned earlier. Top-level Processes consist of sublevel
Processes and the top-level Process reaches the status Successful once all sub-processes have been
executed without errors. Each Process can be linked to one or more Requirements. Moreover, a Workflow
Tool can be associated to a certain Process. This way the Process becomes an executable which uses
existing input and produces new output. This output can serve as input for subsequent Processes.

Workflow Tool:
A Workflow Tool represents an application or component that can be addressed via URL. By defining
Workflow Tools inside WEFACT, these applications and components can be directly invoked. Solely type for
the Workflow Tool, the path to the corresponding executable and some input arguments need to be
specified.

3.4.1.2 Integrated process execution

One of the main features of WEFACT is the option to execute processes directly from the application.
Workflow Tools can be linked to multiple Processes in the workflow. Through this connection a process
becomes equivalent to an executable.

WEFACT supports different types of process execution, manual and automatic. While manual tools require
the user to save the results to a specific location, automatic tools return the results that are consequently
evaluated and stored. The outputs of the executed processes are stored in a centralized SVN.

After the evaluation of the Process Result, the status of the executed Process and associated Requirements
is modified.

Figure 7 shows the WEFACT Activity Diagram.

Figure 7. WEFACT Activity Diagram

 AMASS Prototype for multi-concern assurance (b) D4.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 26 of 45

3.4.1.3 Centralized SVN Storage

The biggest advantage of storing artifacts on an SVN is the fact that every participant is granted access to
the created evidence by remote access/remotely. Project partners work on the same corporate set of
artifacts that allows all partners to work collectively on a common solution rather than on independent
ones.

3.4.1.4 EPF Import

A common approach to create a process based workflow is the utilization of the Eclipse Process
Framework Composer EPF-C [9]. EPF-C allows the user to specify a custom workflow and additional
artifacts that are integrated into the workflow. These workflows can be exported as XML file.

WEFACT is capable of importing these XML files and translates the provided content into WEFACT Process
Structure. Afterwards the imported workflow can be displayed in WEFACT, the created Processes may be
linked and carried out.

3.4.2 Interface Module Description
WEFACT is an Eclipse application developed under the Eclipse-RCP. WEFACT implements an assurance
workflow based on a project specific process model previously instantiated in EPF-C. The resulting UMA-
compliant format is part of the CACM and EPF-C is part of the AMASS core platform.

WEFACT imports this UMA model and derives the WEFACT-specific execution model from EPF-C. Ex-post
modifications of the originally imported process model within WEFACT are possible but it is recommended
that these changes remain minimal. A Re-import of the changes in WEFACT into the UMA process model
created with EPC-C is currently not foreseen.

WEFACT can treat process requirements (coming e.g. from a functional safety standard) as well as product
requirements (functional and non-functional requirements related to user requirements as well as safety
and security requirements to the product as defined during the HARA/TARA lifecycle phase). In order to
enable WEFACT to control the entire assurance workflow, WEFACT must get all aforementioned
requirements in order to operate on the full set of requirements. It has to be mentioned that usually not
all requirements treated in WEFACT assurance activities are necessarily directly referenced in assurance
case arguments; especially test cases will rather be referenced in a test result document, which is cited in a
verification and validation report. The appropriate preparation of this verification/validation report is a
process requirement, whose proven and appropriate preparation provides the evidence for a respective
process argument instance. As a consequence, not all WEFACT results put into evidence model instances
need to be linked to assurance case solutions.

The following Figure 8 shows an example for the relation between WEFACT results and the CACM in case
all V&V activities are referenced as GSN solutions in the Argumentation trees of the Assurance Case.

 AMASS Prototype for multi-concern assurance (b) D4.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 27 of 45

Figure 8. Relation between WEFACT low level activity results and the CACM

An Alternative is to have all evidence model instances linked to solutions from SACM arguments; in this
case, individual V&V activities must be grouped if only one argument solution applies to them. Figure 9
shows graphically an example for the respective relation.

Figure 9. Relation modelled between WEFACT activity results on high level and the CACM evidences

More deeply staged process structures can be devised and are also possible from WEFACT side. EPF-C,
however, supports only a maximum of three layers (package=phase, task, and step), thus limiting the
applicability of such approaches in EPF-C context.

In AMASS, the argumentation for the assurance case can be manually created by means of the OpenCert
Assurance Case Editor, which operates on the project specific instance of the Structured Assurance Case

software
test tool1

V&V
activity

V&V
activity

process
verification

argument
model

instance

evidence
model

instance1

software
test tool2

V&V
activity

evidence
model

instance2
solution 1

solution 2

Argument modelled for entire verification plan[s]

.
.

test result
document1

verification
report

test result
document2

software
test tool1

V&V
activity

V&V
activity

process
verification

evidence
model

instance2

argument
model

instance

evidence
model

instance1

software
test tool2

V&V
activity

evidence
model

instance3

solution 1
solution 2

solution 3

Argument modelled for each individual assurance activity

.
.

.

 AMASS Prototype for multi-concern assurance (b) D4.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 28 of 45

Metamodel SACM, which is linked with the GSN solutions for these arguments in the respective evidence
model instance.

WEFACT provides evidences per requirement, so each evidence in the SACM instance must be traceable to
a requirement. WEFACT supports also the creation of requirements, WEFACT is further able to import
requirements from a DOORS 9.6 database and, in a future version, to import ReqIF data and requirements
from the XML file created by Papyrus from an UML Requirements Table.

A standard reference (RefStandards) pointing to a clause in e.g. a Functional Safety Standard is not
provided in WEFACT, an implementation in the EPF-based UMA process model is basically possible in
future versions.

Figure 10 shows the WEFACT Metamodel with exception of the links, which are explained separately.

Figure 10. The WEFACT Metamodel

In the following, syntax and semantics of the classes and attributes are explained in detail.

WefactObject
ait.ac.at.rcp.wefact.model.types

• id: long
• name: String
• description: String

A WefactObject represents the WEFACT base class and need not be reflected in the assurance model
instance. All WEFACT classes are derived from it.

WefactProject
ait.ac.at.rcp.wefact.model.types

• svnPath: String
• requirementObjectList: List<RequirementObject>
• processObjectList: List<ProcessObject>
• workflowToolList: List<WorkflowTool>

 AMASS Prototype for multi-concern assurance (b) D4.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 29 of 45

In terms of AMASS, a WefactProject represents an assurance project and comprises all project specific
artefacts and model instances relevant to WEFACT. It is associated with

• a path in the svn (svnPath), where the artefacts of the project are stored,
• the list of requirements (requirementObjectList), for which V&V activities are provided in WEFACT,
• the V&V activities [to be] processed in WEFACT (processObjectList), and
• the tools associated to V&V activities and called by WEFACT (workflowToolList).

The WefactProject mapping to the CACM is depicted in the following table:

Table 6. WefactProject mapping

WEFACT CACM comment
element model element

svnPath n/a n/a This is the SVN base path where the project
repository is located. There is no directly
corresponding element in CACM. The
concrete SVN (etc.) locations of artefacts are
individually given in the associated Resource
.location of the ManagedArtefact instances.

requirementObjectList a) process
requiremt.&toplevel
prod.req.:UMA
metamodel
b) basic product req.:
Component MM

task, work
product

Requirement

The requirements associated with the
assurance project. The list contains toplevel
as well as sub requirements, process and
product requirements.
Details are explained in the section
“RequirementObject” further below.

processObjectList UMA metamodel task, work
product

The V-Plans and the V&V activities within
the assurance project.

workflowToolList SACM Artefact
Metamodel

Technique

RequirementObject
ait.ac.at.rcp.wefact.model.types

• linkedProcessObjectList: List<ProcessObject>
• subRequirementList: List<RequirementObject>
• workflowlevel: int
• deadline: Date
• workflowStatus: WorkflowStatus
• responsible: String

Product requirements for WEFACT can come from different sources, e.g. the CACM. I particular, they can
be:

• imported from a DOORS database,
• imported from a ReqIF file (in ARTA iteration 3),
• imported from a .xls file exported from the Papyrus UML Requirements table,
• imported from and exported into the CACM Component Metamodel,

and finally they can be
• created in WEFACT.

Process requirements for WEFACT are usually:

• imported from the project-specific instantiation of the process model (created with EPF-C), which
corresponds to the CACM Process Metamodel instance.

and, like product requirements, they can also be
• created in WEFACT.

 AMASS Prototype for multi-concern assurance (b) D4.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 30 of 45

Requirements in WEFACT can be nested, i.e. a top level requirement can be subdivided into sub-
requirements, which can be subdivided again and so forth. The evidence for the fulfilment of a
requirement which has sub-requirements is composed by WEFACT from the fulfilment of these sub-
requirements.

The RequirementObject mapping to the CACM is depicted in the following table:

Table 7. RequirementObject mapping

WEFACT CACM comment
element model element

linkedProcessObjectList SACM Artefact
Metamodel

Artefact,
Activity

Artefacts and Activities can be linked
together. The same principle applies to
WEFACT Requirements and Processes.

subRequirementList Component
Metamodel

 The Component Metamodel does not
contain a concept for nested requirements.
So, as for product requirements, only lowest
level WEFACT requirements can be mapped
to.

workflowlevel Internal only usage in WEFACT.
deadline No representation in CACM. (1)
workflowStatus ExecutedProcess

Metamodel
Executed
activity

WEFACT e.g. fulfilled, not fulfilled.
The semantics is that an instance of
ExecutedActivity is created by WEFACT if the
WEFACT activity has been successfully
completed. If the respective WEFACT V-Plan
or V&V activity becomes invalid by changes
in the corresponding requirement then the
(thereby invalidated) Executed Activity
instance is deleted. (2)
If, in turn, the involved Managed Artefact
(e.g. SW-module) changes, a new instance of
the ManagedArtefact for the new version is
created, and the history of the
ExecutedActivities remains.

responsible ExecutedProcess
Metamodel

Participant Link to CACM roles not yet provided with the
current WEFACT version, currently only
individual persons.

(1) ExecutedProcessModel . ExecutedActivity . startTime/endTime represent the duration of the

process execution already performed, not a deadline for a planned future activity.
(2) Executed activities

WorkflowTool
ait.ac.at.rcp.wefact.model.types

• subWorkflowToolList: List<WorkflowTool>
• workflowlevel: int
• toolPath. String

A Workflow tool (e.g. a test tool) in WEFACT can be started automatically from the command line with the
string given in toolPath.

The WorkflowTool mapping to the CACM is depicted in the following table:

 AMASS Prototype for multi-concern assurance (b) D4.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 31 of 45

Table 8. WorkflowTool mapping

WEFACT CACM comment
element model element

subWorkflowToolList Represents the different versions of workflow
tools that may be requirement for certain
processes.

workflowlevel n/a Internal, only usage in WEFACT.
toolPath Managed Artefact Resource.location,

Resource.format
In order for WEFACT to find and execute a tool,
the path to the tool must be specified.

ProcessObject
ait.ac.at.rcp.wefactmodel.types

• linkedRequirementObjectlist: List<RequirementObject>
• subProcessObjectList: List<ProcessObject>
• workflowlevel: int
• input: String
• output. String
• workflowTool: VVorkflowTool
• deadline: Date
• workflowStatus: WorkflowStatus
• responsible. String

A ProcessObject can have sub-ProcessObjects. The top-level ProcessObject (without children) corresponds
to the WEFACT V-Plan.

The ProcessObject mapping to the CACM is depicted in the following table:

Table 9. ProcessObject mapping

WEFACT CACM comment
element model element

linkedRequirementObjectlist SACM Artefact
Metamodel

Activity, Artefact The requirements proven by this
V&V activity / V-Plan.

subProcessObjectList The V&V activities contained in this
V-Plan.

workflowlevel Internal only usage in WEFACT.
input Managed Artefact Resource.location The SVN sub-directory with the

input files.
output Managed Artefact Resource.location The SVN sub-directory with the

output files.
workflowTool ExecutedProcessModel

Managed Artefact

UsedTechnique

Resource.location,
Resource.format

Reference to the WEFACT
WorkflowTool object.

deadline n/a n/a WEFACT specific, no representation
in CACM.

workflowStatus n/a n/a e.g. ready, success, failed; no
representation in CACM.

responsible ExecutedProcess
Metamodel

Participant This references a person (role
model not yet implemented in
WEFACT, link to CACM roles not yet
provided).

 AMASS Prototype for multi-concern assurance (b) D4.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 32 of 45

WEFACT Links
Links are used to represent traceability between artefacts in WEFACT like RequirementObjects,
ProcessObjects and WorkflowTools. They are not 1:1 mapped between the CACM instances and WEFACT
but the Open Source interface module controls the establishment of the respective corresponding
traceability between the objects in the CACM and those in WEFACT.

Restrictions
In the following, the restrictions applying to the WEFACT edition in the 2nd iteration of the AMASS platform
are stated:

• The data flow is yet limited to requirements import (no re-export of modified requirements to the
UMA process model).

• Consistency of WEFACT activities results with evidence model instances has to be input manually.
Or the requirements in WEFACT have to be restricted to a specific structure:

o Evidences are in a 1:1 mapping with WEFACT top level requirements.
o Nested (sub-)requirements can be used to subdivide the assurance steps into those

activities, which, after successful execution, eventually yield the evidence.
• What is needed for the latter solution is a relation between

o the activity in the project specific instance of the assurance process model created in EPF-
C, and

o the evidence metamodel instance associated to the solution in the argument metamodel
instance.

• Requirements of type contracts/claims as defined in the contract view of the Component
Metamodel are not natively supported in the current WEFACT edition.

• The Component Metamodel is currently not supporting sub-requirements; therefore, WEFACT can
only map the lowest level of WEFACT requirements in this sub-model. This is, however, basically
sufficient as the real assurance steps happen on this lowest level, and higher levels of (compound)
requirements are not directly subject to assurance steps.

WEFACT-CACM/ARTA Workflow

Here, a short description of the WEFACT workflow is given
• Inputs:

o Process model, tailored to the project from EPF-C (in UMA notation)
o Requirements - read from

• DOORS, or
• ReqIF, or
• from CACM, or
• created in WEFACT

o Assurance Objects
• Created on the WEFACT user interface:

o potentially create requirements,
o potentially alter the project-specific process model,
o Create and run Assurance Activities with tools assigned in WEFACT

• Outputs:
o Assurance output files (e.g. test result lists , FMEA sheet, …) (stored in SVN).
o A statement “PASS” or “FAIL” (within WEFACT, propagated to the requirement).

 AMASS Prototype for multi-concern assurance (b) D4.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 33 of 45

4. Conclusion
The first (Core) prototype, described in D4.4 [28], contained functions for Dependability Assurance
Modelling, namely the Assurance Case Editor supporting "Assurance case specification”, and the AMASS
Core edition of CHESS supporting contract modelling with OCRA.

This deliverable described the WP4 related part of the second AMASS prototype iteration (P1) and
contains implementations or tools, respectively, covering all functional blocks related to WP4. Not all tools
are yet integrated with the AMASS platform and the remaining ones need, for the time being, manual
integration in P1. Nevertheless, the full range of functional blocks has been implemented, and for the
remaining ones, integration is planned for the third prototype P2.

For Dependability Assurance Modelling, enhanced functions are now available in the (integrated)
Assurance Case Editor and by integrating EPF in the AMASS platform.

Contract-based Multi-Concern Assurance is also supported by integrated tools: Additional respective
features of the Assurance Case Editor, and new multi-concern contract features in the CHESS integrated
framework provide these functions.

In iteration P1, the third functional block of AMASS WP4, System Dependability Co-analysis/Assessment, is
mostly supported by external, not yet integrated tools: Medini Analyzer, Safety Architect, and – belonging
equally to WP3 and WP4 - the tool AMT2.0 (Analogue Monitoring Tool).

WEFACT takes a specific positionThis tool is integrated in AMASS in iteration P1 and controls the execution
of assurance process steps. For WP4 the main feature is to enable combined safety and security analyses
by coupling separate analysis tools for both quality attributes. However, WEFACT is capable of controlling
assurance processes of any kind and their dependencies.

One of the proposed tools, FMVEA, is currently (Oct. 2017) being re-developed as an Eclipse RCP
application. It will be available in the third iteration P2 and then integrated with the AMASS platform, too.

 AMASS Prototype for multi-concern assurance (b) D4.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 34 of 45

5. Outlook and Next Steps
For the third iteration of the AMASS platform an extension of the prototype for multi-concern assurance
with workflow functions is planned in collaboration with WP6 by enhancing the tool WEFACT [21] with
capabilities supporting process based argument generation.

Another multi-concern assurance tool is planned to be integrated in the third prototype iteration (P2), the
Eclipse RCP application FMVEA (Failure Modes, Vulnerabilities and Effects Analysis), which is currently
being developed based on a prior incomplete prototypic implementation. FMVEA allows combined safety
and security analysis based on empiric data.

A third external tool is expected to be integrated in the third iteration, namely Medini Analyzer, which in a
prototypic version will support combined safety and security analysis including the generation of combined
Fault and Attack trees.

According to the requirements defined in D2.1 [16], the functionality in Table 10 shall be implemented in
the third iteration (P2).

 AMASS Prototype for multi-concern assurance (b) D4.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 35 of 45

Table 10. Functionality to be implemented in the third iteration (P2) of the AMASS platform

Function name Description Requirement

Argumentation architecture The system shall be able to edit an argument
architecture associated with a system and/or
component.

WP4_ACS_002

Semi-automatic generation
of product arguments

The system shall reduce efforts of manual creation of
product-based assurance case arguments. This could
be done by enabling semi-automatic generation of
product-based arguments-fragments.

WP6_PPA_002

Assurance case status report The system shall provide the capability for querying
the assurance case in order to detect: 1) undeveloped
goals, and 2) fallacies.

WP4_ACS_011

Assurance case structure
navigation

The system shall let the user browse the assurance
case structure.
Note: in case GSN-like modelling elements are used,
this requirement may be translated as follows: The
system shall let the user navigate from top-level
assurance case overview to the nested assurance case
fragments that are encapsulated within modules.

High-level
requirement 4.7

Provide guidelines for
argumentation patterns

The system shall be able to provide guidelines to use
and instantiate argument patterns (concerning safety
and security) presented in the actual assurance case.

WP4_ACS_004

Compliance map generation
from argument evidences

The system shall be able to detect when a claim about
a requirement from a standard (compliance claim) is
supported by an evidence and generate the
compliance indicator in a transparent way.

WP6_CM_010

Formal validation of
assumptions and context
when arguments modules
are connected

The system shall be able to indicate the validation of
assumptions contained in argument modules every
time the modules are connected and/or modified.

WP4_ACS_012

Provide quantitative
confidence metrics about an
assurance case in a report

The system could produce a status report indicating a
quantitative confidence metric for the assurance case.

WP4_ACS_013

Provide guidelines for
argumentation

The system shall be able to provide guidelines about
the assurance case edition based on the
system/component development phase status.

WP4_ACS_006

The AMASS tools must
support specification of
variability at the
argumentation level

The system shall provide the capability for modelling a
multi-concern and muti-context assurance case.
Note: variability modelling could be a solution. If GSN-
like modelling elements are considered, the diamond
for representing alternatives as well as the octagon
for extrinsic variability could be considered.

WP4_CMA_001

Argumentation
import/export

The system shall be able to import/export
argumentations to SACM.

WP4_ACS_007

The WP6 related requirements are to be implemented in collaboration with WP6.

 AMASS Prototype for multi-concern assurance (b) D4.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 36 of 45

Abbreviations and Definitions
For the convenience of the reader, the following table also contains definitions common to the whole
AMASS project which are contained in the AMASS glossary (deliverable D2.2 [17]).

Abbreviation Explanation
AMT Analog Monitoring Tool (a property-based monitoring tool for analog systems)

ANP Analytical Network Process (Approach for multi-concern trade-off analysis based on
Markov models)

API Application Programming Interface
ARTA AMASS Reference Tool Architecture
ATA Attack Tree Analysis
BVR Base Variability Resolution (Language for building SPL)
CACM Common Assurance and Certification Metamodel
CCL Common Certification Language
CDO Connected Data Object
CHESSML CHESS Modelling Language
CPS Cyber-Physical Systems
DOORS Dynamic Object-Oriented Requirements System
DSL Domain-Specific Language
ECSEL Electronic Components and Systems for European Leadership
EMF Eclipse Modelling Framework
EPF-C Eclipse Process Framework - Composer
ETL Epsilon Transformation Language
FLA Failure Logic Analysis
FMEA Failure Modes and Effects Analysis
FMVEA Failure Modes, Vulnerabilities and Effects Analysis
FPTC Failure Propagation Transform Logic
FTA Fault Tree Analysis
GMF Graphical Modeling Framework
GSN Goal Structured Notation
HARA Hazard Analysis and Risk Assessment
ISO International Organization for Standardization

OCRA Othello Contracts Refinement Analysis (a tool for checking refinement of
contracts specified in a linear-time temporal logic)

OMG Object Management Group
OSLC Open Services for Lifecycle Collaboration

RCP Rich Client Platform - an Eclipse add-on framework allowing the development of Eclipse
applications

ReqIF Requirements Interchange Format (XML based standard of OMG)
SACM Structured Assurance Case Metamodel
SBVR Semantics of Business Vocabulary and Rules
SiSoPL Security-informed Safety-oriented Process Lines
SPL Software product lines
SVN Subversion
SW Software

 AMASS Prototype for multi-concern assurance (b) D4.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 37 of 45

SySML Systems Modelling Language
TARA Threat Analysis and Risk Assessment
TRL Technology Readiness Level
UMA Unified Method Architecture
UML Unified Modelling Language
URL Uniform Resource Locator
V&V Verification and Validation
WEFACT Workflow Engine for Analysis, Certification and Test
WP Work Package
XML eXtensible Markup Language
Xtext open-source software framework for developing programming languages and DSLs

 AMASS Prototype for multi-concern assurance (b) D4.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 38 of 45

References

[1] The OPENCOSS project http://www.opencoss-project.eu/
[2] The SafeCer project http://www.safecer.eu/
[3] OMG - Semantics of Business Vocabulary and Rules™ (SBVR™) version 1.3, 2015

http://www.omg.org/spec/SBVR/1.3
[4] BVR Base Variability Resolution – implementation of OMG CVL (Common Variability Language)

http://www.omgwiki.org/variability/doku.php .
[5] OMG - SACM - Object Management Group version 1.1, 2015 http://www.omg.org/spec/SACM/1.1
[6] Origin Consulting GSN Community Standard Version 1 (2011)
[7] Graphical Modelling Project (GMP) http://www.eclipse.org/modeling/gmp/
[8] Eclipse Modelling Framework (EMF) https://www.eclipse.org/modeling/emf/
[9] Eclipse Process Framework (EPF) http://www.eclipse.org/epf/
[10] Epsilon Transformation Language http://www.eclipse.org/epsilon/doc/etl/
[11] Xtext http://www.eclipse.org/Xtext/
[12] Eugenia http://www.eclipse.org/epsilon/doc/eugenia/
[13] CDO http://www.eclipse.org/cdo/
[14] OSLC http://open-services.net/specifications/
[15] CHESS https://www.polarsys.org/chess/publis/CHESSMLprofile.pdf
[16] AMASS D2.1 Business cases and high-level requirements, 28 February 2017.
[17] AMASS D2.2 AMASS Reference Architecture (a), 30 November 2016.
[18] AMASS D2.3 AMASS reference architecture (b), 30 September 2017.

[19] AMASS source code https://services.medini.eu/svn/AMASS_source/3
[20] AMASS Platform – Prototype Core User Manual https://services.medini.eu/svn/AMASS_collab/WP-

transversal/ImplementationTeam/PrototypeP1/AMASS_Prototype1_UserManual.docx Version 0.1
(2017)4

[21] WEFACT http://www.ait.ac.at/en/research-fields/verification-validation/methods-and-tools/wefact/
[22] AMASS D1.1 Case studies description and business impact, 30 November 2016
[23] Richard Hawkins, Software Contribution Safety Argument Pattern (2009)

http://www.goalstructuringnotation.info/archives/234
[24] AMASS D3.2 Design of the AMASS tools and methods for architecture-driven assurance (a), 30th

June 2017
[25] AMASS D3.4 Prototype for Architecture-Driven Assurance (a), 23 Dec. 2016
[26] AMASS D4.2 Design of the AMASS tools and methods for multi-concern assurance (a), 30 June 2017.
[27] AMASS D4.3 Design of the AMASS tools and methods for multi-concern assurance (b), planned

submission 31 Jan. 2018
[28] AMASS D4.4 Prototype for multi-concern assurance (a), 31 January, 2017
[29] AMASS D4.7 Methodological guide for multiconcern assurance (a), December 2017

3 The AMASS SVN code repository is open to AMASS partners with the same credentials as the SVN document
repository. In case that people outside the project need access, please contact the AMASS Project Manager
(huascar.espinoza@tecnalia.com)
4 The current User Manual is a draft document; the final version of the manual will be integrated in D2.5 AMASS User
guidance and methodological framework (m31).

http://www.opencoss-project.eu/
http://www.safecer.eu/
http://www.omg.org/spec/SBVR/1.3
http://www.omgwiki.org/variability/doku.php
http://www.omg.org/spec/SACM/1.1
http://www.eclipse.org/modeling/gmp/
https://www.eclipse.org/modeling/emf/
http://www.eclipse.org/epf/
http://www.eclipse.org/epsilon/doc/etl/
http://www.eclipse.org/Xtext/
http://www.eclipse.org/epsilon/doc/eugenia/
http://www.eclipse.org/cdo/
http://open-services.net/specifications/
https://www.polarsys.org/chess/publis/CHESSMLprofile.pdf
https://services.medini.eu/svn/AMASS_source/
https://services.medini.eu/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeP1/AMASS_Prototype1_UserManual.docx
https://services.medini.eu/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeP1/AMASS_Prototype1_UserManual.docx
http://www.ait.ac.at/en/research-fields/verification-validation/methods-and-tools/wefact/
http://www.goalstructuringnotation.info/archives/234

 AMASS Prototype for multi-concern assurance (b) D4.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 39 of 45

[30] AMASS D6.2 Design of the AMASS tools and methods for intra/cross domain reuse (a), 31 October
2017.

[31] AMASS D6.5 Prototype for cross/intra-domain reuse (b), December 2017
[32] WEFACT Executable

https://services.medini.eu/svn/AMASS_collab/WP-
transversal/ImplementationTeam/PrototypeP1/WEFACT.exe

[33] WEFACT user manual and Installation Instructions, 2017
https://services.medini.eu/svn/AMASS_collab/WP-
transversal/ImplementationTeam/PrototypeP1/WEFACT_UserManual.docx
https://services.medini.eu/svn/AMASS_collab/WP-
transversal/ImplementationTeam/PrototypeP1/WEFACT_Installation_Instructions.docx

[34] L. Montecchi and B. Gallina. SafeConcert: a Metamodel for a Concerted Safety Modeling of Socio-
Technical Systems. 5th International Symposium on Model-Based Safety and Assessment (IMBSA),
Trento, Italy, September, 2017.

[35] SysML v1.4 Specification Release, September, 2015. http://www.omgsysml.org/specifications.htm
[36] B. Gallina, E. Sefer and A. Refsdal, "Towards Safety Risk Assessment of Socio-Technical Systems via

Failure Logic Analysis," 2014 IEEE International Symposium on Software Reliability Engineering
Workshops, Naples, 2014, pp. 287-292.

[37] M. Wallace. Modular architectural representation and analysis of fault propagation and
transformation, vol. 141, no. 3, pp. 53–71, 2005.

[38] CONCERTO Deliverable D3.3 November 2015 Design and implementation of analysis methods for
non-functional properties – Final version

[39] B. Gallina, Z. Haider , A. Carlsson. Towards Generating ECSS-compliant Fault Tree Analysis’Results via
ConcertoFLA. Proceedings of the 2nd International Conference on Reliability Engineering (ICRE),
Milan, Italy, December 20-22, 2017.

[40] https://www.polarsys.org/chess/publis/CHESSMLprofile.pdf
[41] http://www.omg.org/spec/MARTE
[42] L. Grunske, J. Han, “A Comparative Study into Architecture-Based Safety Evaluation Methodologies

using AADL’s Error Annex and Failure Propagation Models”, 11th IEEE High Assurance Systems
Engineering Symposium, pp. 283–292, Nanjing, China, 3-5 Dec., 2008.

[43] https://services.medini.eu/svn/AMASS_collab/WP4/D4.5_in_progress/WP4-
Requirements_Iteration2

[44] https://services.medini.eu/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeP1/
AMASS_Prototype1_UserManual.docx

https://services.medini.eu/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeP1/WEFACT.exe
https://services.medini.eu/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeP1/WEFACT.exe
https://services.medini.eu/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeP1/WEFACT_UserManual.docx
https://services.medini.eu/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeP1/WEFACT_UserManual.docx
https://services.medini.eu/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeP1/WEFACT_Installation_Instructions.docx
https://services.medini.eu/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeP1/WEFACT_Installation_Instructions.docx
http://www.omgsysml.org/specifications.htm
https://www.polarsys.org/chess/publis/CHESSMLprofile.pdf
http://www.omg.org/spec/MARTE
https://services.medini.eu/svn/AMASS_collab/WP4/D4.5_in_progress/WP4-Requirements_Iteration2
https://services.medini.eu/svn/AMASS_collab/WP4/D4.5_in_progress/WP4-Requirements_Iteration2
https://services.medini.eu/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeP1/AMASS_Prototype1_UserManual.docx
https://services.medini.eu/svn/AMASS_collab/WP-transversal/ImplementationTeam/PrototypeP1/AMASS_Prototype1_UserManual.docx

 AMASS Prototype for multi-concern assurance (b) D4.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 40 of 45

Appendix A: Additional CHESS Functionalities

Modelling dependability aspects

As it was documented in D3.2 [24], CHESS implements the conceptual metamodel called SafeConcert [34].

SafeConcert enables dependability architects to model dependability’s information necessary to conduct
dependability analysis. SafeConcert is a subset of CHESSML (which in turn is an extension of SySML [35]),
the meta-model used in CHESS toolset to enable component-based systems design.

ConcertoFLA [36] allows users (system architects and dependability engineers) to decorate component-
based architectural models (specified using CHESSML) with dependability-related information, execute
Failure Logic Analysis (FLA) techniques, and get the results back-propagated onto the original model.
Different FLA techniques are available in the literature [42], and can be used at the early stages of the
design phase to achieve a robust architecture with respect to linear relationships. ConcertoFLA builds on
top of Failure Propagation Transform Logic (FPTC) [37]. Similar to FPTC, ConcertoFLA is a compositional
technique to qualitatively assess the dependability of component-based systems. ConcertoFLA partially
combines and automatizes traditional safety analysis techniques (i.e., FMEA and FTA). ConcertoFLA allows
users to calculate the behaviour at system-level, based on the specification of the behaviour of individual
components. During the analysis, ConcertoFLA calculates the failure propagation paths and produces their
representation according to the specifications of FlaMM meta model (see [38] for FlaMM structure and
corresponding XML Schema).

In ConcertoFLA terms, a component can act in four different possible ways (1) source of the failure thus
generating a failure due to internal fault, (2) sink of the failure thus avoiding the propagation of the
external fault (failure in input) through fault tolerance, (3) propagator of the failure, and (4) transformer of
the failure into a different type. ConcertoFLA rules are logical expressions, which specify the component’s
behaviour by describing the input/output relationship.

Within AMASS, an initial exploration for the exploitation of the failure propagation paths for the
generation of FTA was conducted. The work targeted Use Case 11 as a running example and was accepted
for publication [39].

In addition, an initial exploration for the exploitation of ConcertoFLA for enabling safety and security
analysis was conducted. Based on that exploration, the necessity of extending ConcertoFLA to include
failure types for the specialization of dependability threats emerged. The extension however can be done
at conceptual level only since ConcertoFLA already includes extension mechanisms and users can add
needed failure types. In D4.7 [29], methodological guidelines are provided in order to support the
exploitation of ConcertoFLA as it is. In D4.3 [26], a more in-depth exploitation of ConcertoFLA will be taken
into consideration, if needed, based on the evaluation of the second iteration of the AMASS prototype.

 AMASS Prototype for multi-concern assurance (b) D4.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 41 of 45

Semi-automatic generation of product arguments

The Argument Generator plugin is implemented in CHESS. It generates a set of argument-fragments from
the selected CHESS model and stores them in the corresponding destination assurance case in the CDO
repository stated in the OpenCert preferences. Components in the CHESS model are decorated with
contracts that are primarily used to verify that the model satisfies a particular requirement. The contract
check is performed in OCRA from CHESS. To assure that the requirement is satisfied with sufficient
confidence, we need to assure confidence in the contracts as well. Hence, we provided support in CHESS
for enriching the contracts with assurance information. Argument Generator uses that information and
creates an argument-fragment for each component and its related contracts. To support multi-concern
assurance, we have extended the contracts and requirements specification in CHESS with a concern
attribute to indicate that the particular contract/requirement is related to the selected concern. Based on
this information, we generate argument-fragments that are concern-specific by filtering the component
elements based on the concern tag. Currently, we indicated the concern in the name of the argument-
fragment file. However, we are searching for a way to capture the concerns in the argumentation
metamodel. The attached screenshots (Figure 11 - Figure 15) illustrate the usage of the Argument
Generator plugin. Further improvements of the generation are under way.

Figure 11. Initiating the argument-fragment generation (Step 1)

 AMASS Prototype for multi-concern assurance (b) D4.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 42 of 45

Figure 12. Selecting the source analysis context (Step 2)

 AMASS Prototype for multi-concern assurance (b) D4.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 43 of 45

Figure 13. Selecting the destination assurance case folder on the CDO repository (Step 3)

 AMASS Prototype for multi-concern assurance (b) D4.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 44 of 45

Figure 14. Generation successfully completed with argument-fragments for each block

 AMASS Prototype for multi-concern assurance (b) D4.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 45 of 45

Figure 15. An example of the generated argument-fragment

	Executive Summary 6
	1. Introduction 7
	2. Implemented Functionality 9
	2.1 Scope 9
	2.2 Implemented Requirements - Overview 9
	2.2.1 Requirements implemented in the Assurance Case Editor in OpenCert 13
	2.2.2 Requirements realized in EPF-Composer & BVR Tool 14
	2.2.3 Requirements implemented in CHESS 14
	2.2.4 Requirements implemented in WEFACT 15
	2.3 Installation and User Manuals 17
	2.3.1 Internal tools 17
	2.3.2 External tools 18
	3. Implementation Description 19
	3.1 Assurance Case Editor from OpenCert 19
	3.1.1 Description of Implemented Features 19
	3.1.2 Source Code Description 20
	3.2 EPF-Composer Tool 22
	3.2.1 Description of Realized Features 22
	3.2.2 Source Code / Interface Description 22
	3.3 CHESS Tool 22
	3.3.1 Description of Implemented Features 22
	3.3.2 Source Code Description 23
	3.4 WEFACT Tool 24
	3.4.1 Description of Implemented Features 24
	3.4.2 Interface Module Description 26
	4. Conclusion 33
	5. Outlook and Next Steps 34
	Abbreviations and Definitions 36
	References 38
	Appendix A: Additional CHESS Functionalities 40
	Executive Summary
	1. Introduction
	2. Implemented Functionality
	2.1 Scope
	2.2 Implemented Requirements - Overview
	2.2.1 Requirements implemented in the Assurance Case Editor in OpenCert
	2.2.2 Requirements realized in EPF-Composer & BVR Tool
	2.2.3 Requirements implemented in CHESS
	2.2.3.1 Modelling different concerns for system components
	2.2.3.2 Additional CHESS Functionalities

	2.2.4 Requirements implemented in WEFACT

	2.3 Installation and User Manuals
	2.3.1 Internal tools
	2.3.2 External tools

	3. Implementation Description
	3.1 Assurance Case Editor from OpenCert
	3.1.1 Description of Implemented Features
	3.1.2 Source Code Description

	3.2 EPF-Composer Tool
	3.2.1 Description of Realized Features
	3.2.2 Source Code / Interface Description

	3.3 CHESS Tool
	3.3.1 Description of Implemented Features
	3.3.2 Source Code Description

	3.4 WEFACT Tool
	3.4.1 Description of Implemented Features
	3.4.1.1 Structure of WEFACT
	3.4.1.2 Integrated process execution
	3.4.1.3 Centralized SVN Storage
	3.4.1.4 EPF Import

	3.4.2 Interface Module Description

	4. Conclusion
	5. Outlook and Next Steps
	Abbreviations and Definitions
	References
	Appendix A: Additional CHESS Functionalities

