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Executive Summary

This document is the final deliverable associated with the AMASS Task 3.4 Methodological Guidance for
Architecture-driven Assurance, which provides the methodological guide for the AMASS Architecture-Driven
Assurance approach. This deliverable represents an update of the AMASS D3.7 [30] deliverable released at
m20; several sections have been added or modified as summarized in “Appendix A: Document changes
respect to D3.7”. While D3.7 was based on the functionality supported by the second prototype (P1) of the
AMASS platform, this deliverable, D3.8, is based on the third and final version of the prototype (P2).

This document focuses on the techniques developed in WP3. It guides the users step by step in the usage of
the AMASS platform to support the architectural design of a system collecting modelling artefacts and the
related results of early validation, verification, and safety analysis to be used in the safety case. To have a
more general overview and guide for the AMASS approach, including the methods and techniques provided
by other WPs, the reader is referred to D2.5 “AMASS user guidance and methodological framework” [33].
Also, to have a more detailed description of specific functions, the reader is referred to the tool user manual,
which is included in the above-mentioned deliverable D2.5.

H2020-JTI-ECSEL-2015 # 692474 Page 10 of 145
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1. Introduction

Embedded systems have significantly increased in technical complexity towards open, interconnected
systems. The rise of complex Cyber-Physical Systems (CPS) has led to many initiatives to promote reuse and
automation of labor-intensive activities such as the assurance of their dependability. The AMASS project
builds on the results of two large-scale projects, namely OPENCOSS [49] and SafeCer [48], which dealt with
assurance and certification of software-intensive critical systems using incremental and model-based
approaches. In particular, SafeCer developed a generic component model and contract-based verification
techniques for compositional development and certification of CPS. These have been integrated in the CHESS
tool support [50]. The AMASS project consolidates and extends such support with a wider range of analysis
techniques for the system architecture and combines it with the OPENCOSS solutions for building an
assurance case. The resulting Architecture-Driven Assurance is further enhanced for multi-concern aspects
(in particular, the interplay between safety and security), for reuse of architectural patterns, and exploits tool
interoperability mechanisms to interact with external tools for modelling and analysis support.

AMASS Reference Tool Architecture

Multi-Concern Assurance (STO2)

Component ~ Module Assurance
AMASS Platform Basic Building Blocks Release  Case Development

WP4 WP5
System Componen Assurance Case Evidence
Specification Specification Product Engineering

Design Validation &
Verification

Development Quality
Management

Seamless Interoperability (STO3)

Figure 1. Architecture-Driven Assurance in relation to the other work packages
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Figure 1 provides a general overview of the different AMASS Scientific Technical Objectives (STOs) and how
they are implemented in the AMASS project by specific Work Packages (WPs). This document focuses on
methodology guidelines for Architecture-Driven Assurance and the related tools developed in WP3.

Thus, it defines a methodological guide to apply the Architecture-Driven Assurance approach, to use both its
conceptual aspects and its software tool support. It first provides an overview of the key concepts, such as
system architecture, contract-based design, early verification and validation, and model-based safety
analysis. Then, it details what Architecture-Driven Assurance means, the role of the key concepts in the
approach, and how the AMASS platform supports it. An overview of the tool architecture is given, in
particular of how the core component, CHESS, interacts with the external tools. In the rest of the document,
the term “tool”, when not more specifically defined by the context, refers to the AMASS platform (of which
CHESS is a core component).

This guide describes the methodology to follow, detailing the process steps and how to use the tool support.
The workflow is presented by means of activity diagrams or sequences of steps to follow, with details on how
to use the AMASS platform to perform each step. The steps are meant to give an example of usage of the
tool trying to cover all relevant features. The user is referred to the user manual, that is included as an Annex
of D2.5 [33], to get a deeper knowledge about the different options.

The guide uses simple case studies to concretely describe the approach. The material (more specifically, the
set of CHESS projects) of these case studies is released with the tool.
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2. Architecture-Driven Assurance Overview

2.1 Background

This section gives a brief description of the main concepts used in the guide. In each subsection, first, the
concept itself is briefly described, and, second, the related tool support is summarized. The reader is referred
to D3.3 “Design of the AMASS tools and methods for architecture-driven assurance (b)” [28] for further
details on these concepts.

2.1.1 System Architecture

As part of a model-based engineering approach to system development [60], the system architecture plays
an important role in the early phases of the system design. The system is first considered as a whole, defining
system requirements and boundaries. This initial level of architecture can fulfil the role of an “Item
Definition” according ISO 26262 [81]. The system architecture model is then defined to detail how the
different parts of the system are connected and interact to fulfil the system requirements. The system
architecture model is used to capture a variety of information: the internal hierarchical structure of the
system and its components, the system functions and component behaviours, and the component
interfaces, their connection and interaction. The model is used for early verification and validation, meant
here as model-based techniques to verify that (a certain part of) the model satisfies a higher-level
specification and to validate that the model captures what the designer has in mind. The system architecture
model is also used for allocation of the safety-related requirements identified during the safety analysis and
safety concept creation phases: it includes the safety mechanisms implemented in the system to reduce the
risk introduced by system failures, and the model of faults used to derive of the safety mechanisms and
assess their effectiveness.

The AMASS platform supports the modelling of the system architecture with SysML and UML diagrams for
what regards the modelling of the requirements (SysML Requirement diagrams), the internal hierarchical
structure of the system and its components (SysML Block Definition and Internal Block diagrams) and the
components behaviours (UML State Machine diagrams). Moreover, the CHESS modelling language
(CHESSML)! [61] provides means to extend the aforementioned diagrams to support the modelling of
dependability concerns and to apply the contract-based design, the latter introduced in the next Section
2.1.2.

2.1.2 Contract-Based Design

The challenges posed by the design of complex cyber-physical systems [36] pushed the research of contract-
based techniques for system design (e.g., [37][38][39][40]). The system architecture model is enriched with
expressions asserting the expected properties of the system, its components and environment. In order to
allow compositional reasoning, the property of a component may be restricted to its interface considering
the component as a black box (without constraining the internal variables of the component) and can be
structured into contracts, pairs of properties representing an assumption and a guarantee of the component:
an assumption is an assertion on the behaviour of the component environment, while a guarantee is an
assertion on the behaviour of the component provided that the entire set of assumptions holds. If
assumptions and guarantees are formal properties, which means they are specified in a formal language such
as some specific kind of temporal logic, the architectural decomposition can be verified by checking that the
contract refinement is correct: this consists of checking that, for all composite components, the contract of

1 CHESSML is implemented as UML, SysML and MARTE profile.
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the composite component is ensured by the contracts of the subcomponents — considering their
interconnection as described by the architecture - and that the assumption of each subcomponent is ensured
by the contracts of the other sibling subcomponents and the assumption of the composite component.

The contract specification can further be enriched by categorising contracts into strong and weak [82] to
allow for better support for specification of reusable components behaviour. Such components are intended
to work in different environments, and often exhibit environment-specific behaviours and assumptions. They
have also been proven useful for specifying different behaviours or levels of quality for different
configurations, operation modes or degradation levels, which can in particular help specifying safety
properties of Systems-of-Systems that reconfigure at runtime (e.g. vehicle platoons), as outlined in [72].

A strong contract, denoted by <A, G>, requires the environment to satisfy the assumption A so that the
component cannot be used in an environment violating A. On the contrary, a weak contract, denoted by <B,
H>, is equivalent to the strong contract <True, B => H>: the component can be used in all environments,
while the guarantee H is specific for the environments that satisfy B. In other words, strong contracts must
always hold (if their assumptions are violated, the behaviour of the system is completely undefined and the
system can even be destroyed), whereas the weak contract may hold or not in certain environments (i.e. in
any given environment, only the guarantees will be assured that belong to a contract set of which all
assumptions are fulfilled in this environment). In fact, the assumptions of weak contracts may be even in
mutual exclusion and only some of them are satisfied by the same environment.

The effectiveness of the contract-based design approach applied to complex cyber-physical systems is faced
with several challenges. CPS are heterogeneous systems — they combine software and hardware and even
optical or mechanical components, exhibit a combination of discrete event interactions with (often non-
linear) continuous control dynamics and interact with an unpredictable physical environment. Application of
contract-based design at the system-level of complex CPS requires addressing their heterogeneity, knowing
that many basic operations from contract-based design, such as the refinement, are in general undecidable
in presence of continuous dynamics. The recent survey [39] on contracts for system design provides an
overview of this versatile approach to rich domains, such as real-time and probabilistic systems. More
specifically, a contract-based design methodology for developing controllers in CPS is proposed by Nuzzo et
al [73]. In this work, the contracts are expressed in Signal Temporal Logic (STL), a temporal assertion
language designed to express system-level properties of CPS. In a related work [74], the complexity of CPS is
tackled by considering probabilistic contracts (expressed in stochastic variant of STL) and developing
algorithms for checking contract operations such as contract compatibility, consistency, and refinement, in a
stochastic setting. The contract-based design is increasingly gaining attention in industry, especially in the
automotive domain, where companies such as Toyota, Volvo Cars, Bosch, and Boeing used contract
languages such as LTL and STL to formalize their functional CPS requirements, and build a rigorous testing
methodology around it to check violations of implementation and refinement [75][76][77][78][79][80][19].
To summarize, the adaptation from contract-based design in software to contract-based design in CPS is a
vivid area of research, which is also actively studied in AMASS.

The AMASS platform supports the specification and analysis of contracts where assumptions and guarantees
are expressed in Linear-time Temporal Logic [52] (LTL with future and past operators [53], first-order
constraints [54] such as linear constrains over integer and real numbers, discrete or super-dense time model
[55][56]) or Hybrid extension of LTL (HRELTL) [57]. Finally, the external tool AMT2.0 uses contracts specified
in Signal Temporal Logic (STL) [59].

2.1.3 Semi-formal Specification of Requirements and Contracts

Because formal expressions are hard to write and understand by non-experts, they tend to be avoided in
practice. That turns out to be very unfortunate as they provide many striving characteristics, from which
requirements engineering processes would benefit. A well-defined syntax and semantics offer only one way
to interpret statements, making e.g. automatic verification and tracing possible. Expressions in
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unconstrained natural language might be easier to read, but have no constraints in syntax and semantics,
resulting in ambiguous statements which make automated processing or verification nearly impossible. In
many cases, it takes an expert with appropriate domain knowledge to interpret and validate the expressions
correctly, and even then, different experts might disagree on the exact meaning. This can even be caused by
the fact, that some relevant details are simply not addressed at all in the human-made natural language
specification.

Template Languages [5] can close the gap between purely formal expressions and unconstrained natural
language. They provide a well-chosen set of allowed sentence patterns, which results in a constrained
natural language featuring a well-defined syntax. Ideally, the template language also has unambiguous
semantics, leaving only one way to interpret an expression.

There exist various attempts to semi-formalize requirements. Requirement Boilerplates [5][6][7] offer a set
of predefined sentence patterns with placeholders that must be substituted by keywords such as
component, interface or function names. Advanced semi-formal specification languages [8][9] feature not
only syntactical rules but also semantical meaning to the expressions built. The Requirement Specification
Language (RSL) [8], developed in the Artemis project CESAR (Cost-efficient Methods and Processes for Safety-
relevant Embedded Systems) [10], allows the semi-formal specification for various types of requirements,
such as functional, safety, architecture, etc. The Goal and Contract Specification Language (GCSL) [9] which
has been developed during the DANSE (Designing for Adaptability and evolutioN in System of systems
Engineering) project [11] considers the contract paradigm and allows a formal contract structure with semi-
formal assumption and guarantee notation. Building on the aforementioned pattern language and some
additional considerations inspired by industrial experience, a new pattern language called System
Specification Pattern Language (SSPL) [71] has been developed during the AMASS project and applied onto
some of the AMASS case studies (in particular, the DC Drive system).

An integration of semi-formal languages and specifications with system modelling tools can greatly improve
the development process. Online expression checks on requirements or assertions can be made based on the
existing system model used as ontology. If a semi-formal specification is fully translatable to a verifiable
formal language such as LTL or HRELTL (perhaps not for all, but just for some of the assertions it can express),
the system model can be verified against the specification enabling early V&V.

The current AMASS platform supports the OCRA grammar? to formalize requirements. This has a formal
semantics, corresponds to LTL and HRELTL but with English words instead of mathematical symbols.

2.1.4 Requirements Validation

Requirements validation is a fundamental step in the development process of software and system design. In
fact, requirements are typically specified in natural language, and flaws and ambiguities in the requirements
can lead to the development of correct systems that do not do what they were supposed to. The role of
requirements validation is to check if requirements are specified correctly. Possible faults in the
requirements are conflicts, ambiguities, incorrect values, incomplete cases, missing assumptions, over-
specification, etc. Formal methods for requirements validation are being devoted increasing interest (e.g.,
[43][44][45][46]).

The AMASS platform provides different techniques to validate the requirements either based on quality
metrics or on formal semantics analysis (provided that requirements are formalized into formal properties).

2 http://ocra.fbk.eu
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2.1.5 Verification and Validation of Behavioural Models

A behavioural model describes the internal dynamics of a component. The model can describe how the
internal state of a component is updated or the functional update of outputs based on the inputs. These
behavioural models can be verified by means of model checking [47] against some formal properties in
different temporal logics. The formal properties can represent some requirements (e.g., functional or safety-
related requirements) or some validation queries such as the reachability of states. Model checking performs
an exhaustive search of the state space. However, it suffers of the well-known state space explosion
problem. Thus, modern symbolic model checking techniques combine search and deductive techniques.

In combination with contract-based design, the verification can be performed compositionally: state
machines are verified separately against the local contracts of the corresponding components and the
correctness of the system is implicitly derived by the correctness of the contract refinement and the local
state machines.

As an alternative and complementary approach, the properties can be compiled into monitors that observe
individual execution traces and check whether they satisfy or violate the specification during simulation or
test runs. This pragmatic approach provides a scalable, yet rigorous technique to reason about systems that
are too complex for formal verification and model checking. In addition, property-based monitoring
techniques can be applied to assess the correctness of black-box systems.

In AMASS, the behaviour of components is specified with either state machines or other external modelling
languages such as Simulink. The AMASS platform provides model checking techniques supported by the
nuXmv model checker [17] and contract-based reasoning supported by the tool OCRA [16]. These tools are
integrated in CHESS as backends. Monitor compilation is instead supported by AMT2.0, which is integrated
with the Simulink models.

2.1.6 Model-Based Safety Analysis

Model-Based Safety Analysis (MBSA) [51] provides a set of techniques aimed at analysing the safety of a
system based on the models used for system design and development (also referred to as “nominal
models”). A key step of MBSA is fault injection, i.e. the deliberate introduction of faults into the system
nominal model [21] [22] [23]. This enables the validation (e.g., by means of simulation), verification (e.g.,
model checking or monitoring), or, more in general, safety analysis (e.g., minimal-cut-sets analysis) of fault-
tolerance mechanisms. It basically consists of introducing faults into a system, analysing its behaviour with
respect to the introduced faults and determining which kind of actions or measures must further be taken,
until a stage is reached where the system can cope with all reasonably foreseeable failure cases. MBSA
contributes to the safety analysis phase, which includes the verification and validation of safety concepts and
requirements. Some of its most remarkable aims are to support the assessment of implemented safety
requirements, and the correct implementation and the effectiveness (diagnostic coverage) of safety or fault
tolerant mechanisms. Traditional safety analysis methods such as Fault Tree Analysis (FTA) or Failure Mode
and Effect Analysis (FMEA) are typically performed manually and are often not sufficient. Manual reviews are
normally needed to prove the completeness and the correctness of those analyses [24]. Furthermore, the
failure logic or the effects of certain faults cannot easily be determined by those analysis techniques. A
promising approach to overcome this limitation is to combine traditional analysis with MBSA approaches. It
is important to understand that MBSA mitigates the new challenges, but cannot replace safety assessments
such as FTA or FMEA done in the traditional way. Therefore, MBSA and traditional safety analysis techniques
complement each other.

There are different MBSA techniques like symbolic MBSA or simulation-based MBSA. Symbolic MBSA arises
as an attempt to introduce formal methods into the area of fault injection in order to evaluate the
dependability of safety-critical computer systems. Meanwhile, simulation-based MBSA realises a controlled
testing experiment to evaluate the behaviour of the system in the presence of faults.
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Fault Injection requires, on the one hand, a formal or an executable design model from which an undesired
behaviour is modelled with the system model. On the other hand, safety analysis techniques based on model
checkers (e.g. xSAP [25] [26]) or on simulation (e.g. Sabotage [27]) [13], help to analyse the system model
extended with faulty behaviour. This helps, for example, to find inconsistencies between the modelled and
the safety requirements. As explained in D3.3 [28], when setting up the fault injection environment, it is
important to define the fault injection policy which is called fault list [34]. This configuration process includes
the definition of fault locations, fault injection times, fault durations, and the input data for the system.

Figure 2 depicts the role of applying multi-techniques with the intention of completing an early safety
assessment, showing how they contribute to architecture-driven assurance. The novelty of this approach lies
in the combination of simulation and model-checking to automate the safety analysis construction, define
the needed safety measures, verify the safety mechanisms and validate if the required level of safety is
achieved.

Model-based Safety
Analysis:
FTA, FMEA, CCA, Failure
Propagation

Nominal Model
Maodel Checking

Model Extended
with Faults

Fault Modelling
Semantics
(safety-related
information)

Simulation Safety V&V

Figure 2. MBSA techniques for early safety assessment
2.1.6.1 Simulation-Based MBSA

Among the different MBSA techniques, simulation-based approaches emerge as a promising solution to
provide an early safety evaluation and V&V of a system.

Simulation-based MBSA involves the construction of a behavioural model of the system [35]. The simulation
models can be developed on different level of abstractions such as Simulink/SCADE or using hardware
description languages like Very High speed integrated circuit Hardware Description Language (VHDL). In the
context of AMASS, only the first category is considered.

In order to identify differences in the system’s behaviour and to automate the fault injection campaigns, the
simulation results of a faulty system under test (faulty SUT) or extended system model with faulty behaviour
are compared versus a fault free system (golden SUT) under the same workload. Extra model blocks
(saboteurs) are injected into the component inputs, which reproduce a certain failure mode. After that, the
effect of that fault can be observed in the output by including extra read-out blocks or monitors. These fault
injectors simulate failures at input ports and the inclusion of monitors in the output ports in order detect
whether and in which ways an output assertion is violated in consequence.

The results can be stored as part of the safety case as applies to the conventional safety analysis techniques.
2.1.6.2 Symbolic MBSA

Symbolic MBSA [51] searches for all the possible combinations of faults (minimal cut sets) that may lead to a
system failure. The result can be presented in form of a fault tree, where the system failure represents the
top-level event and the injected faults are the basic events.

If the system architecture is enriched with contracts, a fault tree can be generated semi-automatically to
represent how the failures of components can be propagated and result in a system failure, based on an
analysis of the contract refinement. In this case, the failure of a component represents the inability of the
component to fulfil any of its guarantees although all assumptions about its environment hold, while the
failure in the component’s environment represents a violation of any of the component’s assumptions. At
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every level of the contract refinement, minimal cut sets (or minimal cut sequences in the case of timed
behaviour) can be computed to see how the failure of the composite component depends on the failure of
the environment and the failure of the subcomponents. The results can be integrated into a hierarchical fault
tree that respects the architectural decomposition of the system.

2.1.7 Safety Case

In most industries, a well-structured Safety-Case, i.e. a concluding argument that the system to be released
for public usage is sufficiently safe, is required by safety standards and certification authorities. Standards
mentioning the obligation for a Safety Case include IEC 61508, ISO 26262 and many more. A more
comprehensive list and a compilation of notions of Safety Case (and problems with informal definitions what
a Safety Case exactly is) is given in [58][65]. The notion of a Safety Case is not formally defined by the
standards and therefore varies among different standards, regions and industry branches — it can even
depend on the company who creates it or on the safety assessor or local certification authority. Where this
term is in use, it refers at least to a collection of all relevant output documents from the safety process, from
which an external assessor can conclude that everything has been done to assure that the product is safe in
its practical application. A more formal interpretation shaped by Tim Kelly is a structured representation of
argument lines that show the fulfilment of every safety goal by providing evidences, see Figure 3.

Safety goals and other related
Safety Requirements

(CEEC

Safety Argument

(CC((

ISO 26262 Workproducts ‘

Figure 3. Safety arguments show the fulfilment of safety goals and other related safety requirements by providing
evidences (e.g., ISO 26262 work products)

The lines of argumentation may be long and winding, requiring a structured representation, e.g. using the
popular Goal-Structuring-Notation (GSN). This way of thinking has influenced British aerospace industries as
well as the automotive standard I1SO 26262 (but only in its informative part, i.e. as a recommendation).
Similar notations are the “Safety Concept Trees” [70] proposed by Fraunhofer IESE or the notation “Claims,
Arguments and Evidence (CAE)” suggested by the tool company Adelard3, or the graphical structuring of
safety concepts provided by the tool medini analyze#. All of them have in common that they are tree-style
notations that iteratively decompose the safety goal and graphically distinguish between different semantic
items like claims, arguments and evidences (with varying terminology).

Looking closer at safety cases from real industries, we can often notice that two levels of abstraction are
involved:

1. The process level, where the individual evidences are safety work products (e.g. a FMEA report, a
test report, a review report), demonstrating that all necessary process activities have been arranged

3 see product website: https://www.adelard.com/asce/choosing-asce/cae.html

4see product website http://www.medini.eu/index.php/de/products/functional-safety
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in a way as to provide a gap-less argument (e.g. Why are we sure that we have considered all
reasonably assumable hardware failures? - Because we have performed an FMEA and had it
reviewed by independent experts!).

2. The level of technical product development, where individual safety mechanisms (e.g. a range check,
a watchdog), their describing requirements, the architectural items to which they are allocated and
their corresponding individual verification artefacts (a passed test case, a formal proof for some
property, etc.) are all linked to each other, allowing the reader to follow the argument on a technical
level (e.g. Why are we sure that the power part is switched off in case that some software routine is
trapped in an endless loop? = Because we have implemented a safety mechanism consisting of a
software part that monitors the program flow and a hardware watchdog that disables the power
part via a dedicated wire if the software is detected to be hanging).

The usage of tree-style notations for safety argument structuring in a technical safety concept, belongs to the
second category, whereas the usage of tree notations to structure the process argument in a safety case
belongs to the first category. Notations like GSN are applicable for both purposes in industry.

Other classification terminologies have been proposed in literature, all roughly addressing the same semantic
difference, e.g.

e Indirect evidences = process level

e Direct evidences = verification (test) results on product level (right side of the V-model)
e Immediate evidences = the design artefacts describing the product technically (left side of the V-
model)

However, the distinction in left and right leg of the V-model can be seen problematic these days, because
firstly, in the era of agile development and bottom-up system construction by reusing existing parts, the
general applicability of the V-model can be doubted at all, and secondly, early prototyping, simulation,
analysis and the like happen already in the left leg of the V-model, but provide similar kind of evidences as
the test results in the right leg (see Figure 5). More contributions to this classification can be found for
instance in [69].

In AMASS, both levels are linked to each other via the meta-model: the model-based artefacts from (1)
contain the individual model elements from (2). This is depicted in Figure 4: in the upper section of the
figure, the safety artefacts on process level can be seen, whereas the lower section shows architecture,
requirements faults/failures and safety mechanisms. The links crossing the boundary between upper and
lower section show the containment relationships. The AMASS tool chain adheres to this meta model (see
CACM description in AMASS D2.8 “Integrated AMASS Platform (c)”) and allows navigable links in accordance
to the meta model links, so traceability is assured from project artefacts constituting the safety case to
individual modelling elements in the functional / technical product architecture.
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Figure 4. Links between the safety case and the design model

2.2 Architecture-Driven Assurance

2.2.1 Mainldea

The idea of architecture-driven assurance is:

(1) ontechnical level: to exploit the architectural design in order to

a.

develop the product correct and dependable by construction, in particular by decomposing
the requirements onto the architecture components using the contract-based approach
while verifying the correctness of this refinement,

by supporting safety analysis, in particular by semi-automatically deriving safety and other
analysis results from the architecture, by establishing a safety concept with safety
mechanisms on top of the architecture and, finally, by verifying the compliance of each
component of the architecture with its contracts, using techniques like formal methods,
simulation with observers, reviews or testing;

(2) on process level: to collect all artefacts produced during the early phases of the system design to be
used as evidences in the safety case and to drive the assurance of the system with arguments that
document why and in which context the artefacts were created.
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The architectural design phase provides an enormous opportunity for the preparation of the safety case:
most design choices, especially related to the safety measures to be included in the system, are made in this
phase and it is of paramount importance to explain and justify these design choices in the argumentation, as
well as the context in which they were taken; moreover, the availability of models enables the possibility to
verify and validate the design earlier than the typical V&V phase; while the main purpose of early V&V is to
reduce cost and time discovering problems before the system is implemented and deployed, the generated
artefacts provide an amount of evidence for the safety case that is typically not present in the traditional
workflow.

The architecture-driven assurance proposes to develop the assurance case along the development process
collecting the inputs of the system architecture modelling and early V&V as depicted in Figure 5. Note that
the V-Model is a simplification and not meant to be the realistic workflow; moreover the picture does not
show the iterations that are necessary in practice, in particular when safety needs to be considered (iterative
cycle of design - safety analysis = additional safety requirements = design, until the remaining risk is
considered acceptable). It rather highlights the overall idea of early model-based verification and validation,
as well as the interaction of the system development with the construction of the assurance case thanks to
the model-based system architecture.

Assurance

Require-
ments

Architec-
ture

Acceptance
Testing

System
Testing

Integration
Testing

Unit
Testing

Figure 5. Modelling and Early V&V providing input to the assurance case

The Prototype P2 of the AMASS platform supports the Architecture-Driven Assurance approach by:
e Providing a rich set of early V&V and model-based safety analysis techniques,
e Collecting the results of the analysis as evidence for the assurance case,
e Linking the modelling elements to the corresponding elements of the assurance case,
e Generating argument fragments from the models.
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2.2.2 Transfer of the AMASS Main Idea to an Industry-Proof Working Process

As shown above, the main idea of AMASS is projected onto a V-model process that is the blueprint for most
safety-related development process models in any industry. However, to explain how the methods and tools
from AMASS fit together and to give an overview how they can be applied on the background of an industrial
V-model process, the V-model will be shown again, with some more details and connections between the
work products.

To do so at the example of an ISO 26262 automotive process, let us start with Figure 6, which is a simplified
interpretation of the standard workflow V from I1SO 26262-2 Figure 1. It shows:

e In the blue ribbon: the activities of normal development, as usual the constructive activities on the
left leg, the verification and validation activities on the right leg (note that the system level from I1SO
26262 has been deliberately replicated: one vehicle level, which is normally done by the vehicle
OEM, and one ECU/system level, which is normally passed to a supplier; in reality, there can even be
more “system” levels).

e In the red ribbon: the additional activities for functional safety, such as Hazard Analysis and Risk
Assessment, or different kind of safety analysis.

e Inthe thin white ribbon: the planning and tracking activities of the process.

e In the thin green ribbon: the supporting processes, such as configuration management, change
management etc.

The sort of “wings” at the beginning and the end of the V symbolize the product definition phase and the
production / operation / maintenance phase, which are not part of the core development activities, but also
relevant to safety and therefore covered by ISO 26262 (and in similar way, by most safety standards from
other industries).
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Preparation
Product Definition q
Maintenance

Item Definition Hazard Analysis System System ‘ i ()
- equirements (Vehicle) Test Tracking Tracking
Safety

Safety Process Init.
System
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E=ah Test

HW
A’:g Protot. ;s
. Asmbl :

HW Design HW Layout /BOM / SW.

sw

Unit
Test

SW Implementation

Guidelines & Reviews

Figure 6. Generic ISO 26262 V-model

What is not shown in the V model is the fact that all practical processes in industry contain iterations (loops
within the V-model) and incremental execution (like several V-models following each other, the early ones
with more emphasis on concept and requirements, the later ones with more focus on testing activities). To
be industrially applicable, the AMASS process must be adaptable to this way of proceeding.

Also, not shown are the “models + early V&V” branches from the AMASS V model in Figure 5, which are a key
feature of the AMASS proceeding. When zooming into the details, we will show how exactly these activities
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are enabled by the specification, modelling, analysis, verification and validation activities proposed in this
methodological guide.

Let us now come one step closer and have a more detailed look on the left leg of the V model, see Figure 7. It
is obvious, that the foundations for model-based analysis and V&V are laid on the left leg of the V model. The
activities on the left leg are concerned with the transformation of an initial, coarse and informal product idea
and item definition (maybe just a list of functions or use cases, maybe a requirements collection in natural
language) to more and more detailed models and more formal requirements, which are decomposed onto
the subsystems, components, subcomponents etc. of the system-to-be. The quality and degree of formality
of these requirements and the models is key for efficient or even automated verification of the refinement,
but also of the compliance of the implemented blocks in the end with their specification, and also for
systematic safety analysis (see Section 4 of [3]). The desired output of the whole chain of activities is clearly
the technical implementation, laid down as mechanical drawings, part lists, electronic hardware circuit
diagrams, and code for hardware and software, such as C or VHDL language.

Use Cases

HARA
H | ASIL
HO1| B
HO2 | ===

FMEA

Figure 7. Zoom-in on left leg of the V-model

To explain how this transition is performed in detail in the AMASS context, Figure 8 shows more details on
the work products and interconnections.
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Figure 8. Workflow in the left V-leg with normal function development and safety activities

For the initial requirements capturing (e.g. as function lists or use cases) and for the preliminary architecture,
no specific tools or notations are assumed (can be even standard office tools), but after that, the
requirements will have to be captured in a structured way, allowing their atomization and identification
(even if they are still written informally, in plain natural language) and the architecture on the highest level
should be modelled in a semi-formal language like SysML, which has at least a well-defined syntax and some
modelling guidelines that come with it. As these are standard activities, it does not come as a surprise that
there are many different choices for appropriate tools from AMASS and from outside of AMASS, the AMASS
tools even partly overlapping on this area. Possible tools for SysML architecture design are CHESS/Papyrus,
SAVONA, SCADE Architect, and many commercial tools, and also for requirements capturing a variety of tools
is on the market (IBM Doors, PTC, Jama, just to name a few of them).

The next, very important step is the stepwise formalization, and the decomposition along with the
architecture hierarchy. Doing requirements refinement and architecture design in an intertwined way is one
of the key success factors, and not yet supported a lot by commercially available tools. To do so, AMASS
proposes the application of the contract-based design paradigm, and the application of template-based
languages which allow first to restrict the syntax of the assertions (semi-formal representation) and then,
wherever possible, specify them in a language that provides a formal semantics, enabling both

(a) Verification of the refinement between the levels of the architecture, and

(b) verification of the implementation at the end of the left V-leg with the respective contracts for each
leaf component of the architecture.
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When tending to apply formal methods, it should be noticed that the whole process of going from initial
specification to technical implementation is often termed “refinement”, but in practice it consists of two
different dimensions of refinement:

1. decomposition (vertically going from components to subcomponents, sub-subcomponents, etc.),
and

2. concretization (horizontally going from a more abstract and implementation-independent
specification to a more technical specification)

Functional Static Architecture Technical Static Architecture

uonisodwolag
|
&
|
o
8]

Concretization

Figure 9. Dimensions of Refinement

In industrial practice, both dimensions are often mixed with each other, resulting in a walk roughly along the
diagonal arrow in Figure 9. Note that, when choosing the appropriate level of formal vs. semi-formal
specification of contracts and models, there is more than one way to go; therefore, the AMASS project
partially applied early formalization with tools like the CHESS (allowing formal verification of the
decomposition, but making requirements specification and validation sometimes hard for humans, in
languages such as Othello) and partially applied late formalization, which means that the specification
language (e.g. System Specification Pattern Language / SSPL, see [71]) can offer more expressiveness and
flexibility, but at the price that the refinement verification must be performed in a (still computer-assisted)
manual process due to the lack of formal semantics. The prototypical tool SAVONA that has been created
during the AMASS project provides an assistant function to support manual decomposition verification. The
difference is explained in Figure 10: Early formalization means branching to the right on system level (e.g.
going from SAVONA tool to CHESS tool via the provided interface) and then decomposing, while verifying the
correctness of the decomposition automatically using the CHESS tool. Late formalization, accordingly, means
to stay with SAVONA and decomposing, using the decomposition checker assistant for manual
decomposition, and only on a low level formalizing the contracts by switching to the CHESS tool (or, for
instance, to SCADE suite, which allows generation of formally verified C code out of models). Note that the
“hand” symbol in the figures represents manual activities, while the “tools” symbol represents activities that
can be automated to a high extent. In some cases, the process must be performed manually, but tool
support can help not to get lost in complexity, follow a structured approach and documenting the performed
steps for the safety case.

Having explained the details on the process chain from informal requirements to formally verifiable source
code, let’s discuss the role of safety analyses in Figure 8: The models created during the described
development process are used as a starting point for the different safety analyses, and the contracts that
specify the nominal behaviour can be used for systematic analysis of any kind of deviation or malfunction.
The top-level system specification, for instance, can take the role of an Item Definition acc. ISO 26262. The

H2020-JTI-ECSEL-2015 # 692474 Page 25 of 145



(2A)
\\-_/) AM[ASS Methodological guide for architecture-driven assurance (b) D3.8V1.0

top-level function definitions initially specified in the Item definition, if modified by HAZOP-style guidewords
like “more”, “less”, “early”, “late”, “unexpectedly”, “not at all” etc. help the analyst to systematically derive
the potential hazards from the nominal functions. From the hazard list, the top-level safety requirements
(termed “Safety Goals” in ISO 26262 language) are derived, which are then refined in the same way as the
nominal function requirements, using the contract-based approach (see Section 4.1 of [3]). The causes and
sub-causes for the hazards can be recursively investigated by means of Fault Tree Analysis, referencing the
function blocks of the abstract levels of the model-based architecture. The more detailed and more technical
architecture at the lower levels of refinement is usually analysed using the FMEA technique, which can,
again, be semi-automatically derived from the technical architecture (e.g. the tool medini analyze automates
this step already today). Details on the architecture-focused safety analysis can be found in Section 4.2 of

(3]).

As the top-level claim of the safety case (decomposed using the GSN technique) is to prevent any reasonably
foreseeable failures from violating a Safety Goal, it is obvious that the safety process will generate new safety
requirements (in the AMASS project denoted as safety contracts, in the same way as functional requirements
had been denoted as ordinary functional contracts). The safety contracts look similar to the functional
contracts, but consider that there might be failures present in the system, and are qualified with a safety
integrity level (e.g. ASIL, SIL or DAL) coming from the hazard they are supposed to prevent. These
requirements are fed back into the normal development path (blue ribbon in Figure 6), where they augment
the existing requirements set and lead to an enhancement of the architecture by additional blocks that
represent safety mechanisms (e.g. a plausibility check for a sensor signal) or paths of redundancy (e.g. a
second sensor for the same physical quantity, allowing cross-checking to detect failures), see Section 4.3 of
[3]. This is where the iterative proceeding within the V-model becomes visible (loop between red and blue
ribbon in Figure 8). This process continues until the analyses show that an acceptable risk level has been
reached and the safety case can therefore be completed. Of course, the new requirements not only need to
be added to the architecture models iteratively, but also must be implemented and verified (by testing,
review, model checking, simulation, etc.) on a maturity level that is described by the safety standard (e.g. ISO
26262) for the applicable safety integrity level (the higher the SIL or ASIL gets, the higher the requirements
regarding deeper testing, more formal notations and more independent reviewers and assessors).

|”

Natural Language
Requirements

o

emi-formal contracts Formal contracts
(system) (system)

e

NB/(X) ) A

Al

25,
555

Semi-formal contracts Formal contracts
(sub-systems) (sub-systems)

— [B/(X)
— | o ¥

Figure 10. Early vs. late formalization
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The whole argument, based on the provided artefacts centred around the architecture, is finally captured in
the safety case for the product. As evidences to support the safety case, not only the safety analyses, but all
other verification and validation results are attached to the elements of the architecture, including test and
simulation results or reports from model checkers. We will have to accept that many properties of the
implementation still cannot be proven formally today. Yet it must be demonstrated in particular that all
designed safety mechanisms actually prevent the supposed failures from causing a hazard. Therefore,
besides formal verification of the decomposition and implementation, the AMASS proceeding also considers
an appropriated semi-formal way of verifying the effectiveness of the safety mechanisms: a combination of
monitor generation (again from semi-formal contracts) and fault injection and simulation (or testing), as
shown by the additions in Figure 11. The cornerstones of this proceeding, which is supported by the tools
AMT and Sabotage from AMASS consortium partners AIT and Tecnalia is built on the following cornerstones
in an efficient and tool-integrated combination:

e From Safety Analysis and Safety Concept, the failure mode hypotheses and the specifications of the
safety mechanisms (acc. Section 4.3 of [3]) as contracts are exported.

e From the contracts (describing the nominal behaviour or the behaviour in presence of failures),
which are specified in certain classes of temporal logics (e.g. HRELTL, Othello, STL), monitors are
automatically generated. These monitors observe the behaviour of a model (e.g. VHDL, Simulink)
during all simulation runs, or they can even be applied to the actual system and observe test runs.

e Test/simulation runs are specified and performed in a suitable model-based simulation framework.

e For all test sequences that shall demonstrate the capability of a safety mechanism to prevent a
failure from causing a hazard, the failure is simulated by fault injection at the interfaces of
architecture components.

e If all safety contracts hold, even in case of injected failures, the evidence is achieved for the claim in
the safety case that all hazards have been sufficiently covered and this branch of the safety case can
be considered complete.

Formal
> ™" | Subcomponent
Contracts (sTUHRELTL eic.)

<a> the:
100 ma
N Monitor Generation
~
Maraors
Simulation of model
l{:l. against monitors

Figure 11.V-Model with Monitor Generation, Fault Injection and Simulation
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Failure Injectio!
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2.2.3 Tool Support Overview

The tool support is based on a collection of Eclipse plugins and external tools (also depicted in Figure 12) that
provide the different functionalities necessary to perform the Architecture-Driven Assurance approach. In
particular, it includes:

CHESS/Papyrus plugins to model UML/SysML diagrams and to perform contract-based design and
different model-based analyses, and OpenCert/Capra plugins to create and link assurance argument
fragments and evidences or other traceability links. These plugins are part of the AMASS platform,
which provides the user a single user interface hiding the complexity of the underlying tool
architecture.

External backend tools that interact with the AMASS platform to provide analysis results. These
external tools include OCRA for contract-based analysis, nuXmv for model checking, xSAP and medini
analyze for model-based safety analysis, and V&V Manager for requirements analysis and model
checking. They run in background or remotely via OSLC and the user does not interact with them
directly.

Other external tools that can be used for modelling with alternative languages to later import the
models into the AMASS platform. These include SAVONA for semi-formal specification and
refinement of contracts and SCADE or Simulink for specifying behaviour in their own formal or semi-
formal language with the purpose of finally generating the runnable software source code (formally
verified in the case of SCADE).

Similarly, some further external tools can be used to perform external analysis, whose results must
be then imported into the AMASS platform. These include RQA for requirements quality analysis,
Sabotage for fault injection on Simulink models and AMT2.0 for contract-based offline monitoring of
cyber-physical systems. Deliverable D3.6 “Prototype for Architecture-Driven Assurance (c)” [29]
describes more in detail the design of the AMASS platform. In particular, Figure 3 of the D3.6
illustrates the interaction among the different components.
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3. Methodological Guide

This section contains the actual methodological guide. It first gives an overview of the activities by means of
diagrams and then details the activities guiding the user to the usage of the related tool support.

3.1 Workflow Overview

The following activity diagrams describe a sequence of steps to perform the design and development of the
system with the support of the AMASS platform for Architecture-Driven Assurance.

The diagram shown in Figure 13 gives an overview of the main steps of the process. It starts with a first
design of the system, including both nominal and faulty behaviours. It then applies safety analysis of the
system design to determine if it contains a sufficient level of safety. Otherwise it refines the system design
taking into account safety mechanisms to increase the safety level. These two steps are repeated until
reaching a sufficient level of safety. The system safety is then validated with traditional testing techniques.
They basically correspond to the inner V-cycles with early V&V shown in Figure 5.

Finally, a safety case is produced to show how the product fulfils the safety goals. Each of these activities,
apart from the safety validation which is not directly supported by the AMASS platform, is further expanded
in subsequent diagrams.
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Figure 13. Main Steps to perform the design and development of the system with the support of the AMASS platform
for Architecture-Driven Assurance

The system design shown in Figure 14 starts with the system definition, the system boundaries, the system
requirements and the assumptions on the expected context, also taking into account the results of the
preliminary hazards analysis. The design process then formalizes requirements into formal or semi-formal
specifications. The process performs an early validation of such requirements by means of different
techniques based on either formal semantics or quality metrics. The process then refines the system
functions defining the architectural decomposition of components and contract-based refinement. Nominal
and faulty behaviours are specified for the leaf components of the architectural decomposition. Finally, an
early verification of the functional refinement is performed by means of contract-based reasoning, model
checking, and simulation-based monitoring.
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Figure 14. Steps for the System Design

Figure 15 and Figure 16 complete the System Design workflow depicted in Figure 14 by adding information
regarding definition of roles for each activity. The roles in italics define the ones already described in D2.4
[32].
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Figure 15. Detailed steps for the System Design with the definition of roles (I)
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Figure 16. Detailed steps for the System Design with the definition of roles (l1)

As depicted in Figure 8 and mentioned in Section 2.2.2, after performing the hazard analysis the top-level
safety requirements are defined. Afterwards, the causes of those hazards are usually recursively investigated
by Fault Tree Analysis, while FMEA technique is applied to analyse the more detailed and more technical
architecture at lower levels. Thus, those high-level safety requirements are implemented by safety
mechanisms which are then validated by means of the model-based safety analysis techniques tackled in the
next paragraph.

The safety analysis shown in Figure 17 and Figure 18 can apply different techniques to analyse the system
when some components may fail. The current supported techniques are based either on:

e the fault injection in the simulation models and the monitoring of the simulation traces,

e the fault injection in the state machines and model-based fault-tree generation,

e the contract-based fault-tree generation.

These are alternative techniques that can complement each other to assess the safety level of the system.
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Figure 17. Sub-activities related to the safety analysis currently supported by the AMASS platform
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Finally, the activity of producing the safety case, shown in Figure 19, is supported with:

e the generation of evidence from the system model early V&V and safety analysis,

Figure 18. Detailed Safety Analysis Process

e the linking of the architectural models to the safety case,
e the generation of reports on the system model and V&V and safety analysis results,
e the automatic generation of safety fragments to be integrated and completed in a global safety case.

Sufficient™\,
level of

Safety
Validation
)
o/

mechanism

The Safety Engineer, the Safety Manager and the Internal Assessor are the roles involved in this activity. The
Safety Engineer is the responsible for executing the different assurance and V&V activities to demonstrate
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that the product is acceptably safe. The Safety Manager is responsible to show compliance within a particular
standard. The Safety Assessor is responsible for assessing the adequacy of the evidence and assurance
‘package’, in terms of demonstrating the safety of the system under consideration.

Note that this document focuses only on the architectural-driven support to the safety case. For a more
general support to the creation of the safety case, the reader is referred to D2.5 [33].
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Generation

v
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Figure 19. Sub-activities related to the safety case currently supported by the AMASS platform

3.2 System Design

In the following, the System Design activities depicted in Figure 14 are detailed, one subsection for each
activity.

3.2.1 System Definition

3.2.1.1 Requirements Specification/Import

Requirements can be represented in the model by using the SysML standard support, i.e. by using the
Requirements Diagram and Requirement SysML construct; no specific extension of the SysML support for
requirement modelling is currently proposed as part of the AMASS solution. Of course, specific profiles for
SysML regarding the modelling of requirements can be adopted, in particular to allow the modelling of
adopted requirements attributes (e.g. the author, kind, priority, risk).

CHESS comes with a dedicated view/package called “RequirementView”, where the SysML Requirement
Diagram and then the requirements can be created.
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In addition, Papyrus, which is the tool on which CHESS is based, allows importing requirements from external
sources® like excel, csv files, or by using the ReqlF® (requirement interchange format), the latter supported
by most of the commonly used requirement management tools, like DOORS.

Requirements available in the CHESS/Papyrus model can then be linked to other architectural entities by
using the standard SysML support, so in particular by allocating requirements to components (see section
3.2.1.2) using the Satisfy relationships.

As alternative to the aforementioned usage of SysML to represent and link requirements, Capra can be used
to directly trace requirements available in model/repository external to CHESS/Papryus (like DOORS or
ReqlF) to the CHESS system architectural elements; in this case the import of the requirements in the
CHESS/Papyrus model is not required and the information about the satisfy relationships between system
components and requirements is stored in the Capra dedicated traceability model.

Moreover, requirements can be traced to the assurance case model, the latter available from the OpenCert
assurance case editor; for this goal, the feature of Capra8 can be used: so, for instance, a safety requirement
can be linked to the assurance case reasoning about why the system satisfies the requirement itself. In this
case, the requirement can be selected from the Papyrus/CHESS model, the assurance case can be selected
from the OpenCert editor and a trace can be created with the Capra features (see AMASS user manual,
available as annex of the AMASS D2.5 [33], about how to work with Capra in the context of the AMASS
platform).

3.2.1.2 System Component Definition

During this activity the architecture of the system, i.e. its constituent components and their relationships, is
produced. The definition of the system architecture foresees the design of components in isolation, i.e.
components designed out of any particular context (to exploit their reuse), or the identification (reuse) of the
components from existing libraries/models. The hierarchical modelling of the entire system architecture is
supported to be able to manage the complexity of the system itself, where the hierarchy can be obtained by
using a top-down or bottom-up design process, where the later in particular can be realized by following a
design by reuse approach.

A component must come with typed input/output ports representing the boundary of the component itself,
where ports represent interaction points through which the component can exchange information with the
context. It is worth noting that the modelling of the component boundary cannot be limited to the
identification of the input/output ports of the component itself; additional information about the possible
(functional and extra-functional) behaviours of the component and the expected behaviours of the context
must be provided, e.g. to be able to evaluate if a given component can collaborate in a given scenario. This
relevant part of the specification of the component boundary can be performed by using the contract-based
approach, as discussed in Section 3.2.2.

When a component has been defined, then it can be instantiated as part of the given system under design
and connected to the other instances already identified (via the ports, see Section 3.2.5.1). The system is
modelled, i.e. it is decomposed, as a collaboration of instances of components. The decomposition of the
architecture can proceed at any level, i.e. a system component can be also decomposed, according to its

5
https://www.eclipsecon.org/france2016/sites/default/files/slides/EclipseConf2016%20sysmI%20and%20requirements.
pdf, https://www.youtube.com/watch?v=edHAxb8-1lo

6

www.omg.org/spec/ReqlF/About-ReqlF/

7 https://www.ibm.com/software/products/it/ratidoor

8 Capra is an Eclipse project for traceability management (https://projects.eclipse.org/proposals/capra); it has been
extended in the context of AMASS.
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complexity. Different instances of the same component (and different ports with the same type) can be
represented as a single instance with multiplicity greater than 1.

SysML [66], the OMG general-purpose modelling language for systems engineering, is proposed in AMASS
(by using the Papyrus/CHESS editor) for the modelling of the system and its constituent components. In
particular, SysML Block Definition Diagram is used to model the system and its components, while a SysML
Internal Block Diagram can be associated to the system or component and used to model its input/output
ports, its decomposition into parts and how the parts are connected.

CHESS modelling language (CHESSML)[61] is based upon SysML and UML. This guide focuses on the usage of
the SysML language for what regards the system definition; however, the same approach presented here can
be followed by using UML diagrams and entities corresponding to the SysML ones here addressed® (the
choice of using UML instead of SysML is typically dictated by the fact that the system under design is a pure
software one). The reader can refer to the CHESS user guidel® to understand the UML support for software
specification available with CHESS.

To define the system components, perform the following steps:

1. Prepare the graphical editor environment: In the “Model Explorer” view, go to the package
“modelSystemView”, create a Block Definition Diagram and open it.

2. Define the system components: Using the palette of the diagram editor, select the “Block” element
and drag it in the editing space, see Figure 20. The “Block” element becomes visible also in the
“Model Explorer” view. Analogously, it is possible to create the “System” element, that is specified as
a special block.

12 Palette [

he&all-B-

#% Associations @
" DirectedComposition

" Dependency

Block, Systems
System 1 S #% ModelElements @
properties @ Block1 o Package

properties B | System (Block
@

operations

Signal

operations = Part

= Property
{7} CriticalityLevel (Constraint)

constraints

constraints

{7} CriticalitySpecification (Constraint)

#% PortAndFlows k=
B FlowPort

#% DataTypes =
DataType
PrimitiveType
[®] Enumeration
= EnumerationLiteral

#% Contracts k=

Contract (ConstraintBlock]
[ ContractProperty
{7} FormalPraperty (Constraint)

Figure 20. A generic component and the system component created in the Block Definition Diagram

9 In UML the user can use Class/Component Diagram (in place of the SysML Block Definition Diagram) to model the
software system, its components and the software interfaces (as collection of operations). Composite Structure
Diagram can be associated to the system or component (in place of the SysML Internal Block Diagram) and used to
model its ports (input/output or service port providing or requiring interfaces), its decomposition into parts and how
the parts are connected.

10 https://www.polarsys.org/chess/publis/CHESSToolset UserGuide.pdf
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3.2.2 Hazard Identification

After the system (or “item” in ISO 26262 terminology) has been defined, the first actually safety-specific
process step is to identify the hazards of the item in terms of accident risks that the system can cause to
humans. This activity is common to all major safety standards, but the naming and the proceeding in detail —
in particular which influence factors to be considered when ranking the hazards - are quite different: in
automotive ISO 26262, it is named “Hazard Analysis and Risk Assessment (HARA)”, in industrial IEC 61508 it is
called “Hazard and Risk Analysis”, in aerospace ARP4761 it is called “Functional Hazard Analysis (FHA)".

In industrial settings, influence factors like the probability of people being in the danger zone is considered,
whereas in automotive applications there is no explicit measure for that (up to now, it can be assumed, that
at least one human - the driver — is in the danger zone, in most cases many more). In automotive, however,
the probability of exposure to some driving situations is considered as the “E” (for exposure) factor, and the
possibility for the driver or other traffic participants to prevent the accident after a failure has occurred is
rated by the “C” (for controllability) factor. Also, the severity ratings are different, ranging up to “many
people killed” for industrial plants, whereas for passenger cars the highest rating for the “S” (for severity)
measure is S3, which translates as “severe or fatal injuries” (of at least one human — catastrophic
consequences are not assumed for a single passenger car). The way of arranging, analysing and rating the
hazards is slightly different among different standards (in tabular form, in most cases), and so is the way of
determining the final rating for each hazard, which may be called SIL (safety integrity level), ASIL (automotive
safety integrity level), DAL (design assurance level) or otherwise. These levels are usually ranked on a scale
comprising 4 to 6 levels, designated by letters or numbers (e.g. ASIL A is the lowest in ISO 26262 and ASILD is
the highest — whereas in ARP 4761 it is in the opposite sense, A is the most severe and meaning
“catastrophic”.) But despite all the differences, all safety standards have in common that hazards are
understood as the effects of a system failure (specification violation due to design error or due to part failure
occurring at runtime) and a usage or environmental situation (e.g. platoon driving on highway). Also, it is a
commonality that the hazards are ranked on a scale according to their risk, which is in some sense a
combination of severity and occurrence probability.

The AMASS workflow and toolchain does not define any novel method for hazard identification, but refers to
the standards in place. From the selection of AMASS tools, the tool medini analyze, that comes with different
profiles for different industries and standards, is the general recommendation for performing the hazard
identification and has been used for some of the case studies in the AMASS project; however, other tools can
be used as well. What is important is the export capability for hazards, safety goals and rankings (e.g. ASIL)
into the AMASS tool chain, because the hazard identification is the most important starting point for all
safety activities, as it determines as an output:

a) The hazards, which are the ultimate failure effects and can therefore serve as top-level events in a
Fault Tree Analysis or other type of safety analysis.

b) The safety goals, which are the top-level requirements, with the meaning that a given hazard shall be
prevented even in presence of failures, and therefore are the starting point for refinement into
safety requirements (or safety contracts, respectively) that add to the normal functional
requirements for the product.

c¢) The hazard risk levels or safety integrity levels (like SIL, ASIL, DAL etc.), which determine the
subsequent effort to be spent on (semi)formal specification, implementation according to certain
rules and guidelines, and verification, such as depth of testing or application of formal verification
techniques for higher hazard risk levels. They are also an important input parameter for setting up
the safety plan (selection of methods to be applied, in particular) and the safety case.

In the following, the proceeding is exemplified for an automotive HARA acc. ISO 26262 with the tool medini
analyze, based on an excerpt from Case Study 2 (Driver assist function with electric powertrain). To exploit
synergies between the AMASS case studies, we were focusing on hazards that can be applied similarly to
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Case Study “DC Drive” and Case Study 3 (Collaborative fleet of vehicles), e.g.

“unauthorized braking”, “unauthorized start” or “acceleration in the wrong direction”.

“self-acceleration”,

The process of an ISO 26262 HARA can be explained as in Figure 21 (the explanations below refer to the
number labels in the diagram).
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Figure 21.1SO 26262 HARA Process Flow

Input (1) is the System Description from Item Definition Phase (for corresponding AMASS step see 3.2.1),
showing the outer interfaces and main functions of the system.
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Figure 22. Example of system description in SysML

From these, in step (2) the malfunctions are derived. This can be performed in a systematic way by applying
the HAZOP method that uses guidewords like “higher than”, “lower than”, “unintendedly”, “other”, “early”,
“late”, etc. to modify the intended behaviour to produce a description of potential unintended behaviour

H2020-JTI-ECSEL-2015 # 692474 Page 40 of 145



(2A)
\\-_/) AM[ASS Methodological guide for architecture-driven assurance (b) D3.8V1.0

(e.g. function: “control vehicle speed such that the correct distance to the predecessor vehicle is kept” x
guideword: “higher than” = malfunction: “the system sets the vehicle speed to a value that is higher than
specified”). Note that, the more formal the nominal functions are specified (e.g. using template language for
semi-formal assumptions and guarantees), the higher are the chances to semi-automate malfunction
derivation (see Section 4.2 of [3]).

HAZOP Analysis & E
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[
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Figure 23. Example of HAZOP Analysis

To judge the potentially resulting accidents, it is necessary to discuss the malfunction in different
environmental contexts or usage scenarios, e.g. driving in city traffic with vulnerable road users nearby,
manually driving on a highway at high speed, automatically driving on a highway as part of a platoon at
moderate speed, waiting at a red signal with pedestrians crossing in front of the vehicle, etc. This requires
the presence of a catalogue of situations (3) as an auxiliary input. The process of creating and managing this
catalogue is often underestimated, because when combining all road types with all speed ranges and
weather conditions and all light conditions and all types of manoeuvres and all kinds of other traffic
participants around etc., one will usually be overburdened by the combinatorial explosion, resulting in ten
thousand cases to be discussed for each of the malfunctions. We can expect that this will get even worse for
automated vehicles in the future, as they require to discuss not only malfunctions due to failures, but also
due to limitations of the nominal functionality (termed “SOTIF” for “Safety of the intended functionality”),
and to judge this, even more parameters of the environmental situations are of relevance, e.g. pose, clothing
colour and movement speed of a pedestrian (perhaps one out of many that are present in the scenario), that
is supposed to be detected by the automated driving function (e.g. to trigger a braking maneuver). A lot of
experience and advanced tool support is required to keep the number of situations manageable, e.g. by
forming equivalence classes or by exploiting subsumption relationships or mutual exclusion relationships
(e.g. driving at 200 km/h should normally not occur in city scenarios).

In the next step (4), the effects of the malfunctions are determined for certain environmental and usage
scenarios, which finally leads to the definition of the hazard (4c), e.g. malfunction: “the system sets the
vehicle speed to a value that is higher than specified” x usage scenario “driving on a highway as part of a
platoon” = potential immediate effect: “too low distance to predecessor vehicle” = potential hazard!l:
“rear-end collision with predecessor vehicle”. This is today a manual and usually table-based process. In the
future, simulation together with fault-injection and monitoring techniques (which is one of the main goals of
AMASS) could automate a part of this work.

11 150 26262 makes a fine distinction between “hazard” and “hazardous event” — only the latter being the combination
of a malfunction and an operational situation. In practice, this distinction is seldom made, and to avoid confusion we
will also not make this distinction, as it has no relevance for the AMASS approach.
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Figure 24. Example of scenario analysis

Associated with step (4) is the rating of the hazard in terms of ASIL. The ASIL is calculated out of the factors:

e E for exposure (3a), which depends only on the usage scenario and can therefore be provided along
with the situation catalogue.

e S for severity (4a), which depends on the type of injuries that can be expected to any humans —
inside or outside of the car — when the described type of accidents happened. These must be
manually ranked by experts from SO — no injuries —to S3 — severe injuries, survival not probable.

e C for controllability (4b), which rates the probability that the driver or other affected people (e.g.
pedestrians, that could in some cases jump aside) can prevent the accident, ranking from CO —
normal control operations that every driver does all the time, like slightly adjusting the speed to C3 —
almost uncontrollable. Note that for automated driving functions that allow the driver to perform
side tasks, or that run vehicles in close distance to each other in a platoon, C3 must be assumed in
most cases.

From these factors, the ASIL can be automatically calculated (4d) according to the Table 4 in ISO 26262-
3:2018, e.g. S2, E4, C3 > ASILC.

The remaining steps are (5a) the naming of a corresponding safety goal (= top-level safety requirement),
normally by just adding “prevent” to the hazard name (hazard: “self-acceleration” = safety goal: “prevent
self-acceleration”) and (5b) the specification of additional parameters, e.g.

e Safe state (e.g. in case of failure leading to a self-acceleration = switch propulsion off completely).

e Fault Tolerant Time Interval (e.g. in the range of 100 ms to 500 ms for typical powertrain-related
failures).

e Defining parameters (e.g. self-acceleration is any acceleration generated by the electric powertrain
which is greater than the driver’s demand by more than 4 m/s?).

The output of the HARA are the rated hazards that will serve as root events for safety analysis and the rated
safety goals that will be refined into more detailed safety requirements (or safety contracts) according to the
further steps of the AMASS methodology.

3.2.3 Requirements Formalization

3.2.3.1 Requirements Formalization in CHESS

This activity has the goal of translating the informal requirements allocated to system components into
formal properties. Formal properties are textual expressions specified in a restricted grammar so that their
semantics is formally defined (in rigorous mathematical terms). Such expressions refer to the elements of the
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system component interface defined in the previous activity. The AMASS platform supports the specification
of well-formed formal properties with the help of an automated completion feature that suggests the

possible continuations of a partial specification.

In order to formalize a requirement previously allocated to a component, perform the following steps:

1. Create a formal property associated to a component: Navigate the elements of the model using the
“Model Explorer” view, and create a new diagram (class diagram or block definition diagram) or open
an existing one. Using the palette of the diagram editor, select the formal property element and drag
it inside a component already created, see Figure 25. The formal property element becomes visible
also in the “Model Explorer” view. The same result can be achieved following Step 2 and 3.
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Figure 25. Formal property created in the diagram editor. The property is associated to one component
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2. Create a formal property: Navigate the elements of the model using the “Model Explorer” view, and
create a new diagram (class diagram or block definition diagram) or open an existing one. Using the
palette of the diagram editor, select the formal property element and drag it in the editing space, see
Figure 26. The formal property element becomes visible also in the “Model Explorer” view.
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Figure 26. Formal property created in the diagram editor. The property is not associated to any component

3. Set the owner component of the formal property: Select the formal property (in the “Model
Explorer” view) or the corresponding graphical representation (in the diagram editor) and open the
tab “UML”. In the “context” area, browse the model and set the owner component of the formal
property, see Figure 27. This step is not mandatory but is required to enable the “completion
assistance”, see step 4.
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Figure 27. Owner component set in the UML tab
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4.

Edit the formal property: Open the tab “CustomPropertyEditor” in the “Properties” view tab. Write
the formal property in LTL. By pressing CRTL + SPACE it is possible to have a list of supported
keywords of the LTL to define the formal property. If the owner component is set correctly (see step
2), the “completion assistance” can suggest also the input/output ports and the attributes of the
owner component to type. Moreover, it notifies whether a typed word does not belong to a
keyword/port/attribute, see Figure 28.
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Figure 28. Property Editor with “completion assistance”

Note that in case the formalized requirements are not available in the CHESS model, Capra
traceability tool can be used to create a trace between the FormalPoperty and the requirements
available in the external source.

Note that, according to the previous steps, the formalized requirements should have been allocated
to the current component (see section 3.2.1.1).

Link the requirement to the formal property: Open the tab “Profile” in the “Properties” view tab. In
the area “Applied stereotypes” select “Formal Property” — “Formalize”. Then, browse the model and
set one or more requirements that are formalized by the current property, see Figure 29.

[ Properties 52 J Model Va.. 57 Referenc.. & Hierarchi.. []Contract.. ! Problems [ Console & Progress #fTrace = O

MEFE v
{7} FormalProperty1
T Applied stereotypes: % | 8| Formalize %/
T
Comments v FormalProperty  (from CHES5Contract) Brake Delay
Profile =1 Formalize: Requirement [*] = [Brake_Delay] -
= concern: Concerns [1] = unspecified
Style
Appearance

Rulers And Grid
Advanced
CustomPropertyEditor
OpenCert

Figure 29. Requirements set in the Profile Tab

Formal properties can be further structured into contracts, performing the following steps:

1.

Select the component to assign the contract. The element can be selected in the “Model Explorer”
view or in the graphical editor.

Create the contract. Open the tab “custom property editor” in the “Properties” view, type the name
of the contract in the “new contract's name” area and click the “Add Contract” button. A popup
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appears to choose if a new contract must be created or if an existing one must be instantiated, see
Figure 30.

£ Question b e

e Do you want to create a new contract or instantiate an existing one?

Figure 30. Popup related to the contract definition process

3. Edit the contract. In the tab “CustomPropertyEditor”, it is possible to assign existing formal
properties to the assumption and guarantee fields of the contract or create new ones. Then it is
possible to edit the properties with “completion assistance”, see Figure 31.

IProperties 4 Model Validation ¥ References " Trace & Hierarchical Model View TlContract Refinement View [ Problems 2 Console = Progress CTE =
T System

UML WheelBrakingSystem:modelSystemView: Physical Architecture:System Selected Class

Comments contract_system : contract_systemType v Contract List

SysML contract_system Add Contract

Profile

Style Assume o= Guarantee

Appearance true always(Brake Line)

Rulers And Grid

Advanced
Contracts
CustomContractEditor
OpenCert

Figure 31. Contract editor with “completion assistance”
3.2.3.2 Requirements Formalization Using SAVONA

As users might not be familiar with formal expressions to define contracts, SAVONA supports a custom text-
based editor with syntax checks and auto-completion, and a wizard to set up assertions with pre-defined
templates for the most common assertion patterns.

In SAVONA Assertions are the equivalent to CHESS’ Formal Properties which can later be used as assumptions
or guarantees within a contract. Assertions are bound to a model element, so the system component which
shall be specified needs to be selected either in the Model Explorer or the Diagram Editor. The “Assertions
tab” of the Properties View shows all defined assertions of the selected model element. To create a new
assertion either use the right click context menu of the Assertion Table or press the green “Add”-button on
the upper right-hand corner of the Properties View (see Figure 32).
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Assertions ASl ‘Whenever Pedal_Posl occurs then in response Pedal_Pos2 occurs without any delay . TEBD
Macros

Figure 32. Assertion section of the properties view in SAVONA

Assertions are defined in a constrained natural language called System Specification Pattern Language
(SSPL)[71]. Using this semi-formal language guarantees certain qualities of the built expressions like high
readability, unambiguity and the option for automated verification.

As it cannot be expected that the user either knows SSPL or can write such expressions free-hand SAVONA
offers two options to define assertions with tool guidance which will be described in the following
paragraphs.

Assertion Wizard

As applying a template language can be quite difficult without any guidelines, SAVONA features a wizard that
guides the user through the process of choosing and filling out an appropriate pattern structure for their
system’s specification. The first page of the wizard shows the three main pattern types of SSPL: Global
Invariant Pattern, Simultaneity Pattern, and Trigger-Reaction Pattern (see Figure 33). A short description and
a usage example for each one is provided.
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@ Assertion Wizard [ Cl &J

Create a new Assertion based on patterns

Select a general pattern type which fits your assertion the most,
The next site lets you choose a mere specified set of patterns based on your cheice

Select which Pattern you want to use:
General Pattern Type
@) Global Invariant Patterns
For nearly all systerns we want to define conditions, which shall always hold,
regardless of the state the system is currently in.
The Global Invariant Pattern allows the definition of those conditions,
as they do not have a restricted scope but need to be fulfilled at all points in time.

Example: the supply_voltage is always in the range from 5V to 12V.

Simultanety Patterns

These Patterns are used to specify the dependency system behavior,

that happens simultanously. They can express the dependency of one condition to another

or can state that a specific event is only allowed to occur while a certain conditien holds,
Example: While ignition occurs, car_key_status is "INSERTED".

Trigger-Reaction Patterns
System behavior can also stand in some trigger reaction relation to each other,
So does some event occurence always need to trigger another event or
result in the satisfaction of a specific condition
Example: Whenever crash_detected occurs then in response airbag_ignition occurs during within 50ms.

'f?} < Bac Mext > Finish Cancel

L

Figure 33. Assertion-Wizard: Selection of a General Pattern Type to formulate an assertion

After selecting the main pattern type, several possible pattern instances of the type are presented to the
user. Each of them features an example to demonstrate a possible application. If an appropriate pattern
instance is chosen, the user will be directed to the last page of the wizard, where the patterns construct
needs to be customized. The user can now replace non-terminals by simply clicking on them. A drop-down
menu shows possible substitutions and the option to use a macro. If a terminal that must be replaced by an
event name is selected, a list containing all event interface names of the currently selected component
appears (see Figure 34). That way the user can only choose and use model elements that are in scope. The
same holds for terminals that must be replaced by variable names except that the suggested names come
from all available ports except the event ports. A set of time units is provided to the user can choose from
when specifying timed behaviour. Only if no non-terminals remain in the pattern instance and all terminals
are replaced by actual interface names, values, units, etc., can the assertion be assigned to a selected
component. Otherwise, the wizard will give a hint to the user about the remaining non-terminals or
terminals.
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s 5
@ Assertion Wizard l = &J
Create a new Assertion based on Trigger-Reaction Patterns
Customize the template based on your model,
p y
You choose the following Pattern:
C1: Whenever [precond_or_events] then in response [postcond_or_events].
You may now customize the pattern fitting your needs.
- Pedal_Posl occurs
Whenever any of the following events occur: then in response  Brake_Line occurs within 10 ms
- Pedal_Pos2 occurs Revert to "[event_while]"
Brake_Line
bscud_fault dBmmand
Whenever any of the following events occur: - Pedal_Posl occurs - Pedal_Pos2 occurs then in response lcnBiatitois
Pedal_Posl
bscuZ_fault_Monitor
bscul_fault_Monitor
Pedal_Pos2
\,

Figure 34. Assertion-Wizard: Refine the pattern instance with names of available model elements

Assertion Editor

If the user has already gathered some experience with our template language, the use of the Assertion
Wizard might include too many unnecessary steps to formulate a valid assertion. The right pattern structure
is already known by the user, so going through the wizard seems inefficient. The Assertion Editor allows the
user to directly type in the desired assertion. As writing valid assertions free-hand can be difficult and error-
prone, the tool supports an online syntax check and suggestions for auto-completion of the statement, as
one might expect from various programming IDEs. Figure 35 shows the Assertion Editor suggesting valid
possibilities to continue the current statement.

@ Create a new Assertion &Jl

Whenever Pedal_Pos] occurs then in response P

[#| Brake_Line : Event -
2| bscul_fault_Command : Event

3 bscul_fault_Monitor: Event

# bscu?_fault_Command : Event

4 ¥ bscul_fault_Monitor: Event

# Pedal_Posl : Event

|2/ Pedal_Pos2 : Event

‘= all of the following condi%ns hold:

'= any of the following events occurn

m

Hint: Use Ctrl+Space to activate the content as|

oK

1= at least of the following conditions helds:
'= none of the following condition holds:

'= none of the following events occur:

Figure 35. Pattern-suggestion feature of the Assertion Editor

3.2.3.2.1 Macro Definition

Sometimes it is unavoidable to use complex expressions within a pattern language, where a natural language
expression would be much shorter or easier to read and understand. That is why we introduce the concept
of Macros, which allows the use of natural language expressions within our pattern language. The user
defines a meaning for each natural language phrase by specifying a corresponding pattern language
expression. This way we ensure that even with natural language elements, all built expressions within our
pattern language have unambiguous semantics.
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As Macros are used to create assertions, they can be created on the same types of model elements. To add a
new macro, click the Add-Button on the upper right-hand corner of the Macros Section (see Figure 36).

EProper‘cies 4 Data Dictionary : g v = B

CrashSensor

Attributes Macro Mame Definition

Contracts i a crash happens weh_acc decreases below -50 m/s"2
Assertions

Macros

Figure 36. Macros Section of the Properties View in SAVONA

In the wizard, a keyword of the template language is selected for which a macro shall be defined.
Additionally, macro name must be defined.

Macros can only replace a non-terminal from the (semi-) formal syntax, as the semantics are only guaranteed
to be specified on that level. Terminals (such as port names) can have different meanings due to their
context and can therefore not be used as a macro definition.

The subsequent macro wizard pages allow the customization of the selected keyword. Therefore, the same
page layout is used as the Assertion Wizard.

3.2.3.2.2 Data Dictionaries

When specifying (semi-)formal assertions, there needs to be a way to define custom variables such as
constants or units. SAVONA offers a Data Dictionary View (see Figure 37), where several model elements can
be defined that can later be used within the definition of assertions:

e Enumerations and Enumeration Members can be defined
e Constants of a certain type (Integer, String, etc.) with or without a Unit
e Units (a predefined set of Units is available from start-up)

e Datatypes to use as types on ports (a predefined set of Units is available from start-up)

[C] Properties | £ Data Dictionary = B

MName Value Type Units Coemment
4 f Global DataDictionary

. (& Enumerations

. (& Constants

: Q Units

. & DataTypes

Figure 37. Data Dictionary View in SAVONA

Each SAVONA project/model features one Global Data Dictionary whose entries are available through the
entire project. Additionally, each component type (block) has its own Local Data Dictionary whose entries
are only available to this exact same component and its owned ports.
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3.2.4 Requirements Early Validation

3.2.4.1 Requirements Semantic Analysis

The goal of this activity is to increase requirement quality by detecting and removing requirement defects.
Currently detected requirement defects are logical inconsistency, redundancy, and non-realizability.

A set of requirements is considered to be logically consistent when no subset of requirements is
contradictory. If the set is inconsistent, then the tool Remus is used to identify the minimal inconsistent
subsets, i.e. the sources of the inconsistency. A requirement is redundant if it is implied by another
requirement. In such a case, the redundant requirement is reported to the user. The redundancy is currently
checked using the SPOT tool. Requirements are realizable by a non-trivial system and relatively complete
when a system can be created that satisfies all requirements, does not restrict any input on top of the
restrictions already introduced by the requirements, and no output could remain constant forever from the
very beginning. The realizability checking is implemented using the tool Acacia+. All these background tools
are integrated on verification servers and are controlled by V&V Manager using OSLC.

This activity assumes that the requirements are formalized already as described in the Section 3.2.2.

The formalized requirements are stored as the formal assumptions and guarantees in the contracts, see
Figure 38.
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Figure 38. Formal assumptions/guarantees in the contract of a component

In order to submit these formal properties to the appropriate V&V tool(s), the user selects a set of the formal
properties and sends them through the V&V Manager to the connected tools. The selection of the formal
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properties is performed manually e.g. in the Block Definition Diagram, either at the level of individual
properties, or at the level of contracts, where all formal properties related to the contract are included in the
set, or similarly at the level of components, via the related contracts. The validation is invoked from a
contextual menu as depicted in the Figure 39.
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Figure 39. Invocation of the V&V Manager

After the validation tools return the results of their semantic analysis to the V&V Manager, these results will
be presented in a “V&YV Result” view to the user, see Figure 40. The user can examine the results and remove
any detected defects of the formal properties.

V&V Manager supports contracts with formal properties only. Formal properties are supported in Linear
Temporal Logic (or some expressively equivalent Bounded First-Order extension). While some V&V tools
have restrictions and support for example only subset of LTL, the V&V Manager in general supports it
completely.
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Result received from the Verification Server after 48 seconds,

Checking consistency took: 0. 150078 s.

The set of requirements is consistent.

Checking vacuity took: 0.158511s.

Mone of the requirements is satisfied vacuously.

Checking realizability took: 2. 10604 s,

The set of requirements is realisable.

Here is the evidence:
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Figure 40. V&V Result view
3.2.4.2 Validation of contracts

This validation is done by checking if a specific guarantee of the contract satisfies the assumption of another
contract. To verify the contract property, perform the following steps:

1. Choose the component that owns the property to check: Select a component (in the “Model
Explorer” view) or the corresponding graphical representation (in the diagram editor). The properties
available to check will be the assumptions and guarantees of contracts owning to the selected
component and to its sub components. This operation includes recursively all the properties from
the root to the leaves of the selected component.

2. Perform the validation: right click on the selected component, then go to “AMASS” — “Validation” —
“Check Validation Property” on the Selected Component. A popup appears to set the parameters of
the command (see [16] for more details).

3. Receive the result of the validation: when the check is completed, the status of the check is shown in
the “Trace” view.

3.2.4.3 Requirement Quality Analyser in the AMASS platform
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The tool Requirement Quality Analyser (RQA) implements connectors to different environments providing to
the AMASS platform evidences of the quality of the projects. These evidences are the quality assessed by the
quality metrics included in RQA. Following, the different steps to connect to a CHESS project, assess the
quality of the model and store the evidence in AMASS are detailed:

1. Create a new OSLC-KM connection in RQA to reference the CHESS project. Figure 41.

Available requirements management system (RMS5) connections:

Connection name Server

4 AMASS Papyrus model 'y
() Lows

& Quality Project TEST &
& New Quality Project
) RQS English Training

New Quality Project ..

Add requirement repository

Edit requirement repository

Delete requirement repositories

b :?o

43 Intel o

& QP o Delete all repositories

% uisma

& Quality Computing QProjec i, Import requirement repositories

ﬁ PTC 2, Export selected requirement repositories

14 connections Refresh

Hide RMS connections | Configure Server| | Options v

Project

arsers\Os... flightSimulation.mdl
SO | TS S

" | &) IBM Rational DOORS
O 1BM DOORS Next Generation
Bl PTC Integrity

r | 8 Reqtify

AV H =} 1 e
2 OSLCKM

7 oI

i Microsoft Excel

= Template from Microsoft Excel

O wrn wr e

Figure 41.RQA Connection Window

ples English/

Quit

ect

2. Inthe OSLC-KM Connection window select the project and complete the rest of configuration values.
Figure 42 (to detail information of the different parameters see the deliverable D5.6 “Prototype-for-

seamless-interoperability (c)” [31] section 2.2.3.5).
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VERIFICATION Studio
by The REUSE Company

1. Connection Information:

Name:

Description:

2. OSLC KM Connection Parameters:

Basic Configuration Optional Configuration Filtering Configuration -

Source: Knowledge Source Type:
OSLC Service || Type: SysML SubType:

@) File SysML v | Papyrus b

Database

SysML File:

Di\Projects\RQA v17 trunk\Rga.Face.OslcKm\Oslc.Km.Services\App_Data\SysMLModels\CHESS\model.um|
SRL Content Selection

Use a specific ontology:

OK Cancel

Figure 42. OSLC-KM Connection (SysML CHESS sub-type)

3. When the configuration is created it is possible to connect to the project and the artefacts of the
model are imported to RQA tool (see Figure 43).
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(-7' Connection

VERIFICATION Studio : = =
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User:
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Password:

Connection name:
CHESS Model
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| Connection name
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_# CHESS Model
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T

FI EE‘GV|

|Hide RMS connections  Configure Sen.fer| | Options v |

| Connect |

Quit |

Figure 43.RQA Connection Window

4. In order to assess the quality of the model, it is necessary to select a template that stores the set of
metrics, For further information of the metrics [63] (Figure 44 and Figure 45).

Y/ The module 'MovileSpecification’ has no metrics defined to
/ assess quality. Do you want to link a metrics template to this

module?

If you do not choose a metrics template, no quality assessment

will be performed.

Yes No

Cancel

Figure 44. Information message to select a set of metrics
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— Metrics set baselines:

Search ‘

‘ Identifier Name ‘ Description
17 SyRS Template
19 TRC Metrics Configuration
20 RMS
35 1SO-26262

G

Metrics set baselines: 4

OK ‘ | Cancel

Figure 45. Window with the templates store in RQA that contains the set of metrics

5. When the template is selected, RQA is ready to assess the quality of the model. It is possible assess
the quality for correctness, completeness and consistency metrics (see Figure 46 and Figure 47).
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Figure 46. RQA ready to assess the quality
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Figure 47. Detail of the assessment options

6. Once the model has been assessed, the quality of the different artefacts of the model is shown in
RQA tool (see Figure 48). This quality measure can be exported as evidence to an AMASS repository.
For this it is necessary to include the location of the server and select the project (see Figure 49 and

Figure 50).
VERIFICATION Studio - F X
> @
R o
view I'Ill )
Metrics Users Charts Metrics Metrics Suggestions

v

Correctness Consistency | Completeness Knowledge base

1g & column header here to group by that column

Physical path Correctness | Score | M. | Corre... | Consistency | ...
D:ATemp\OSLC KM Files\12.Sysml_Papyrus\ 1.00 0 19/09... N...
MovileRequirement\Movile Specification\Technical Requi... 1.00 0 19/09..
MovileRequirement\Movile Specification\Technical Requi... 1.00 0 19/09..
MovileRequirement\Movile Specification\Technical Requi... 1.00 | 0 19/08...
MovileRequirement\Movile Specification\ 1.00 0 19/09...
MovileRequirement\Movile Specification\ 1.00 0 19/09...
MovileRequirement\Movile Specification\ 1.00 0 19/09...

Figure 48. Quality information of the model in RQA.
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Connection parameters:

Protocol: Server:

TCP localhost:2036

AMASS Repository Name:

opencert

Assurance Project:

SAPC_SEooC ‘Q‘| ‘x

Evidence name:

Chess Evidences

| @ save H Cancel ‘

Figure 49. Connection window to export the evidence in an AMASS repository

The assessment of the Workproducts have been stored as
evidences in the AMASS Repository successfully.

oK

Figure 50. Information message of the stored process

7. Following the detail with the evidence stored in the assurance project is shown (see Figure 51).
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Edit Navigate Search Project CDO Editor Run Argumentation OSLC-KM Process Lines VV CHESS Window Help

[ @FiP - iiNiL i v i - A
4 Repository Ex.. ¥ & ~ U & Chess Evidences.evidence &
B % 7~ Artefact Model clean
Session1 [opencert] ~ v [ Artefact Definition clean
9 View 1 v 37 Artefact D:ATemp\OSLC KM Files\12.Sysml_Papyrus\Movile
& ReferenceFrameworks clean v 37 Artefact DATemp\OSLC KM Files\12.Sysml_Papyrus\Mo
= Vehicle clean

& Assurance Asset Evaluation clean
v = SAPC SEooC clean

= ASSURANCE_PROJECT clean

v = EVIDENCE clean & Assurance Asset Evaluation clean
[# Chess Evidences.evidence clean # Assurance Asset Evaluation clean

I sapc.evidence clean & Assurance Asset Evaluation clean
& SAPC_SEooC_Conf_Evid.evidence clean
= ARGUMENTATION clean
= PROCESSES clean

@ Assurance Asset Evaluation clean
@ Assurance Asset Evaluation clean

@ Assurance Asset Evaluation clean
@ Assurance Asset Evaluation clean
@ Assurance Asset Evaluation clean

= Testing_Project_1 clean @ Assurance Asset Evaluation clean
= AssuranceCaselraining clean o @ Assurance Asset Evaluation clean
= ComnliancaTrainina claan @ Assurance Asset Evaluation clean
itline 2 € = = : = -
Artefact Model clean E Properties
Property
Id
Name

Criterion

Figure 51. Evidence stored in the assurance project

3.2.4.3.1 Requirements Formalization for analysis of Temporal Realizability — Requirement Quality
Analyser approach

The goal of this activity is to perform a consistency quality assessment in requirements specifications, by
detecting temporal elements and analysing its realizability.

As explained in D3.6 “Prototype-for-architecture-driven-assurance (c)” [29] (Section 2.2.3.1), the
implementation consists of a NLP software mechanism applied to textual requirements in order to make a
quality assessment, in terms of temporal consistency. To summarize, the metric looks for elements
representing time in the requirements and then checks that they do not present temporal conflicts. This
process starts by formalizing requirements using certain writing patterns, these patterns are a structure used
to detect sentence based on the position of the words with the goal to recover relevant information. The
resultant LTL is being processed by Acacia+, an open source tool with algorithms to check the realiability,
syntehisis and optimization of LTL specifications. Thus, Acacia+ will check the temporal consistency and
return if the resultant LTL is realiable (high quality) or not (low quality). The deployment and configuration of
the temporal consistency metric in RQA will perform these steps:

In the first place, for the deployment of the new metric, it is necessary to get into the “Consistency” section
in Requirement Quality Analyser (RQA), and select the addition of a new Custom-coded quality metric, see
Figure 52.
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) = Reguirements Quality Analyzer - O x
Quality Control Project configuration Quality Assurance & ®
= Read
& ‘ l") o Modify
@ SRAZ Y 5 - N Create
Meodules Mew aggregated Correctness = Completeness  Consistency Suggestion Project '% Craste Attributes
module management credentials f—
Project Metrics RQS Synchronizer Project permissions

Metrics

Enabled On the fly

Consistency type

Custom-code consistency metric

4 Rationale

Identifier

4252 LTLGenerator

© Add new metric » | Properties values
@ Edit metric % Arithmetic operation compliance with SCM
[Fa  Delete metric(s) % Overlapping requirements
z‘ Enabled i Measurement units
z‘ Suitable for checking on the fly i Measurement units for specific property
- F Custom-code
No. of metrics: 1 Eng % Copy to clipboard o E|° . ’?» Eé
Select all
Selected metric ranges E slecta
— EE Select none .
Lower limit  »  Upper = Lmmary Description High

Invert selection

1 consistenc... When this metric dete...

Refresh eissuesf... When this metric dete...

Medium

Mo. of ranges: 2

Figure 52. Creation of a new custom-coded consistency metric

The following window will pop-up, Figure 53. It requests a metric name and description (optional) of the new
metric, a requirements filter (optional), the suitable patterns or patterns group (set of patterns) from the
System Knowledge Base, and the implemented library information. The System Knowledge Base (SKB) is the
Ontology of the system managed by the Knowledge Manager (KM) tool.
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) Consistency metric configuration - [m] x
Metric information:
Name: |LTLGenerator

Rationzle:

Enabled: |4 Suitable for checking on the fly: [

Apply only on requiremerts holding this expression over an attribute:

Attribute; |[Q][%] Operator: | Value:

Type: | String

£

Select the suitable patterm groups and pattemns o analyze the requirementss for this medric:

Paitem groups: Pattems:
|dentifier Pattem group - I Identifier Pattem -
46 [Shared Resource Arbiter]
No. of pattem groups: 1 E‘o . = No. of pattems: 0 E‘o E|

@ In case that the assembly is locah

=d in the same path 2= RQAS, specify only the assembly file name.
Othewise, provide the assembly f

path and file name. Network locations are also permitted

Custom-code corfiguration parameters; Custom-code evaluation parameters;

Assembly: |LTLGenerator dl | E i Assembly: |.LTLGener!or.ﬂ |& L
Class: |CustomCodelTLGenemtor | Q| ~ Class: |Custm1CodeLTLGenerator |Q [x
Method: _LTLGena'ator_Corﬁgumtion | Q| Fa Method: |LTLGmecT-.tor_Evalua1ion |Q =~
o Configure Custom-code consistency metric | Testcustom-code
Canl

Figure 53. Custom-coded configuration step

For more details, according to the RQA’s available API, it requests the library (assembly name and location,

class name and method name) where the Configuration and Evaluation function are implemented (Figure
54).

In case that the assembly is locat
Othewise. provide the assembly fi

Custom-code configuration parameters:

=d in the same path as RQS, specify only the zssembly filz name.
ath and file name. Network locations are also permitted

Custom-code evaluation parameters:

Asgembly: !LTLGeneratm.dII | E L Azgembly: |.LTLGener.lor.d |& L

Class: [CustomCodeL T Generstor | [Q] [ Class: [CustomCodeLTLGenerator [Q][x

Method: |LTLGenerator_Configurstion | Q| X Method: |LTLGer|er:tor_EvaIuation | |Q ~
0 Configure Custom-code consistency metric | Testcustom-code

Figure 54. Assembly, class and method selection

Second, it is time for the configuration step, Figure 55. In one hand, it is necessary to establish the only
Acacia+ configurable parameter. Precisely, it is the K number of accepted states, setting a range from 0 to 5,

with an incremental coefficient of 1, which restricts the number of iterations in case the problem is hard to
be computed.
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a5 Configuration — O >

Acacia+ options

Range of values of k-

From |I]'| | to |5 in steps of

Accept Cancel

Figure 55. Range of values of K

On the other hand, it is also necessary to setup the suitable patterns or pattern groups that will match the
requirements for the LTL translation, see Figure 56.

Select the sufable pattem groups and pattems to analyze the requirements for this mefric:
Pattem groups: Pattems:
|dentifier Pattem group g Identifier Pattem

46 [Shared Resource Arbiter]

No. of pattem groups: 1 F‘o E‘_D No. of pattems: 0 LE1° F‘o
Figure 56. Pattern groups selection

The deployment and configuration steps are done and the metric is ready to be applied against the
requirements specification, see Figure 57. Of course, the objective is to either tune the metric configuration

or modify the requirements specification according to the metric results.

Metrics
|dentifier MName : Quality Score  Quality date Summary

v 4525 Acacia+ Temporal Verification 1 1.00 9472016 11:55:23 &AM Neither rezlizability nor unrealizability has been proved.

4526 Acacia+ Temporal Verification 2 0.00 9/4/2016 11:55:23 AM  Formula is rezalizable.
Figure 57. Metric ready to assess quality

By double-clicking on the metric, the results will show up. Notice that there are only two possible final states:
temporally realiable specification or not (with the selected configuration). Thus, for the realiable case, the
result is high quality (3 stars), Figure 57, or low quality (1 star) for the case it is not possible to demostrate
the realiable. Additionally, there is a result window showing the final translation and Acacia+ result, see

Figure 58.
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LTL Viewer - O *

# Cliert 1: = When engine activates, propeller shall be canceled until ignition starts = A
G(engine=1) -= X{jpropeler=0)U{ignition="1)});

# Client 2: < When aircraft launches, wheel shall be closed until electrical power system activates =
Gilaircraft=1) -= Xifwheel=0)Uielectrical power system=1)});

# Mutual Beclusion:
# < When ignition starts, electrical power system shall be stopped >
# < When electrical power system activates, ignition shall be deactivated =

Gifignition=0) + (electrical power system=0});

HEHHHHHHENE Realizability checking and synthesis BEEFHHHHHHEE
Calling tl2ba to convert each specfication to automaton
spec ul... done

(Optimization on automaton for ul: Detect bounded /unbounded states...

Tum-based automaton for ul]

nb states: 11 (Environmert: 7/ System: 4)
nb accepting states: 5

nb unbounded states: 8

Ok

Figure 58. Metric results
3.2.4.3.2 Requirements Quality Metrics

Correctness metric:

With the activity related to the correctness metrics, the requirements in the specification are analysed with
the System Knowledge Base (SKB) detecting correctness issues, for further information: about SKB [64], and
about correctness metric [63].

Correctness summarizes the set of desirable individual characteristics of a correct requirement:

e Understandability: requirements are clearly written and can be properly understood without difficulty.

e Unambiguity: there is one and only interpretation for each requirement (unambiguity and
understandability are interrelated; they could be even the same characteristic).

e Traceability: there is an explicit relationship of each requirement with design, implementation and
testing artefacts.

e Abstraction: requirements tell what the system must do without telling how it must be done, i.e. excess
of technical details about the implementation must be avoided in the specification of the requirements.

e Precision: all used terms are concrete and well defined.
e Atomicity: each requirement is clearly determined and identified, without mixing it with other
requirements.

Following, it is shown the different metrics implemented, see Figure 59 and Figure 60. To create one of these
metrics it is only necessary to select the proper metric.
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Correctness | Completeness | Consistency
— Correctness metrics:
| Identiﬁer| Metric l... | Name " Rationale Weight
o 17,119 1175 Out-of-5CC Mouns Nouns that are not part of the SCC must be avoided.
v 16,067 1145 Out-of-5CC Mouns Nouns that are not part of the SCC must be avoided.
ce -of- rbs Verbs that are not part of the SCC must be avoided.
o |BASRSREE N B eased onrvs » :
v ’?» Edit metric E‘; Based on Simple Text content » RO2 Precision - Passive voice (Avoid)
> E.! Delete metric(s) _ ROZ2 Precizion - TRC - Conditional mode (Avoid)
= RO2 Precision - TRC - | tr ode (Enf;
- Enable Selected E‘; Based on Textual structure 4 reeisen mperative meds (Enforce]
e Enable all E.] Based on Special Sentences R03 Precision - Subject; Specific Terms (Avoid)
> Disable all E.] Custom-code metric RO3 Precision - Subject: Generic Terms (Avaid)
_ _ _ RO3 Precision - Subject: Part Terms (Avoid) i
v Search... - Indefinite articles (Avoid) instead of...
X X X RO3 Precision - Subject: Whele Terms (Avoid) X
ol Copy to ¢ | - Passive voice [Avoid) V2 VOICE Te...
o Select al - TRC - Conditional mode (Avoid) RO4 Precision - In-controlled vocabulary nouns (Enforce and restrict) L ertiveness...
Sal RO4 Precision - Out-of-controlled vocabulary nouns (Avoid)
elect none

|Z|

Invert selection

Copy selection to clipboard

R0O4 Precision - In-controlled vocabulary verbs (Enforce and restrict)

R04 Precision - Out-of-controlled vocabulary verbs (Avoid)

O=@ BEEEE = O

RO4 Precision - In-Hierarchical views nouns (Enforce and restrict)

RO4 Precision - Out-of- Hierarchical views nouns (fvoid)

RO4 Precision - In- Hierarchical views verbs (Enforce and restrict)

RO4 Precision - Qut-of- Hierarchical views verbs {A\c‘(ﬂ]

T

Export... 4
~ Ousl Refresh
| Range - " Mandatory | Quality Level | Sur
wil 0, 1) No * ok
wil 11, 0) No * The A

RO4 Precision - In-Semantic clusters nouns (Enforce and restrict)

RO4 Precision - Qut-of-Semantic clusters nouns (Avoid)

ment, you must...

No. of ranges: 2

o) S| G |G o'T_'I I S S R i I e R e |

RO4 Precision - In-Semantic clusters verbs (Enforce and restrict)

RO4 Precision - Qut-of-Semantic clusters verbs (fAvoid)

RO4 Precision - In-System Conceptual Model nouns (Enforce and restrict)
R0O4 Precision - Out-of-System Conceptual Model nouns (Avoid)

@580

RO4 Precision - In-System Conceptual Model verbs (Enforce and restrict)
RO4 Precision - Out-of-System Conceptual Model verbs (Avoid)

R38 Uniformity Of Language - Define Terms (Avoid Synonyms)

R40 Uniformity Of Language - Unknown Abbreviations (Avoid)
R40 Uniformity Of Language - Unknown Acronyms (Avoid)

Figure 59. Correctness metrics related to nouns
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Correctness | Completeness | Consistency
Correctness metrics:
Identifier | Metric L. | Name Rationale
17,119 1175 Qut-of-5CC Nouns Mouns that are not part of the SCC must be avoided.
16,067 1145 OQut-of-5CC Nouns Neouns that are not part of the SCC must be avoided.
17.047 1171 _Qut-of-SCC Verbs Verbs that are not part of the SCC must be avoided.
Add new metric *| (& Based on RMS v —— SN SRRV - S
; - = - ) E.] RO2 Precision - Passive voice (Avoid)
Edit metric (% Based on Simple Text content *
@ Delete metricls] —— N E.] RO2 Precision - TRC - Conditional mode (Avoid)
= - % RO2 Precision - TRC - erati de (Enfor
Enable Selected EJ Based on Textual structure v =© recisen mperatve mede | ree)
Enable al =] Based on Special Sentences % RO3 Precision - Subject: Specific Terms (Avoid)
Dicable all B Custom-code metric % RO3 Precision - Subject: Generic Terms (Avoid)
a = C -
- : : : % RO3 Precision - Subject: Part Terms (fwoid) -
Q Search... - Indefinite articles (Avoid) instead of...
) . i % RO3 Precision - Subject: Whole Terms (fvoid) )
2 Copyto + | - Passive voice (Avoid) ve voice re...
EB Select al ~TRC - Conditional mode (Avoid) 5 R04 Precision - In-controlled vocabulary nouns (Enforce and restrict) L ertiveness...
oo [ % RO4 Precision - Out-of-controlled vocabulary nouns (Avoid)
oo Select none —
N oo ) s RO4 Precision - In-controlled vocabulary verbs (Enforce and restrict)
oo Invert selection —
s RO4 Precision - Qut-of-controlled vocabulary verbs (Avoid)
a;‘] Copy selection to clipboard — o ) ) . )
%5 RO4 Precision - In-Hierarchical views nouns (Enforce and restrict)
1: Export... 'l = Dracici R ; . Ao
o R04 Precision - Qut-of- Hierarchical views nouns (Avaid)
Refresh = — - - - -
Qual '—__]0 RO4 Brecision - In- Hierarchical views verbs (Enforce and restrict)
Range & | Mandatory Quality Level | Sum % RO4 Precision - Out-of- Hierarchical views verbs {Avoid)
0,1 No % RO4 Precision - In-Semantic clusters nouns (Enforce and restrict)
1,0 Mo The d i RO04 Precision - Out-of-Semantic clusters nouns (Avoid) ent, you mt
i RO04 Precision - In-Semantic clusters verbs (Enforce and restrict)
ifp RO04 Precision - Out-of-Semantic clusters verbs (Avoid)
% RO4 Precision - In-System Conceptual Model nouns (Enforce and restrict)
% RO4 Precision - Out-of-System Conceptual Model nouns (Avoid)
'__=]° RO04 Precision - In-System Conceptual Model verbs (Enforce and restrict)
L_=]° RO4 Precision - Out-of-System Conceptual Model verbs (Avoid)
% R38 Uniformity Of Language - Define Terms (Avoid Synonyms)
No. of ranges: 2 EJ R40 Unifermity Of Language - Unknown Abbreviations (Avaid)
% R40 Uniformity Of Language - Unknown Acronyms (Avoid)

Figure 60. Correctness metrics related to verbs

Following, an explanation of the correctness metrics is shown:
In-System Conceptual Model Nouns

The RQA tool allows to create this metric to check if each term in the requirement belongs to the SCM view
or any semantic. The SCM describes a (usually) partial model of the system universe, exclusively at
conceptual level. Everything regarding the System universe can/should/must be represented in the SCM and
stored in the SKB.

Out-of-System Conceptual Model Nouns

This metric checks if each term does not belong to any SCM view or any semantic cluster.
In-Semantic Clusters Nouns

The metric checks if each term of the requirement belongs to one or more semantic clusters.
Out-of-Semantic Clusters Nouns

The metric checks if each term does not belong to any semantic cluster.

In-Hierarchical Views Nouns
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It is allowed to create this metric to check that each term in the requirement belongs to one or more SCM
view.

Out-of-Hierarchical Views Nouns

The RQA tool allows to create this metric to check that each term in the requirement does not belong to one
or more SCM view.

The metrics related to the verbs are similar that those about nouns but focused on verbs.

3.2.4.3.3 Applying machine learning to improve the quality of requirements

The objective of this activity is to generate a classifier to analyse the correctness metrics of a requirement
and to predict their quality in function of a set of requirements previously classified in function of their
quality. For further information, see D3.3 “Design of the AMASS tools and methods for architecture-driven
assurance (b)” [28]. The process uses machine learning techniques to analyse the correctness metric of the
set of requirements and to generate the classifier. For further information, use the reference [62].

Following the steps to create the classifier are shown:

1. Connect to database, Figure 61.

ald

]

| Vet ereas Parameters configuration to the database

Connection type

AMttributes selection
Access ~

Classifier parameters
Connection parameters

Classifier integrity

Server: | Localhost

RQA Management Database name: |HequirementsCIass'rfication

User: |

Password: |

Connect

Figure 61. Database connection

2. Select the specifications and the correctness metrics that the Requirements Quality Analyser (RQA)
tool recovers for each requirement, Figure 62.
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Database parameters

Attributes selection |

Classffier parameters

Classifier integrity

RCA Management /

N/

Fitter: Select the set of metrics

Set of metric

» Personal Metrics

RQA Metrics

Select the metric that will compose the classifier

o

~

Metrics

» Unclassified_Concepts
Ambiguity
Comect_Grammar
Readability
Extra_Motes
Knowledge _Environment
MNo_Realistic
Defined_Tems
Mo_Escapes_Clauses
Conjunction
Single_Sertences

Select the requirement document sources

Documents
4 Deimos

TMSPRofibus-BAD
MSDV3PlusMIRs-G00D
URS_VO1R00G00D
FS-SRSAD1RO0D-BAD
HSS-FRRU-BC K—?—UHS-FS-V2_D—BAy

Figure 62. Correctness metrics selection

3. Configure parameters of machine learning algorithms, Figure 63.

Database parameters

Attributes selection

0 v

Classfier parameters

Classifier integrity

RQA Management

J48 ~

Select the percentage value to validate the classifier in the cross validation process

Select the percentage of each document, or the percentage of the total s

Select the algorithm to generate the classifier

Star process

J43 w

Generate ARFF files

Step 3: Generate files and classifier

Generate classifier

Estimate position using a model previously generated and without random folders

Load model and start the validation process

Figure 63. Parameters configuration

4. Generate classifier, Figure 64.

[] Generate ARFF files to cross validation
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Database parameters Select the percentage value to validate the classifier in the cross validation process
AMtributes selection 0 o Select the percentage of each document, or the percentage of the total set
Classfier parameters

Select the algorithm to generate the classifier

Classifier integrity 1 o

RQA Management

Step 3: Generate files and classifier

Star process Generate ARFFfiles Generate classfier [ ] Generate ARFF files to cross validatio

Estimate position using a model previously generated and without random folders

J48 e Load model and start the validation process

Figure 64. Generate classifier
3.2.4.3.4 Metrics for models

The objective of the activity is to create metrics for models to evaluate completeness and consistency. To
extend the knowledge of this kind of metrics use the document D3.3 “Design of the AMASS tools and
methods for architecture-driven assurance (b)” [28]. A configuration process is necessary in order to define
the elements that will be analysed along with the information of the models. Once the configuration is
defined it is possible to create the metric and to assess the quality.

Following, as an example, the steps for creating and evaluating a terminology coverage metric are shown:
1. Select the systems and subsystems from the (SKB), Figure 65.

Completeness Terminology Coverage Metric Configuration - O X
Completeness Terminology Coverage configuration:
1. Select terms from the ontology:
System Conceptual Model (SCM) Selector  Semantic Cluster Selector  Term Selector
SCM view: | | Q&
Select Terms from the SCM view
Recal;”:?f:{gﬂ‘ﬁx i&: MNew child terms belonging to the selected terms in the SCM view will not be
’ ~  taken into account in this configuration.
2. Refine your term selection:
Selected terms: |N/A Q
x
3. Corfigure the output:
Filtering term tags: |NOUN Q
x
B
Conce

Figure 65. Selecting systems and subsystems from SCM
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2. The metricis executed to assess the quality of the model, Figure 66. The information of the models is

extracted in the evaluation time.

S R ~ — B T S T

80 Terminology coverage metric - Sys... 7 0.83

i e e g e

- - - linology © ge metric
. R Assess quality for all available metrics R .
82 Properties coverage metric -- kk 0.00 - - perties coverage metric
. B 8 Assess quality for selected metrics
Properties coverage metric - Artifa.. 0.50

Assess quality for selected metrics with Scalability Platform

View quality details

r
LJd

Edit metric configuraticn

Create report

Eﬂ Clear completeness quality

Figure 66. Assessing the quality metrics

3.2.4.3.5 Quality evolution

Assess quality for all available metrics with Scalability Platform

perties coverage metric

This activity has the goal to save a snapshot with the quality of the project and to represent, in a graphical
way, the quality of the project over the time. Following the steps to save and to recover the information are

shown:

1. Save asnapshot with the information of the quality of the project, Figure 67.

% f—
B [E al |
EJ . ® sy view il .
oy | Reatimers b=l SR - 4 Suggesions
i
Qualy snapshot information - o E Objects quality
Overall quality ‘Snapshot information:

Name:
I

Description:

Send by email / Show file i folder

oK Cancel
I Otjects with "High' quality: 1 (0.60 %)
Obpects with Medium’ quality: 81 (48.50 %)
I Otjects with Low qualiy: 85 (5090 %)
i _ Correctness Consistency
I High' quality average rate: 5.75 %

i quality aversge rate: 2425 %
B 'Low guality average rate: 6999 %

W High 139 (96.53 %)
Not matching fiters:0 (000 %) B N/A:0 000 %) B Low 53475

B High:1{060%) I Medium: 56 (5150 %) B Low: 80 (47.00 %)
[

B Completeness
B Completeness

Completeness

vents - expected and found: € (10.91 %)
vents - expected but NOT found: 49 (89,09 %)

Figure 67.Saving snapshot with the quality of the project

The qualities of the different snapshots saved are graphically represented, Figure 68.
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[ A tHigh quality average rate 4. "Medium' quality average rate A ‘Low’ quality average rate 4 'No qualty’ quality average rate @ Metric Changes

Objects quality
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Completeness
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8/10/2017  8/10/2017  10/2017  &10/2017 102017  &10/2017  8/10/2017  8/11/2017  §/11/2017  8/16/2017  Current

[ Completeness elements - expected and found @ Metric Chanqes |

Figure 68. Graphical representation of the quality evolution

2. Select the snapshot to show the quality information of the project saved at some point, Figure 69.
The snapshot contains all the information of the quality of the metrics and requirements that were
included when the snapshot was saved.

o - [P—
File ‘Quality Control Project configuration ‘Quality Assurance
& [ oo fmes ot o2 = —~
TRCRequremerts | Scortbord oot | Qually | Reurements & U VeV Zy Quality snapshot from: 8/10/2017 25307 PM 35
Document (+2) evolution © Full view [6] snap6
Specifcation slector | Qualfy scoreboard and evoluton Requirements oase

'Quality Project TEST' Quality evolution - Scoreboard

Qualty Snapshot Viewer - B x
N
10000% B ] ] ] ] Juality
@ The metric configuration has been changed Comeciness Completeness Consstency
Double Cliek to view Snapshot detzils et
50.00 %
Name: snap6
Description:
000% 3
Project - module(s): DQA LDWS - ISO17361
8/10/2017  8/10/2017 8/10/2017  8/10/2017 8/10/2017 8/1 17 8/10/2017  8/11/2017 8/11/3817 8,
O i Objects quality Completeness
Overall quality
(] ] (] (] (] (] [] ] ]
100
I Objects with *High' quality: 0 (0.00 %)
Objects with Medium' quality: 77 (5347 %)
0 O O O O 0 I Objects with "Low’ quality: 67 (46.53 %)
I High' quality average rate: 120
81072017 &10/2017 /1072017  &/10/2017  8710/2017  8/10/2017  8/10/2017  8/11/2017  /11/2017  8; ‘Medium" quality average rate:
- - | . B ‘Low quality average rate: 612¢
A Objects with ‘High* quality 4 Objects with ‘Medium* quality A Obj| quality averag e Consistency

10000% |1 [ [ [ [ [ [ [ [
B High:0{0.00%)

Medium: 76 (54,17 %)
B Low: 66 (45.83 %)
R Not matching filters: 0 (0.00 %) I High: 4.(80.00%)
5000% N/A: 0 (0.00 %) B Low: 1(2000%)

/1022017 8/10/2017 8102017 $/10/2017  8/10/2017 /1072017 8/10/2017 /112017 8112017 8/16/2017  Cument

[ Create scoreboard report

000% Open containing folder

Figure 69. Information of the snapshot

3.2.4.3.6 Correctness metric for models

The objective of this activity is to create correctness metrics in order to assess the quality of models. The tool
RQA includes 8 correctness metrics for 3 kinds of models: class models, package models and sequence
models. For further information see the deliverable D3.3 “Design of the AMASS tools and methods for
architecture driven assurance (b)” section “2.4.4.3 Metrics for models”.
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Following the steps for assigning and evaluating one of these metrics are shown:

These metrics are grouped in a template in RQA, Figure 70.

i

Metrics set baseline configuration: Correctness metric for UML models

Marne:

Description:
Correctness metric for UML models
Metrics configuration:
Correctness | Consistency | Completeness
Correctness metrics:
Drag a column header here to group by that column
Metric Identifier | Name “ | Rationale \
o 34,744 Class model - Attribute Hiding Factor Metric (AHF) This metric represents the average of the invisibility of attributes in the clas...
W 34,749 Class model - Design Size in Classes (DSC) This metric is a count of the total number of classes in the design.
W 34671 Class model - Method Hiding Factor (MHF) This metric is a measure of the encapsulation in the class. It is the ratio of th...
¥ 34748 Class model - Number of methods (NM) This metric Count all methods (public, protected, and private) in a class.
W 34747 Class model - Public methods (PM) This metric calculates the public methods in a class.
L 34,750 Packege model - Abstractness The abstractness metric measures the package abstraction rate, A package...
L 34,751 Sequence Diagram - Message With Label Ratio (MLR) Measures the ratio of messages with label (any text attached to the messag...
L 34,752 Sequence Diagram - Return Message With Label Ratio (RMLR) Measures the ratio of returmn messages with label (any text attached to the r...

Mo. of metrics: 8 Enabled: &

Figure 70. Correctness metrics for model template

1. This template is assigned to the model to be assessed, Figure 71.

= VERIFICATIOM Studio

Quality Control Project configuration Quality Assurance
= Read
& '{_i") [+ ) L Moty
[3 < Select a module > e I . . ) .

a
Modules Mew aggregated C s | Cons y | Comp g Suggestion Project % Ec:z: Attributes
module management credentials
[ Delete
Project Metrics SES Batch Project permissions
Modules:
MName . | State Original Baseline Filter Access rights
Madels Correctness Metrics On-demand assessment Comectness for models (6/22/2018 1:58:0... No filter R-M-C-D-C
Change metrics template 3 | Correctness metric for UML medels
State 4 Correctness Quality Configuration - White Belt
3 Properties.. Correctness, Completeness and Consistency Configuration - Blue Belt
W Show current configuration , Correctness, Completeness Configuration - Green Belt
Correctness, Completeness Configuration - Orange Belt
¥, Import metrics for selected medules ) )
Correctness, Completeness Configuration - Yellow Belt
&, Import metrics configuration
1, Export metrics to file...
[ .

Figure 71. Assign template to the model

2. Assess the quality of the model:

Once the metrics are assigned, it is possible to assess the quality of the model based on these
correctness metrics, Figure 72.
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¥ WERIFICATION Studio
Quality Control Project configuration Quality Assurance
=] ) | oo [ 48
E Models Correctness | — ) Quality view x ll"l
4 Module Metrics Scoreboard  Snapshot Quality Workproducts N Metrics Users Charts Metrics Metrics
1 s® ector evolution ) Full view
Module selector Quality scoreboard and evaolution Workproducts Comectness Consistency | Completene
d
! Drag a column header here to group by that column
ot P. M.|ID | W L.. | Text Physical path 4 | Correctness | Score
C.. M.. C S . A . rk = Models C... 8.75
ﬁ L] 1 View formalization details PR (e
O | Cu M P - sss Metrics\ClassATh
(] G M. _ Con || \er Matrics Darkana 11
[ CoM - E Complete specification assessment - E cre
L v _ L
O c.m @ Assess correctness for selected workproducts % Corractness
Lo v L
O Cul M. _ C... ﬁ Open workproduct in O5LCKM Completeness
O Cof M. .. P.. | B Report B Consistency
[] | Cu M. _ C.. | BA Short report iss Metrics\Package3),
m [=l 1 r M © —~ rce Matricrc\Parkana3h

Figure 72. Assess quality of the model.

3.2.4.3.7 Checklist metrics

The goal of this activity is to create a new kind of metrics based on checklists. There are two types of
checklist metric:

e Correctness checklist metric: the question included in this metric must be answered by each work
product of the specification.

e Completeness checklist metric: the questions included in this metric must be answered at the
specification level.

For further information see the deliverable D3.3 “Design of the AMASS tools and methods for architecture
driven assurance”.

Following, as an example, the steps for creating and evaluating a correctness checklist metric is shown:

1. Create a checklist metric and define the questions, Figure 73:
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(@) Checklist Metric - m] X

o The value of the evaluation of this metric is the number of questions answered affirmatively divided by the total number of questions minus the questions that do not apply.

r~ Metric Information:  Checklist:
Metric:
e Question Rationale
‘ Correctness Checklist Metric X
Is the workproduct correct? (based on the correcteness metrics)
Rationale:
Is the workproduct complete? (based on the completeness metrics)
Is the workproduct consistent? (based on the consistency metrics)
Is the workproduct traced?
1
4 guestions
Weight: Custom Metric Identifier: Generate | Enabled:
i~ Apply only on requirements holding this expression over an attribute:
-
Attribute: Type: Operator: Value: — Question definition:
E— e [ o
i - ‘ Is the workproduct traced? |
— Apply only on requirements matching a pattern group, a pattern or both at the same time:—————— Rationale:
Pattern group: Pattern:
. B—— - e
eqate filter: [_] o If selected, requirements matched by filters will not be applied by the metric

Figure 73. Creation the checklist metric

2. Once a checklist metric is created, it is possible to complete the checklist for each requirement,
Figure 74, Figure 75:

) = VERIFICATION Studio = 0O X
Quality Control Wearkbook configuration Quality Assurance =) @
FunRs ; - all 6"‘:
‘Worksheet Scoreboard  Snapshot Quality Requirements Charts Metrics Metrics Suggestions
selector evolution [
‘Woarksheet selector Quality scareboard and evolution Requirements Comectness Consistency = Completeness Knowledge base
Drag a column header here to group by that column
| |C. ‘ [] | Project |Wnrks.‘. | 1] | 1] Text Correctness ‘ Score| 5 | ‘ Consistency | 5 |
[ FunRS-.. FunRS  FRS_001 The maximum power consumption of the compressor shall be 15 hp ‘4 Author work-product
[] | FunRS-.. FunRS FRS_002 The maximum power consumption of the fan shall be 3 hp £7 View formalization details
[ FunRS-.. FunRS FRS_003 The maximum power consumption of the fan blade shall be 0.8 hp N
El Complete Checklist
[] | FunRS-.. FunRS | FRS_048 The Rolling stock component shall have 1 air conditioning system
e N
[]  FunRS-.. FunRS FRS_049 The Rolling stack compenent shall have 1 interior g Complete specification assessment
[] | FunRS-... | FunRS FRS_050 The Relling stock compenent must have at least a 1 lighting system @ ss correctness for selected requirements
[] | FunRS-.. FunRS | FRS_051 The Rolling stock component must have 1 on board vehicle E Complete specification assessment with Scalabilty Platform 4
[] | FunRS-... | FunRS FRS_052 The Rolling stock compenent shall have 1 passenger information syste @ Assess correctness for selected requirements with Scalabilty Platform
[] | FunRS-... FunRS FR5_033 The Relling stock compenent shall have 1 power system Eﬂ Open requirement in Excel
[ | FunRS-.. FunRS | FRS_054 The Rolling stock compenent shall have 1 propulsion system @ Report
- = M e e e o leneaee - m - e

Figure 74. Complete checklist metric
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() Checklist — o %
— Requirement description: Navigation:

The maximum power consumption of the compressor shall be 15 hp

< Bl[=]

— Answer distribution:

Yes: 2 (50.00%)
B No: 1 (25.00%)

Not Applicable: 1 (25.00%)
h Empty: 0 (0.00%)

~ Checklist:
Modified |Question |Answer s Comment User Date
y'y Is the workpreduct correct? (based on the correcteness metrics) (®) Yes (_) No (_) Not Applicable (_) Empty KCS\eparra 30/08/2018 12....
A Is the workproduct complete? (based on the completeness metrics) ®) Yes (_) No (_) Not Applicable (_) Empty KCS\eparra 30/08/2018 12....
H Is the workproduct consistent? (based on the consistency metrics) Yes (@ No (_) Not Applicable Empty KCS\eparra 30/08/2018 12:...
H Is the workproduct traced? Yes (! No (@ Not Applicable Empty KCS\eparra 30/08/2018 12:...
4 guestions
Save and Continue | Save and E)u't| | Cancel |

Figure 75. Window to answer the questions

3. Once the checklists metrics have been completed for each requirement, the quality of the

specification must be assessed giving the possibility to analyse the quality report, Figure 76, Figure
77.
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Correctness Checklist Metric - Correctness analysis

Metric result | Questions / R

quil it: Filtering

Requirements

83.33% of the requi its have been

d and have quality value

[ Requirements with high quality: 3 (12.50%)
Requirements with medium quality: 0 (0.00%)
I Requirements with low quality: 17 (70.83%)
I Requirements for which this metric is not applicable: 4 (16.67%)
Requirements not assessed: 0 (0.00%)
Total number of requirements matching the filters: 24
(Representing the 88.89% of the total number of requirements in the specification)

Close

Figure 76. Checklist results statistics
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Correctness Checklist Metric - Correctness analysis — O hed

Metric result | Questions / Answers Requirements Filtering
Requirements:

Drag a column header here to group by that column

Code Description 4 | Quality value
E] FRS_060 Every 2 seconds, the power control system shall send a demand battery load level message to the battery ]
E] 72ca031d-b79e-42b4-3579-Te96b4051... | The air conditioning system shall have 1 compressor
E] d4b5378f-99ae-4a66-a3a8-551636dc3e... | The air conditioning system shall have 1 fan
E] b36d052b-67ee-41c3-9a1b-73bab6cTb... | The air conditioning system shall have 3 heater
E] 2d466226-86da-415d-a824-8943cef3al... | The fan shall have 3 fan blade
IEI 40eabble-bl14e-4138-a035-84f40ca274f5 The maximum power consumption of the air conditioning system shall be 20 hpw

E] FRS_001 The maximum power consumption of the compressor shall be 15 hp
E] FRS_003 The maximum power consumption of the fan blade shall be 0.8 hp
E] FRS_002 The maximum power consumption of the fan shall be 3 hp

E] aeda?95d-3df5-43fb-abf5-f6654132c534 | The maximum power consumption of the heater shall be 7 hp
E] ce1e9d09-810b-407a-abbe-0d528804f7... | the number of error of the system shall be 0

E] FRS_056 The propulsion shall have 1 gear box

E] FRS_057 The propulsion shall have 1 mechanical transmission

E] FRS_058 The propulsion shall have 1 power converter

“[Fsos [T propulsonshall e actonconwromit | ok |

E] FRS_051 The Rolling stock component must have 1 on board vehicle

E] FRS_050 The Rolling stock component must have at least a 1 lighting system

E] FR5_048 The Rolling stock component shall have 1 air conditioning system

[ == e, . s w - e
Total: 24

Close

Figure 77. Checklist results for each requirement

3.2.5 Functional Refinement
3.2.5.1 Architectural Refinement

3.2.5.1.1 Architectural Refinement in CHESS

The architectural refinement defines in detail how the different parts of the system are connected and
interact in order to fulfil the system requirements.

To refine the architecture, the sub requirements and subcomponents of the system must be identified.

Allocation of requirements/sub-requirements to subcomponents must be managed (see section 3.2.1.1), as
well as formalization of sub-requirements (see section 3.2.2).

In case of reuse of components (as subcomponents), associated satisfied requirements and implemented
contracts are reused.

Information about requirements refinement can be managed in Papyrus/CHESS by using the SysML standard
support, in particular by using the DeriveReqt relationships from the child to the parent requirement.

Then, subcomponents must be connected through their interfaces. To refine the system, perform the
following steps:

1. Prepare the graphical editor environment: In the “Model Explorer” view, go to the package
“modelSystemView” and open the previously created Block Definition Diagram, see Section 3.2.1.

2. Define the instances of the components: Using the palette of the diagram editor, select the
“DirectedComposition” element and respectively select first the component to refine (e.g. C1) and
then the chosen subcomponent (e.g. C2) in the editing space, see Figure 78. As result, in the “Model
Explorer” view a property of type C2, that is an instance of C2, is created in C1. It is possible to create
more than one instance of C2 in C1.
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3% Palette b
o @G-8
% Assocjgtion @
" Dependency
“B;‘y::’::;"” f T — # ModelElements @
properties ( 1 \ et 5 Package
. +block1_2 properties [E] System (Block)
M / = Block
operations Signal
operations & Part
constraints 53 Property
— {2} CriticalityLevel (Constraint]
{2} CriticalitySpecification (Constraint)
2% PortAndFlows @
& FlowPort
#¥ DataTypes £
DataType
PrimitiveType
Enumeral tion
= EnumerationLiteral
#% Contracts. @

(= Contract (ConstraintBlock)
[ ContractProperty
{7} FormalProperty (Constraint)

Figure 78. Two instances of the component Blockl compose the System component

To connect the input/output ports among components, perform the following steps:

1.

Prepare the graphical editor environment: In the “Model Explorer” view, go to the package
“modelSystemView” and create and open an Internal Block Diagram belonging to the component to
refine. If the component to refine is hardware, then create a Composite Diagram instead. As result, a
representation of the component to refine is shown in the graphical editor.

Select subcomponents: In the “Model Explorer” view, navigate through the elements that belong to
the main component and drag the component instances (also called component parts, created in
step 2 of the previous process), into the graphical editor. Ports already defined for the
subcomponents can be shown in the Internal Block/Composite Structure Diagram by drag and drop
them from the “Model Explorer” to the given component part available in the diagram. New ports
can also be created through the Internal Block/Composite Structure Diagram for a given part: it is
worth noting that in the model, ports are actually attached to the definition of the component, not
just to the component part/instance itself. So, creating a port for a part actually changes the
definition of the component represented by the part; this also means that other parts of the same
component, if defined somewhere in the hierarchical refinement, will “inherit” the new created port.

Connect the components: Using the palette of the diagram editor, select the “Connector” element
and connect the ports, see Figure 79. Note that:
a. input ports of the main component must connect with input ports of subcomponents,
b. output ports of subcomponent must connect with input ports of subcomponents or with
output ports of the main component.

Alternatively, it is possible to connect the ports using the “DelegationConstraint” element. With this
element, the user can define an assignment in the OSS language, enabling the possibility to connect
more ports with one port.
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Figure 79. Internal Block Diagram used for architectural refinement

3.2.5.1.2 Architectural Refinement in SAVONA

Defining the system’s architecture in SAVONA completely relies on the creation of the system model using
SysML’s Internal Block Diagrams. A Block is automatically refined by its sub-components, called Parts which
are connected through Ports and Connectors. SAVONA thereby extends the default Papyrus diagram editor
by the following functions:

Check for cycles: Before a new part is being created, SAVONA checks whether a cycle in the
architecture will arise. Since a cycle in the architecture definition results in an invalid system model,
SAVONA will notify the user and forbid the creation of such refinement.

System model consistency: A valid system model hierarchy is essential to the model’s validity.
SAVONA therefore restricts the operations on the model hierarchy that its validity is always
preserved. Figure 80 shows a valid model hierarchy: System Blocks or Types can only be defined at
the top level of the system model. Ports, Parts and Connectors are only associated to a Block. Any
other hierarchical order of elements is forbidden per default; although reuse of model elements is
allowed (see Reuse of elements).

B Model Explorer =2 BEEs v= 0
4 [= «SafetyModel» SystemModel

- B3 Data Dictionaries

- B3 Requirements

a «Block, Component» Blockl
B signalportl : Event
El signalport? : Event
= partl : Block2
& «SignalPertConnectors signalportconnectorl
Diagram Blockl Full Whitebox IBD

. «Block, Component» Block2

. «Block, Components Block3

. «Block, Components Block4

Figure 80. Model Explorer showing a valid system architecture hierarchy in SAVONA

Reuse of elements: The copy&paste functionality in the Model Explorer and Diagram Editor have
been enhanced to support the idea of a valid system model hierarchy. Model elements such as ports,
parts etc. can easily be copied over to other blocks. SAVONA automatically inserts the copied
elements at the correct hierarchy level.

Full-Whitebox Diagrams: Since the hierarchical view of a block in the Model Explorer is often not
enough to give a sufficient overview of a system component, SAVONA maintains a full whitebox
diagram for each component. The diagram is automatically updated on any related model change
and allows a quick view on the current architecture of a component, regardless of any specific view.

3.2.5.1.3 Architectural Pattern-based support
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A design pattern is a reusable solution to a commonly occurring problem within a given context in the system
design. It is not a finished design that can be transformed directly into source or machine code. It is a
description or template for how to solve a problem that can be used in many different situations. Design
patterns are formalized best practices that the programmer can use to solve common problems when
designing an application or system12,

A useful aspect of a design pattern is that a solution comes with advantages and inconveniences. These could
for instance relate to non-functional properties likely reliability, performance and resource consumption and
are therefore interesting for embedded and cyber-physical systems. In some cases, design patterns can also
describe undesired solutions, for instance ad-hoc solution with known disadvantages that are also known as
anti-patterns.

Pattern integration

CHESS-Papyrus supports the design pattern integration, i.e. the use of design patterns in an application or
system model according to the logical approach described in D3.3 [28]. The process of integrating a pattern is
split into several parts.

1. Identify which pattern should be applied

Select a suitable pattern for a problem that needs to be solved in a certain context. Figure 81 shows the
pattern selection dialog once the pattern library coming with the CHESS editor is imported in the user
model (see "Pattern Libraries" section).

12 https://en.wikipedia.org/wiki/Software design pattern
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= O *

Select a Design Pattern
Select a design pattern from the list and click "apply” to apply it to the model

Available Patterns

Triple Modular Redundancy Pattern (TMR) (2-00-3 Redundancy Pattern, Homogeneous Triplex Pattern)
Meonitor-Actuator Pattern

Intent/Context Problem

Developing an embedded systermn with no fail-safe-state in a situation A How to deal with randoem faults and single-point of failure in orderto &
that includes high random failure rate and no limitation on increase the safety and reliability of the system without losing the
redundancy, with the purpose of improving safety and reliability of the ¥ input data in the v
Solution/Pattern Structure

This pattern contains three identical modules or channels ~
operate in parallel. This structure is used to prevent the failure of a single component, which may lead to a complete system failure. If a single fault
occurs in one channel then the other two channels will continue to work correctly and produce the correct actuation centrol sianals. R
Consequences Implementation

The main drawback for this pattern is that it is not appropriate for ~ To implement this pattern, the designer should replicate the channel &
systernatic faults handling. In this case the three channels are identical which includes the replication of the hardware as well as software,

and have the same possible fault, and the system will continue to work ¥ With respect to the sensor, there are two options either to use a R4
Pattern Assumptions Pattern Guarantees

The voter is a simple compenent that is carefull designed with R = 3Rchannel*2 - 2Rchannel”3

reliability ~ 1

Pattern Preview

«Collaboration
=P atterm
<3 TMRP attars

=l _+ channell: Channel | |
wElowWParts Connector
+ channel out [I I
RIS ‘:'Q—' + voter inl [1
i -+ channel2: Channel | [ | il + woTEl: Voter (2]
«FlowPort: Connector wFlowPorts
+ channel out [ + wvoter in2 [1
1
=FlowForts + votar in3 [1
i+ channel3: Channel | | e Connector
+ channel out [ | i

Apply Cancel

Figure 81. Design pattern selection dialog

2. Role binding

A design pattern describes a set of roles that elements play in a pattern. In many cases, elements that
play a certain role do already exist in the application model. Therefore, it is important to identify these
and declare a binding to role in the pattern (i.e. a role binding). This information is used to determine
which elements of a pattern need to be copied into the application and which don't.

The following Figure 82 shows one of the role binding dialogs available for the Triple Modular
Redundancy pattern. The upper part shows the roles defined by the pattern, while the lower part shows
the available candidates for binding in the system under design. Candidate matching simply relies on the
meta-model kind, i.e. components match components, components parts to components parts, ports to
ports, connections to connections; dedicated binding dialogs are available for each kind of meta-model
entity by using the “Next” button of the main dialog window. In order to declare a binding, select a pair
in the upper and the lower part of the dialog, respectively and then click on the "Create mapping"
button.
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Figure 82.Role binding interface

3. Integrate the pattern

This automatic step implies that elements that are in the pattern but not already in the model are
copied.

Pattern libraries
CHESS is released with a pattern library including some safety patterns.

Each pattern comes with a set of information like the description of the problem, the intention behind
possible solutions, roles within the pattern and a solution description; moreover assumption-guarantee
properties are captured, in the contracts style; this can serve as the basis for assuring that the application of
the architectural pattern adequately addresses the problem that is trying to solve (see D3.3 [28] section
2.5.1).

The library can be imported in application models and will then be available in the design pattern catalog
that is presented when you choose to apply a design pattern via the designer context menu. Also, the library
can be enriched with additional patterns; please refer to the AMASS user manual [33] for more information
about importing pattern libraries and new patterns definition.
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3.2.5.1.4 Parameters and Configurations

The parameterization of an architecture is the procedure to define and use a (possibly infinite) set of
parameters to set the number of components, the number of ports, the connections, and the static
attributes of components.

To parameterize an existing architecture, perform the following steps:

1.

Create the parameter: In the Model Explorer View or in the BDD Editor, create a static FlowPort. The
static attribute can be set to “true” in the “SysML” tab of the “Properties” view.

Give an assignment to the parameter (optional step). In the Model Explorer View or in the IBD Editor,
select the owner of the parameter, create the “DelegationConstraint” element (see Section 3.2.5.1)
and set a value or an expression to the parameter.

Give a constraint to the parameter (optional step). In the Model Explorer View, select the owner of
the parameter, create the “Constraint” element and write a boolean expression in the OSS language.

The instantiation of an architecture is the procedure to assign the values of the parameters used in the input
parameterized architecture. The outcome is an architecture with a fixed number of components, ports,
connections, and static attributes of components.

To instantiate a parameterized architecture, perform the following steps:

1.

Select the root component of the parameterized architecture: Select the root component (in the
“Model Explorer” view) or the corresponding graphical representation (in the diagram editor) and
open the menu using the right-button of the mouse. Select “Instantiate the parameterized
architecture”, then a wizard appears.

Select the parameters used in existing instantiated architecture (optional step).

Assign a value to each parameter, see Figure 83. This step may require more iteration; a parameter
may depend on another parameter, so the latter needs to be set first.

Import the instantiated architecture into the project, see Figure 84. Select the destination package
on the right side of the wizard page.

& Export My Data [m] X

Architecture Instantiation 1. Assign values to parameters

Please assign a value to each parameter.

[ Select parameters used to instantiate the following architecture:

Mo parameter is alreadly assigned Set values:

Parameters Name Parameters Value
n_balise_group 5
physical_1.n_balise_group

physical_1.physical_trackside.n_balise_group
Jinking_system_1.n_balise_group

linking_system_1.train_1.n_balise group
linking_system_1.train_l.controlsystem_1.n_balize_group

linking_system_1 tracksicle_1.n_balise_group

@ < Back Next > Cancel

Figure 83. Wizard to set the parameters of the parameterized architecture
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S Export My Data [m] X

Instantiation Completed.

Assigned Parameters at iteration 1 Impert the instantiated architecture.

n_balise_group=5 Select the destination package of the instantiated architecture.

Create a nested package in the destination package.

Filter:

v B2 «CHESS: model
«RequirementViews modelRequirementView
«SystemViews modelSystemView
«ComponentViews modelComponentView
«DeploymentViews modelDeploymentView
wAnalysisViews modelAnalysisView
PSMView» modelPSMView

pooooo

@ < Back Next > Cancel

Figure 84. Last page of the wizard to import the instantiated architecture into the current project

3.2.5.2 Contract Refinement

3.2.5.2.1 Contract Refinement in CHESS
The contract refinement requires one prior phase, the definition of the contract (see Section 3.2.2).

Contracts refinement must follow the requirements refinement. Indeed, a contract is implicitly linked to the
formalized requirements (via its assumption and guarantee properties); so, the requirements referred by
contracts appearing in a refinement relationship should also have a corresponding refinement traced (see
section 3.2.5.1).

To refine the contract, perform the following steps:

1. Select the contract to refine: Select the contract instance (in the “Model Explorer” view) or the
corresponding graphical representation (in the diagram editor) and open the menu using the right-
button of the mouse. Select “Contract-Set contract refinement”. A popup appears showing the list of
contracts that belong to the subcomponent of the current component. Select the refining contracts.

2. Edit the refining contracts: Select the contract instance (in the “Model Explorer” view) or the
corresponding graphical representation (in the diagram editor) and open the tab “Profile” in the
“Properties” view. In the area “Applied stereotypes” select “ContractProperty — Refined by”. Then,
remove the contracts or browse the model and set one or more refining contracts.

Properties 1 # Model Validation %' References *i Trace & Hierarchical Model View = Contract Refinement Wiew [t Problems & Console =:Progress
= brake time : System Brake Time
umML Applied stereotypes: R RefinedBy + R

Comments v I ContractProperty  (from CHESSContract] % bscu.cmd time
SysML RefinedBy: ContractRefinement [*] = [bscu.cmd_time, bscu.safety, hydraulicbrake_time] = bscu.safety

= ContractType: ContractTypes [1] = Strong = hydraulic.brake_time
= status: ContractStatus [1] = notValidated

Profile

Style

Appearance

Rulers And Grid
Advanced
CustomContractEditor

Figure 85. “Profile” tab to edit the refining contracts

3.2.5.2.2 Contract Refinement in SAVONA

To specify a contract within SAVONA, assertions must be gathered that are later used either as assumptions
or guarantees. The Assertions Section of the Properties View (see Figure 32) shows assertions that are
defined for the currently selected SysML block, interface or connector. As contracts can only be defined on
SysML blocks via the Contracts Section (see Figure 86), the Contracts section shows an overview of all
contracts assigned to the currently selected type and allows the editing, creation and deletion of contracts.
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[T Properties| £ Data Dictionary e =0
WBS
Attributes ~ Contract: brake_time
Contracts
iption: . . . ) - .

Assertions Contract Description: Describes the main behaviour of the wheel braking system # B
Macros Assumptions: Guarantees:

Description Description

‘Whenever Pedal_Posl occurs then in response Pedal_Pos2 occurs without any delay. Whenever any of the following events occur: - Pedal_Posl occurs - Pedal_Pos2 occurs then in

‘While Pedal_Posl does not occur, Pedal_Pos2 does not occur.

‘While Pedal_Pos2 cccurs, none of the following events occur: - bscul _fault_Meonitor occurs -
‘While Pedal_Posl occurs, none of the following events occur: - bscul_fault_Monitor occurs -
< m b m +

Refined by: bscu.cmd_time, hydr.brake_time
Figure 86. Contracts Section in the Properties View of SAVONA

When defining a new contract in SAVONA, the Contract Wizard is used to ease the process of assigning
assertions as assumptions or guarantees. Previously defined assertions can be used to create a contract for a
component. The wizard offers assertions that are defined on the currently selected SysML block and the
owned ports of the block (see Figure 87). To use one of the offered assertions in a contract, simply assign a
type (either assumption or guarantee) to it. At least one guarantee is needed to create a contract. Multiple
assumptions as well as multiple guarantees are conjunct. Assertions without any type assignment will not be
considered in the contract definition.

@ Contract Wizard El =

Create a Contract with previously defined Assertions

Choose previously defined assertions and assign them to a new contract either as assumption or guarantee,
The contracts refinement can be defined on the next page.

Contract Mame: brake_timel

Contract Description:  Describes the main behaviour of the wheel braking system.

Contract Definition
Type Description ASIL Used in ...
Assumption ‘Whenever Pedal_Posl occurs then in response Pedal_Pos2 occurs without any delay. TBD brake_ti...
- always (Pedal_Posl iff Pedal_Pos2) and (always ( (not bscul_fault_Monitor) and (not bsc...  TBD
Assumption While Pedal_Posl does not accur, Pedal_Pos2 does not occur, TBD brake_ti...
- always ( (Pedal_Posl or Pedal_PosZ) implies (time_until{Brake_Ling) <=101)) TED
Assumnption While Pedal_Pos2 cccurs, none of the following events occur: - bscul_fault Monitor occurs - bsc...  TBD brake_ti...
Assumnption While Pedal_Posl cccurs, none of the following events occur: - bscul_fault Monitor occurs - bsc..  TBD brake_ti...
Guarantee = Whenever any of the following events occur: - Pedal_Posl occurs - Pedal_Pos2 occurs then inres..  TBD brake_ti...
Assumption

B Guarantee k‘

< Back Mext = Finish

Figure 87. Contract Wizard of SAVONA: Assignment of assumptions and guarantees

The contract refinement can be defined at the last page of the Contract Wizard (see Figure 88). Contracts
from parts can be selected that refine the currently selected component.
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@ Contract Wizard l [S], e

Create a Contract with previously defined Assertions

Select contracts for the contract's refinement.

Contract Refinement

Contracts to be refined by From Component Type (Block)  Contract Description
7 i BSCU
V| hydr.brake_time Hydraulic

< Back Mext = Einish ] | Cancel

Figure 88. Contract Wizard of SAVONA: Definition of contract refinements

3.2.6 Component’s Nominal and Faulty Behaviour Definition

System component static definition, i.e. its properties, ports, contracts, can be enriched with behavioural
models by means of UML state machine diagrams. In particular, in CHESS, state machine diagrams can be
used to model the nominal and the faulty behaviour of the component.

Nominal state machine are basically standard UML ones. In CHESS, by using a subset of the UML support for
state machine modelling, it is also possible to use model transformation to automatically generate an SMV
(the input language of nuXmv) representation of the modelled nominal state machines, together with the
components structure definition (this is then used to perform automatic generation of fault tree, see Section
3.3.2.2).

Figure 89 below is an example of component with its properties (input and output ports), while Figure 90
shows its nominal state machine which follows the restriction needed to run the CHESS to NuSMV3
generation: basically, only UML initial, final, basic states and transitions are considered for the current
implemented transformation (e.g., no UML concurrent regions, history states, choice or junction transition).
A transition comes with a guard and an effect. The guard is a boolean condition upon the values of
components properties. The effect must be expressed by using the SMV language, to model component
properties assignment.

«Block»

Battery

properties
in power: EnergyType
out energy: EnergyType
in load: EnergyType

& @ @

Figure 89. Example of component
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Battery_NominalBehavior R

TRUE]/energy = 30 -
[power > 0]/energy = min(30, energy + power)

Working Charging A

[power <= 0]/energy = max(0, energy - load) [power > 0]/energy = min(30, energy + power)

[power <= 0]/energy = max(0, energy - load)

Figure 90. Example of nominal state machine (using SMV as action language)

The behavioural model of the component can be enriched with the faulty behaviour. Faulty behaviour is
modelled in CHESS by using the dedicated dependability profile. The CHESS dependability profile enables
dependability architects to model dependability information necessary to conduct dependability analysis,
basically by allowing the modelling of failure modes and criticality, the failure behaviours for a component in
isolation (so how events can lead to components failure modes) and the failure modes propagation between
connected components (via components ports). More information about this is provided in Section 3.3.2.

3.2.7 Functional Early Verification

3.2.7.1 Contract-Based Verification of Refinement

As an early verification of the architectural decomposition, the user can use the tool to verify if the contract
refinement is correct (see Section 2.1.2). This verification step requires to have specified a contract
refinement.

To verify that the contract refinements are done correctly, perform the following steps:

1. Choose which contract refinements must be checked: select a component (in the “Model Explorer”
view) or the corresponding graphical representation (in the diagram editor). The contract
refinements considered will be the ones associated to the selected component and the ones
associated to its sub components. This operation includes recursively all the contracts along the
subcomponents, from the root to the leaves of the system.

2. Perform the check contract refinement: right click on the selected component, then go to “AMASS-
Functional Verification” — “Check Contract Refinement on Selected Component”, see Figure 92.
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Block, Syst # | 5% Palette
«bloC Stems .
¥ [y @ el -m-
= SyStem Navigate >
properties
File >

[51 in Pedal_Pos1: Boolean

3 in Pedal_Pos2: Boolean

¥l out Brake_Line: Continuous

3 in bscu1_fault_Monitor: Boolean

Load resource...

Enable write

Open textual editor for stereotype applications

- - Delete Selected Element Delete
3 in bscu?_fault_Monitor: Boolean x
) /7 Delete From diagram Shift+Delete
= in bscul_fault_Command- Rnnlean
[ in bscu2 fault C Basic Operations > | AMASS >
~ B Functional Verifications > Contract Refinement Analysis on selected component >
Safety Analysis > Check Implementation Analysis on selected component >
- Safety Case > Check Validation Property on selected compenent >
LorrstraTTes Model Checking on selected component >

(=) brake_time: System_Brake_Time
Wizards
/‘j ‘ Profiles 5
ocL »

Show Properties View

v

i

Show References Wiew
Properties

Remove from Context Ctrl+Alt+Shift+Down
Edit Class > L

n:modelSystemView:Physical Architecture:System

[ [ PO ~ P

Figure 91. Dedicated menu to perform the check of the contract refinements

3. Receive the result of the analysis: when the analysis is completed, it is possible to see the status of
each refinement in the “Trace” view.

4. If the check fails, it is possible to see the counter example, i.e. the instances of values to assign to the
ports that cause the failure of the contract refinement. For example, the Figure 92 shows that the
refinement of the contract “System_Brake_time” of the component “system” is failed. Looking at the
list of values of the counter example, the user is facilitated to figure out whether the error is caused
by the assumption or guarantee of the involved contracts, or by the choice of the refining contracts.

T Properties ¥ References JvJUnit “lV and V Results ©/Error Log © Console i Behaviour trace d. Problems =l Contract refinement trace 7 ¢

~ 7 [System)] Sense Step 1 Step 2 ... Loop) |Step 3 Step 4
% Not Ok Ports State Ports State Ports State Ports | State Ports
b Sense - System _inst
“sensorl
sensed_speed 0.0 0.0 0.0 0.0
sensed_...resent TRUE TRUE TRUE TRUE
= selector
output_is_present TRUE TRUE TRUE TRUE
current_use 2 2 2 2
= monitor2
absence_alarm FALSE FALSE FALSE FALSE
speed 0.0 00 00 0.0
= _monitor1
input_is_present FALSE FALSE FALSE FALSE
“sensord
sensed_speed 0.0 0.0 0.0 0.0
sensed_...resent TRUE TRUE TRUE TRUE
< monitor1
absence_alarm FALSE FALSE FALSE FALSE

Figure 92. An example of the result of the check contract refinement shown in the Trace View. In this case, it is possible
to see that one refinement is failed, and the counter example.

3.2.7.2 Contract-Based Verification of State Machines

As a further early verification step, the user can use the tool to verify that the behavioural specification of
the system is compliant with the contract specification. This is currently restricted to behaviours specified by
state machines.

To verify that the state machines defined in the model satisfy the contracts, perform the following steps:
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1. Choose which contracts and state machine are involved: Select a component (in the “Model
Explorer” view) or the corresponding graphical representation (in the diagram editor). The contracts
and state machines considered will be the ones associated to the selected component and the ones
associated to its sub components. This operation includes recursively all the contracts and state
machines along the subcomponents, from the root to the leaves of the system.

2. Perform the validation: right click on the selected component, then go to “AMASS-Functional
Verification” — “Check contract implementation on Selected Component”.

3. Receive the result of the analysis: when the analysis is completed, the status of the check for each
contract is shown in the “Trace” view. If the check fails, it is possible to see the counter example, i.e.
instances of values to assign to the ports that cause the not satisfiability of the contract for the
specific state machine, see Figure 93.

| Properties % References JvJUnit IV and V Results “/Error Log © Console ! Behaviour trace “ Contract implement..

~ T [MonitorPresence] Monitor Step...op) | Step...op) | Step..op)  Step 4
Success Ports | State | State | State | State |
v T [Selector] Switch S selector
Succes current_use 2 2 2 2
¥ 7 [Selector] Select output 0.0 0.0 0.0 0.0
CoueeEss output_is_present TRUE TRUE TRUE  TRUE
v 7 [SpeedSensor] Sense L
sensor1
S U sensed_speed f1/2 f1/2 f1/2 172
- i i
Bystem] Sense sensed sp.._present TRUE  TRUE  TRUE  TRUE
H Not Ok §
L acda = monitor2
absence_alarm FALSE FALSE FALSE FALSE
- 5ensord
sensed_speed 0.0 0.0 0.0 0.0
sensed_sp..._present TRUE TRUE TRUE TRUE
= monitor?
input_is_present FALSE FALSE FALSE FALSE
absence_alarm FALSE FALSE FALSE FALSE
speed 0.0 0.0 0.0 0.0

Figure 93. An example of the result of the check contract implementation shown in the “Trace” view. It is possible to see
that four contracts are not satisfied by the state machines of their associated component and one contract not.

3.2.7.3 Model Checking
Besides the verification of contracts, the user may want to verify other properties on the state machine.

The specifications to be checked on the FSM can be expressed in temporal logics like Computation Tree Logic
(CTL), Linear Temporal Logic (LTL) extended with Past Operators, and Property Specification Language (PSL)
that includes CTL and LTL with Sequential Extended Regular Expressions (SERE), a variant of classical regular
expressions. It is also possible to analyse quantitative characteristics of the FSM by specifying real-time CTL
specifications.

CTL and LTL specifications are evaluated by nuXmv in order to determine their truth or falsity in the FSM.
When a specification is discovered to be false, nuXmv constructs and prints a counterexample, i.e. a trace of
the FSM that falsifies the property.

There are three possible model checking available (see [16] for more details):

e check ctlspec: it performs fair CTL model checking. A CTL specification is given as a formula in the
temporal logic CTL. A CTL formula is true if it is true in all initial states.

e check invar: it performs model checking of invariants. Invariants are propositional formulas which
must hold invariantly in the model.

e check Itlspec: it performs LTL model checking. An LTL formula is true if it is true at the initial time to.

To execute the model checking, perform the following steps:
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1. Choose the components behaviour to check: Select a component (in the “Model Explorer” view) or
the corresponding graphical representation (in the diagram editor). The components behaviour to
check will be the behaviour of the selected component and the behaviour of its sub components.
This operation includes recursively all the behaviours from the root to the leaves of the selected
component.

2. Perform the check: right click on the selected component, then go to “AMASS-Functional
Verification” — “Model Checking on Selected Component”.

3. Analyse the results of the verification

3.2.7.4 Contract-Based Monitoring

The contract-based monitoring technology can be used as a functional early verification technique that
provides confidence in the models obtained during the concept design phase. This section describes how the
AMT2.0 tool can be used to check the correctness of STL contracts with respect to MATLAB/Simulink
simulation traces. The tool offers the following main functionalities:

e Checking the correctness of the simulation traces with respect to requirements formalized in STL in
an offline fashion.

e Explaining contract violations in terms of temporal implicants — small simulation trace segments that
are sufficient to imply the contract violation.

e Property-driven measurements from simulation traces.

In this section we focus on the first two features of the tool and on its GUI interface. The user first needs to
formalize functional requirements in the form of STL contracts. The tool provides an STL editor with syntax
highlighting for expressing the temporal properties (see Figure 94). Then the user executes the
MATLAB/Simulink model and save the simulation traces in the Comma Separated Value (CSV) format. The
generation of test inputs can be done according to some coverage criteria. However, the test generation
strategy is outside the scope of the tool.

The user then creates a new Evaluation view in the AMT2.0 tool and import both the contract and the
simulation traces. Note that STL is interpreted over continuous-time signals while the simulation traces
consist of a finite collection of (timestamp, value) pairs. As a consequence, the user needs to interpret the
signal values that are in between two consecutive sample points. The tool allows the user to choose between
the Step and the Linear interpolation. The user can also choose whether the real numbers are represented
using Floats (more efficient representation) or Rationals (more precise representation).

£ AMT20 L= | ©
File
BaE
stabilization.stl  x
+ -5

1 bool trigger; -
2 real vara;
3 real varb;
4 real varc;
5 real vard;
& real vare;

& const real vh = 5.8;
3 const real vl = 8.2;

11 assertion one:
2 always((vara <= vh) and (rise(trigger) -> (eventually[@:688] always[#:388] vara <= vl

14 assertion two:
always varb <= vh) and (rise(trigger) -» (eventually[@:60@] always[®:388] varb <= vl

17 assertion three:
1 always ((varc <= vh) and (rise(trigger) -> (eventually[@:6@@] always[8:382] varc <= vl

20 assertion four:
always ((vard <= vh) and (rise(trigger) -> (eventually[@:66@8] always[@:302] vard <= vl

23 assertion
always vare <= vh) and (rise(trigger) -»> (eventually[@:60@] always[@:388] vare <= vl

Figure 94. AMT2.0 STL contract editor
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After setting up the evaluation options, the user clicks the “Evaluate” button that triggers the offline
monitoring of the property. In the Property View of the Evaluation tab, the tool displays the parse tree of the
contract and highlights which assertions were satisfied and which were violated. The user can expect the
satisfaction signal for each sub-formula of the contract indicating at what times the sub-formula was true
and at what times it was false. The Evaluation view is depicted in Figure 95.

|2 AMT 2.0 o (ESRiol x|
File

B e [

stabilization.eval  x

x5t Specification File

stabilization. st

Input Signals File
put Sig & e
stabilization. ved 0 50 100 150 200 250 300 550 400 450 500 550 600 650 700 750 600 B850 900 950
Time
varo
[ 10
stabilization. alias /\
. 0s
Options \\
00
Interpolation Linear
pal L x| 05 \/
Real Number Representation | Float - e
- - o S50 100 150 200 250 300 350 400 450 500 S50 600 650 700 750 800 650 900 850
Fault Explanation Single explanation Time
wvarl
3 Evaluate a -
: /
@ ol |

@ x5TL Specfication
= @ spedfications

© declarations 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 650 900 950
- TL frigger Time

e varl
A varl
- yar2

&
A yaErd /
Q

—nd 50

wvarz

endh 0,2

[E}- © assertions H ; ; ; ; ; ; ; ; H H H H H H H H
1% assertion: one a 50 100 150 200 250 S00 350 400 450 500 550 600 650 700 7S50 800 650 800 950

Input Files Higger

Time
-y’ assertion: two
(-3 assertion: three var3
(-3 assertion: four 4
(-3 assertion: five 2 | 8
L / l\
2 \
Console | Assertion | Measurement | Specification | Alias| ol
Assertion Verdict |E |
one violated
two satisfied
| three violated
| four violated
five violated
q i L2

Figure 95. AMT2.0 Evaluation view

Finally, for the contract that was violated, the user can get the fault explanations in a graphical form. In
particular, the tool highlights (red vertical bands) the input signal segments that were responsible for the
violation of the contract. An example of the diagnostics outcomes is shown in Figure 96.

Finally, note that AMT2.0 can be also run in a batch mode. This allows to automate the testing and
monitoring tasks on large numbers of simulations.
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Figure 96. AMT2.0 diagnostics results
3.2.7.5 Contract-based Verification of Refinement for Strong and Weak Contracts

As presented in Section 2.1.2, strong and weak contracts are introduced to support out-of-context reasoning
and component reuse across variety of environments. While strong contracts must hold in all environments,
the weak ones are environment-specific. Prior to performing the refinement check using strong and weak
contracts, contracts must be created and allocated to the component types, which represent out-of-context
components. At the component type level, the user indicates if a contract is strong or weak. When the
component type is instantiated in a particular system to a component instance, all the strong, and a subset of
weak contracts can be identified as relevant in the particular system in which the component is instantiated
[83]. As discussed in Section 2.1.2, identifying which are those relevant weak contracts can be done manually
on the component instance level. For example, Figure 97 depicts the selected weak contracts for the
Select_Switch_Impl component instance.

The “Contract Refinement Analysis (OCRA)”[16] command transforms the CHESS model into Othello System
Specification [16] (.oss) file readable by OCRA, then it runs the OCRA refinement check and outputs the
results. Since .oss format does not explicitly distinguish between strong and weak contracts, but treats all
contracts as strong, the weak contracts need to be accordingly transformed to strong contracts for .oss
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format. To perform the refinement check with strong and weak contracts, the user first creates a class
diagram in the “DependabilityAnalysisView”, which is a part of the “AnalysisView”. Then, the user creates a
new “ContractRefinementAnalysisContext” by selecting it from the Palette. She selects the newly created
“ContractRefinementAnalysisContext” and go to the properties view, in particular the Profile tab. There, the
user can select the platform that should be analysed (e.g., the system block), and set the attribute
“checkAllWeakContracts” to true or false (Figure 98). If the “checkAllWeakContract” attribute is set to false,
the refinement check will be performed such that the selected weak contracts will be treated equally as the
strong contracts in the generated .oss file. In this case the user needs to manually ensure that we do not
select contradictory weak contracts, otherwise the refinement check will prompt an inconsistency error.

Alternatively, the user can set the “checkAllWeakContracts” to true, where the selection will not be needed,
but all weak contracts will be included in the generated .oss file such that they will be transformed to
implications within the strong guarantees, as described in Section 2.1.2. In this case, to identify which
contract is relevant in this particular context, an additional step is needed after running refinement analysis.
The user needs to run the command “Validate Properties (OCRA)” (found in the menu under CHESS-
>Analysis->Formal Verification, as shown in Figure 98). This command will check validity of each weak
contract assumption and identify which weak contracts are relevant in the given system. Upon running the
weak contract assumption validity check, the contract status is updated accordingly. It should be noted that
the “Validate Properties (OCRA)” command can be run only with discrete-time specification, hence the usage
of continuous variables or operators in the contracts disables the validity property check.

= B8 [ Properties 23

=DelegationConstraint= - . . .
i Define Valid 4| =@ switch : Select_Switch_Impl
Walid := bscul Valid or bscu2. Valid
tvah scul Valid or bscu2 Valid ) |: UML WheelBrakingSystem
«ComponentInstances Trrrae Weak Contracts
+ switch: Select_Switch_Impl [1] 5 7 .
10_t
= internal structure _ == ?me
\[] + Inl: Boolean [1] Style | =ell_time
Appearance
+ Out: Be EE .
\[J + Select: Boolean [1] = Rulers And Grid
|: Advanced
Contracts
_,_._[] + InZ; Boolean [1]

Figure 97. Weak contract selection for a component instance
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Figure 98. Performing refinement analysis with strong and weak contracts

H2020-JTI-ECSEL-2015 # 692474 Page 93 of 145



(2A)
\\_/) AM[ASS Methodological guide for architecture-driven assurance (b) D3.8V1.0

With this adapted usage of OCRA from the CHESS environment, the AMASS platform is capable of
automatically verifying contracts for reusable components, i.e., not only strong, but also the weak contracts
[67]. Instead of manually selecting the weak contracts, the CHESS environment executes different OCRA
commands to identify which weak contracts should be selected and whether the refinement holds.

3.3 Safety Analysis

In the following, the Safety Analysis activities depicted in Figure 17 are detailed, one subsection for each
activity.

3.3.1 Simulation-based Fault Injection

Fault injection emerges as a way to perform a simulation-based safety analysis at the same time that helps
verifying and validating the safety of a certain design. Figure 99 illustrates what kind of role this technique
plays in terms of architecture driven assurance. The user starts by modelling the system architecture with its
corresponding components in Papyrus/CHESS or in SAVONA. After doing so, traditional safety analysis
techniques and fault injection are put together in order to perform a combined analysis of the system.

The simulation-based fault injection process starts by calling the Sabotage framework [27]. This framework
helps the user to define some failures in the system model by adding in the Simulink environment some
extra blocks that reproduce a failure effect on a component and visualize its effects. In contrast to xSAP [26],
where the so-called error injection blocks are already included inside CHESS tool, in Sabotage these extra
blocks are included in the Simulink environment afterwards [12]. At present, the user needs to fill the fault
list table or the fault injection policy (see Section 2.1.6) by means of a custom fault list. The fault list stands
for the Fault Target, Fault Injection Trigger, Fault Duration and Fault Model [28].

Figure 99 presents the integration methodology to unify the current fault injection approach with
component-based design and the inclusion of monitors in the component outputs.
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Model the system architecture (Nominal System Design)
(no safety mechanisms in place)

¢ Complements/ ¢
Perf Simulation-based Fault verifies
errorm |rr|1:j:c'|cioonn ased rau » Perform Model-based Safety
. . . Analysi
(get the failure logic) (Phase 1) guides nalysts

Define the Safety concept/safety mechanisms
(define safety measures by safety contracts)

I

Simulation-based fault injection (Phase Il)
* Include saboteurs at component inputs which representing a violation of the assumption
(omission, commission, true when false, false when true, too low, too high)
¢ Include monitors at component outputs and see if the guarantee still holds when the assumption is
violated

Are the safety
mechanisms correctly

implemented?
Sufficient level of
safety?

No: Refine The
architecture

Required level of safety has been achieved

Figure 99. Integration workflow: from contract-based design to the generation of saboteurs and monitors

The system architecture can be modelled in CHESS or SAVONA; however, if it is modelled in SAVONA the user
has the option to later import it into CHESS tool. After modelling the system architecture, the information
coming from contract specification could be used to set specific faults in the fault list. This allows completing
information regarding where to inject a fault, which failure modes need to be provoked (fault model) and
what faulty values should be inserted in place of the correct ones. As explained in [3], Component Fault Tree
(CFT) frames are generated for each component and automatically linked according to the signal links. Based
on the data types at their ports and the description of the expected (correct) behaviour by assertions from
the contracts, it is even possible to automatically derive all applicable failure modes (e.g., too high, too low
for continuous signals) and to specify their value and timing ranges by assertions (formal failure model).
However, the inner failure propagation logic inside the CFT blocks had to be filled in manually so far. Fault
injection can automatically derive or verify at early development process the behaviour of the fault
propagation, which helps further formalizing the safety analysis activities.

Other values such as fault injection triggering by time and fault duration have no interconnection with the
CHESS/SAVONA environment, thus, they need to be set by the user in the fault list.

By implementing the previous process, the user reproduces all the possible failure modes for the inputs by
violating the assumption. For instance, if an assumption states that a certain voltage value should be
between Value 1 and 2, a “too low” failure mode would be reproduced by reading Value 1 and setting it to a
too low stuck-at value.

Including AMT 2.0 monitors (see Section 3.2.7.4) in the outputs of the components, it is possible to observe
the behaviour of the signals related with the guarantees of system contracts. The analysis of these results is
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done after the simulation of the experiments where the results are saved in a MLDATX file. AMT 2.0 tool is
able to read and examine them.

After performing the first set of simulations, the results can be used as feedback by CHESS/SAVONA in order
to refine the architecture as follows: refine the guarantees and define the safety measures by safety
contracts. There is no doubt that these results could be exploited directly in Simulink as well to define the
safety measures and come up with the most appropriate safety concept. For example, these results can
include information regarding the failure logic or fault tolerant time interval.

Once the safety mechanisms are included in the design, the user runs a second set of experiments getting
different results. Thanks to the AMT 2.0 monitors the user analyses the experiments results and checks if the
guarantees hold. If the guarantees hold, the required level of safety is achieved. If not, the architecture
would need to be redefined as needed.

The Figure 100 illustrates a global overview of the implementation of all the steps mentioned above on the
different tools.

£

g - Savona tool Traditional Safety
g 4 4 > Analysis tool
7w A Import/Export model |

i P P Y (e.g. FMEA, FTA)
% = Chess tool

[

o

System model (SysML) and contracts

Sabotage tool v

Sabotage meta-model

Massif: Simulink-Eclipse
HIEATANON Xtend: Matlab code
generation (templates)

Yy

Eclipse Modeling
Framework

Model transformation | )
(from Simulink to eclipse) Matlab code scripts

Simulations AMT 2.0
results >
tool

\_/

A 4

[ Fault injector: faulty ’
|  models generation |

o Run Simulations

Figure 100. Sabotage: global vision of the implementation with different tools

Matlab
Enviroment

As depicted in the deliverable D3.6 [29], originally, the work was implemented within the Matlab
environment. This means that both the configuration (fault list) and the fault injector scripts (matlab code
generation) were directly coded in Matlab. The configuration of those experiments was performed by means
of Matlab GUI.

During the second prototype, the creation of an experiments configuration view in Eclipse framework and
code templates was developed. In addition, the goals of the Sabotage tool for the last prototype are the
improvement of the configuration view, automatization of the experiments from Eclipse framework and the
integration with other tools of AMASS platform.

D3.3 [28] highlighted how the Sabotage framework for simulation-based fault injection is constituted. As
major steps, the workload generator, fault injector and monitor/controller need to be mentioned. From the
user perspective, the configuration of the fault injection experiments, which is part of the workload
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generator, needs to be completed. After doing so, a set of scripts are automatically called and the resulting
data obtained.

3.3.1.1 Original solution: Simulink environment
e Configuration of the fault injection experiments and fault list creation

In order to run the simulation-based Fl experiments, the user should perform the system modelling first (see
Section 4.2) in Simulink which is directly related to its corresponding SysML model.

Afterwards, the fault injection experiments need to be configured through the “Fault List” GUI. The
information this list holds is necessary to configure the (extra blocks) saboteurs. These configuration values
are manually included by the user.

Follow the next steps in order to carry out fault injection simulations:

1. Open analysis context option for Sabotage, which will open Matlab and run the “SabotageGUl.m”
script. After that, the main GUI configuration window opens (“FaultList GUI”).

2. Select the Simulink file (.mdl/.slx) that contains the system model under test. Figure 101 depicts an
example for the Adaptive Cruise Control.

4| Figure 1: Fault List E@
File Edit View Insert Tools Desktop Window Help ]
Ddde| k| RAROUDEL- 2| 0EH 0D

Fault List
Define the name of the system (name mdl or name skx) acc_end by

Fault Target Number of Inports|Selected Inport|Fault Injection Trigger (ms) Fault Duration (ms), Fault Model Faulty Value
1 - -
2 - -
3 - -
4 - -
5 - -
[ - -
7 - -
8 - -
9 - -
10 - -

Create Faulty System ‘ ‘ Faulty System View ‘ ‘ Run

Figure 101. Select the Simulink file

3. Create the fault list. A fault list is completed according to the following properties:

a. “Fault Target Column” shows all the possible injection blocks of the system which are obtained by
parsing the loaded system (See Figure 102). Select the block where to inject the saboteur.
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FILE NAVIGATE EnT FREAKPOIT BN
4 Figure 1: Fault List = ECh =
File Edit View Insert Tools Desktop Window Help -

DEdde [ FRNODRL- 208D

Fault List
Define the name of the system (name.mdl or name six) acc_end slx
Fault Target Number of Inports|Selected Inport|Fault Injection Trigger (ms)|Fault Duration (ms) Fault Model Faulty Value,

1 |acc_endiadd
acc_end/Add
ace_end/Aktueller Messabstand
acc_endiApplication State Machine
ace_endiD_ACC
acc_end/Data Storefor counter
occ_endFiter

TR

acc_endiFilter/d_meas
acc_end/Filter/kal_init
acc_endFilter/kalman fiter

L I R T I I |

ace_end/Filter/d_rel_fil_cm

acc_end/Filter/d_est

| ace_end/Measurement Association
ace_end/Measurement Association/d_meas
|ace_end/NMeasurement Association/d_est
" acc_end/Measurement Association/threshold
| acc_end/Measurement Association/Assiator em ’ Faulty System View ‘ ’ Run

Tace_endiMeasurement Association/dist_rel_cm

{ace_end/M fid i

L acc_end/Measurement Association/kal_init
[

Figure 102. Fault Target Block Selection

b. “Number of Inports” depicts the number of potential input injection points. Choose one by typing
the selected value in the “Selected Inport” column.
c. “Fault Injection Trigger”: include the time to trigger the injection of the fault in milliseconds (ms).
d. “Fault Duration”:
i. 0:represents a permanent fault
ii. <value>: set a duration by the user
iii. Random: sets a random duration value
e. “Fault Model”: stuck-at<0>, stuck-at<lastvalue>, stuck-at<value>, random, delay, noise, inverted,
other.
f. “Fault Value”: optional. It is used to set a specific faulty value to a signal.

-/ 4 Figure 1: Fault List =8 ECE == i

File Edit View Insert Tools Desktop Window Help >

INEde kN ODR4- G 08 a0 i

| Fault List

Define the name of the system (name mdl or name slx) acc_end slx

Fault Target Number of Inports| Selected Inport Fault Injection Trigger (ms) Fault Duration (ms) Fault Model Faulty Value
1 |acc_end/Add A 32 26 86 Stuck at 0 -
|2 |ace_endfFilter - 22 80 20 Stuckatvalue v 3325
T acc_end/Simulation/d_meas * 11 97 _ Random -
|4 |acc_end/Simulation - 21 150 20 Inverted -
5 | - -
6 | - -
|7 | - -
N
[ o |
10 7 7
Create Faulty System ] [ Faulty System View ] [ Run

Figure 103. Fault List Creation
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Follow this process to include the required number of faults in the same list. By doing so, the final fault list is
constituted (see Figure 103).

e Faulty System Generation (Fault Injector)

After having created the fault list, click “Create Faulty System” button. This creates the faulty system under
test with its corresponding observation points included into the design. The user can click on to open the
created faulty system. The file can be opened through the “Faulty system view” (see Figure 104).

¥, acc_end_Faulty - Simulink Lo & e
File Edit View Display Diagram Simulation Analysis Code Tools Help
. Gl g o A - — s
Z-O-F @ Eme-E-ed® ik % RS ‘Accelerator @ -/ &
acc_end_Fauty

® |[a] cc_end_Fauity b -

§

!
i) G i@

Q)

S B
= A
.

Kalman Filter

Figure 104. Faulty System Generation
e  Fault Injector Controller

After having created the faulty system under test, click on the “Run” button. This allows running the fault
free and the faulty simulations as well as the comparison between the simulation results.

3.3.1.2 Eclipse solution: Integration with the AMASS Platform

As mentioned above, the user should perform the system modelling in Simulink, which is the equivalent of its
corresponding system model in SysML. This equivalence allows the integration of system contracts in the
configuration of the fault injection view.

e Configuration of the fault injection experiments

Before filling the fault list, it is necessary to transform the Simulink model to a Matlab Eclipse Modelling
Framework model to obtain all the information of the system.
1. Add the .slx/.mdl file to the workspace.
2. Right click on the Simulink file and select import model. It is important to take into account that the
workspace must be refreshed after the importation. A new simulink file will be created.

The fault injection experiments are configured through the fault list. To configure the fault, list the next steps
should be followed:

1. Create a new Sabotage model.

2. Load the generated .simulink file on the Fault list property view.
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If it is wanted, the user can load the CHESS file to integrate the contracts in the fault list so that the faults can
be specified as the violation of its assumptions. To do so, the user should load the UML file on the System

Contracts attribute defined in the Fault List property view as shown in Figure 105.

& Abrir
75 Resource Set O O | « Massif Runtime » DCW_2014a_Sim
4 4 platform:/resource/Di
. @ Fault List Organizar = Nueva carpeta
Nombre Fecha de modifica.. Tipo Tamafio
dc-drive_vZModel.uml 19/09/2018 11:54 Archivo UML 141 KB
s 5 [0
B Properties [st{irobier Nombre: dc-drive_v2Maodel.uml - I'ﬂuml "
Property
Description I Abrir |V‘ I Cancelar ‘
Name
System '= file;/D:/Users/109055/Desktop/Sabotage_EClipse_Implementation/Massif_Runtime/DCW_2014a_Sim/DCW_2014a_Sim.simulink
*=file:/D:;/Users/109055/Desktop/Sabotage_EClipse_Implementation/Massif_Runtime/DCW_2014a_Sim/dc-drive_v2Model.uml D

System Contracts

Figure 105. Loading the CHESS file in Sabotage Framework

3. Complete the fault list filling the properties.
a. Fault model: Select stuck-at<0>, stuck-at<lastvalue>, stuck-at<value>, delay or inverted.
b. Connection (Fault Target): shows the possible connections of the system which are obtained
by loading the .simulink file. Figure 106 addresses all the possible connections to the system.

H2020-JTI-ECSEL-2015 # 692474 Page 100 of 145



AM[ASS Methodological guide for architecture-driven assurance (b) D3.8V1.0

& *Faultlistsabotage 2

[ Resource Set —
4 gl platform:/resource/DCW_2014a_Sim/FaultList. & Connections = @
4 @ Fault List
4 Stuck At Value Fault 1
- #] file:/D:/Users/109055/Desktop/Sabotage_EClig
- #] pathmap://SysML_PROFILES/SysML.profile.uml|
. & pathmap://UML_PROFILES/Ecore.profile.uml

Select the connection.

4 Single Connection from: Mux:outport.1 -- to: Scopeiinport.1 -
4 Single Connection from: Plantl:outport.1 -- to: Scope6inport.1

4 Single Connection from: Plantl:outport.2 -- to: Scope6iinport.2

4 Single Connection from: Plantoutport.1 -- to: Muxinport.2

4 Single Connection from: Plantoutport.1l — to: Speed Controllerinport.2
< Single Connection from: Plantoutport.2 -- to: Current Controllerinport.2
< Single Connection from: Plantoutport.2 -- to: Muxlinport.2

4 Single Connection from: Productl:outport.l -- to: Sumiinport.1

4 Single Connection from: Productl:outport.l -- to: Sumiinport.1

1

4 Single Connection from: Product2:outport.1 -- to: Sumiinport.2
4 Single Connection from: Product2:outport.1 -- to: Sumiinport.2

[ Properties 3 |[£] Problems 4 Single Connection from: Product.outport.] -- to: SumLinport.1
4 Single Connection from: Product.outport.] -- to: SumLinport.1
Property Value i i . -

3 = 4 Single Connection from: Resistance:outport.l -- to: Add:inport.1 -
Assertion = " = >
Component ST
Connection
Duration w2 @ [ oK l I e
Name =1
Trinner Y

Figure 106. The possible connections of the system model

c. Assertion and Component: To define a violation of a certain assertion of the system the user
should first select a certain component of the system and then the user will be able to
proceed to the selection of one of its assertions. In Figure 107 all the assertions related with
the component Plant are shown.

4 W platform:/resource/DCW_2014a_Sim/FaultListsabotage
4 @ Fault List
% Stuck At Value Fault 1

£ Assertions = @I

Select an Assertion.

'=Whenever V_Mot enters the range [1V,12V ] then in response Spd_Act is always in the range [ 100 rpm , 1000 rpm ] starting after at most 100 ms .
'=Whenever V_Mot is OV for more than 20 ms then in response Spd_Act is always 0 rpm for at least 20 ms  starting after at most 100 ms.
'=While V_Mot is 0V, all of the following conditions hold: - Spd_Act is 0 rpm .

[ Propertie
Property ‘/'3) oK I ’ Cancel
Assertion
Component H < <Block>> <Class> Plant
Connection # Single Connection from; Plant:outport.1 — to: Speed Controllerinport.2
Duration -2
Name =1
Trigger 3
Value ]

Figure 107. Assertions of a specific component

e Faulty System Generation and simulations executions

The next step after filling the fault list is to right click on the Sabotage model and click on Create Faulty
system. This step creates a Matlab code file automatically ready for creating the Golden and Faulty Simulink
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model files. The last step is to right click again on Sabotage model and click on Run Faulty System. This action
will open Matlab/Simulink tool, create the aforementioned files, run all the simulations and visualize the
results.

3.3.2 Model-Based Safety Analysis

3.3.2.1 Faultinjection

The faulty behaviour for a component is provided through a state machine, the latter tagged with the
<<ErrorModel>> stereotype defined in the CHESS dependability profile®.

In the error model, the information about the error states can be provided by using the <<ErrorState>>
stereotype. Then, for a given error state, the effect upon a property of the component, and so the effect on
its nominal behaviour, can be also provided by using pre-defined effects:

e StuckAt: models the effect of being stuck at a fixed value.
e StuckAtFixed: models the effect of being stuck at a fixed random value.
e Inverted: models the effect of being stuck at the inverted last value.
e RampDown: models the effect of decreasing the value of a property by a certain value.
The state machine shown in Figure 108 represents the error model for the component depicted in Figure 89.

In particular, in case of an internal fault, the component enters in an error state where the property energy is
stuck at 0 value. The optional probability assigned to that transition is 5 x 102

(" «ErrorModel»

Battery_ErrorModel

(~ «StuckAt, ErrorState» )
ErrorStuckAtZero
«StuckAt»
property=energy

value=0

«InternalFault»

Nominal

«ErrorState=
probability=5E-2
\unit:

Figure 108. State machine modelling faulty behaviour
3.3.2.2 Fault-tree generation

Once the system architecture has been provided, by mean of components definition and their nominal and
error models, the fault tree generation can be obtained by invoking the xSAP symbolic model checker
through the CHESS environment. Please refer to the AMASS User Manual [33] for instructions on how to
configure the analysis. To execute the FTA, perform the following steps:

1. Select a component (in the “Model Explorer” view) or the corresponding graphical representation (in
the diagram editor). The component can be any element in the active package.

2. From the CHESS menu select: Analysis — Dependability — FTA with xSAP.
From the Select Analysis Context for FTA/FMEA analysis window select the AnalysisContext from
which the analysis has to be started: the FTA condition defined for the selected AnalysisContext
appears in the window;

13 CHESS dependability profile is a part of the CHESS profile [61]
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4. Select OK to run the transformation.

Once the analysis is executed, the fault tree is automatically shown in a dedicated panel in the frontend; see
Figure 109 for an example of a resulting fault tree. If fault probabilities have been specified during the
configuration of the error model, the fault tree will report their combination. The fault tree can be examined,
in particular the minimal cut-set and so the basic fault conditions which can led to the top-level failure.

Top_Level_Event
(led.light = FALSE)
{0.188)

fault_cfg_1 fault_cfg_2 fault_cfg_3
(0.1) (0.05) (0.05)

Ayaya

E2 E3
(ps.backupBat.Battery_ErrorModel) (ps.primaryBat. Battery_ErrorModel,
mode_is_ErrorStuckAtZero) mode_is_ErrorStuckAtZero)
0.05)

E1
(ps.selector.Selector_ErrorModel.
fnode_is_ErrorStuckAtPrimaryBatEne]

O O O

Figure 109. A fault tree visualized in the CHESS Editor View; note the
probabilities associated to the top and basic events

3.3.2.3 FMEA generation

Along with the fault-tree generation, it is possible to generate the FMEA table. FMEA analysis is configured in
a similar mode as the fault-tree analysis, see the AMASS User Manual [33] for details. Steps to perform the
analysis are the following:

1. Select a component (in the “Model Explorer” view) or the corresponding graphical representation (in
the diagram editor). The component can be any element in the active package.

2. From the CHESS menu select: Analysis — Dependability — FMEA with xSAP.

3. From the Select Analysis Context for FTA/FMEA analysis window select the AnalysisContext from
which the analysis has to be started: the FMEA condition defined for the selected AnalysisContext
appears in the window.

4. Select OK to run the transformation.

Once run, the resulting table is visualized in a specific view inside CHESS, see Figure 110.
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O properties J Model validation & Console & Hierarchical Model View #f V and Vv Results | FmeaTable 23

EntryID  Failure Mode Failure Effects
1-1 ps.selector.SelectorErrorModel.mode_is_ErrorStuckAtPrimaryBatEnergy = TRUE led.light = FALSE
1-2 §ps.selector.SelectorErrorModel.mode_is_ErrorStuckAtPrimaryBatEnergy =TRUE Eled.light =TRUE
241 ps.backupBat.BatteryErrorModel.mode_is_ErrorStuckAtZero = TRUE led.light = FALSE
2-2 éps.backu pBat.BatteryErrorModel.mode_is_ErrorStuckAtZero = TRUE éled.light =TRUE
31 ps.primaryBat.BatteryErrorModel.mode_is_ErrorStuckAtZero = TRUE led.light =FALSE
3-2 §ps.primaryBat.BatteryErrorModel.mode_is_ErrorStu ckAtZero =TRUE éled.light =TRUE

Figure 110. The FMEA table in the CHESS view

3.3.3 Contract-Based Safety Analysis

The contract-based safety analysis identifies the component failures as the failure of its implementation in
satisfying the contract. When the component is composite, its failure can be caused by the failure of one or
more subcomponents and/or the failure of the environment in satisfying the assumption.

As result, this analysis produces a fault tree in which each intermediate event represents the failure of a
component or its environment and is linked to a Boolean combination of other nodes; the top-level event is
the failure of the system component, while the basic events are the failures of the leaf components and the
failure of the system environment (see [15] for more details).

To execute the contract-based safety analysis, perform the following steps:

1. Choose which contracts must be considered in the analysis: Select a component (in the “Model
Explorer” view) or the corresponding graphical representation (in the diagram editor). The contracts
considered will be the ones associated to the selected component and the ones associated to its sub
components. This operation includes recursively all the contracts along the subcomponents, from the
root to the leaves of the system.

2. Perform the analysis: right click on the selected component, then go to “AMASS” — “Safety Analysis’
— “Compute Contract-based Fault Tree on selected component”, see Figure 111.

4

3. Receive the result of the analysis: when the analysis is completed, the fault tree is shown. The
representation is the same as the ones used for the Model-based Safety Analysis, see Figure 109.
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Edit Class b e =

Figure 111. Dedicated menu to perform the compute the contract-based fault tree

3.4 Safety Case

In the following, the Safety Case activities depicted in Figure 19 are detailed, one subsection for each activity.

3.4.1 Evidence Generation

When a given analysis has been executed, and the analysis results have been inspected, the assurance
engineer can decide to collect the artefact(s) containing the analysis results as evidence; this is typically done
when the analysis results are satisfactory, i.e. the requirements under validation are satisfied. In this case the
evidence editor coming with OpenCert (the base tool for management of assurance and compliance adopted
in AMASS) is used to create a new evidence entity linked to the artefact(s) owning the analysis result. The
architect can then trace the new produced evidence with the analysis context entity, the latter available in
the CHESS model, that has been used to run the given analysis; this will allow to implicitly link the context
that has been analysed (e.g. system elements, specific analysis parameters values) to the obtained results.
This traceability link between the “AnalysisContext” entity in the CHESS model and the corresponding
evidence in the evidence model (i.e. the evidence referring the artefact created by the analysis invoked
through the same AnalysisContext) can be specified by using the Capra facilities (see AMASS user manual
[33] about how to work with Capra in the context of the AMASS platform).

The just created evidence can then be used to support the assurance case, for instance to demonstrate that
a given process step required by the process model has been executed. The evidence can also be used to
support the assurance case, and can be referred directly in the assurance case editor.

If the analysis has been performed to validate a contract (and so the associated formalized requirements),
the evidence has to be associated to the contract itself (see the AMASS user manual [33] about how to trace
a Contract to an evidence): this information can then be used while editing the assurance case, see Section
3.4.2 about link to assurance case, or it will be used during the argument fragments generation.
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Before the assurance case is available, the evidence can also be used to support a given contract or that a
requirement is properly satisfied by the architecture; the traceability link between the evidence and the
architecture (via the AnalysisContext) can be used to demonstrate what has been actually analysed and
verified. If the executed analysis supports the validation of a given contract, the obtained evidence can also
be linked to the contract itself.

Table 1 below summarizes the artefacts that can be generated by the analysis within the AMASS platform.

Table 1. Artefacts produced by analysis
Analysis (Default) Location of the produced Artifact ‘ Note

Validation of contracts Under the NuSMV-OCRA/Results folder of the
CHESS project (file name:
selected_component_name +”_
property_result.xml”)

Requirement Semantic Under the NuSMV-OCRA/Results folder of the
Analysis CHESS project (file name:
“output_"+selected_component_name + " _
property_result.xml”)

Requirement Quality Metrics

Contract-Based Verification Under the NuSMV-OCRA/Results folder of the

of Refinement CHESS project (file name:
selected_component_name+”_oss_refinement_re
sult.xml”)

Contract-Based Verification Under the NuSMV-OCRA/Results folder of the

of State Machines CHESS project (file name:
selected_component_name+”_oss_implementatio
n_result.xml”)

Model Checking Under the NuSMV3-XSAP/Results folder of the
CHESS project (file name :
output_selected_component_name+”_modelChec
king_result.xml”)

Contract-based Verification Under the NuSMV-OCRA/Results folder under the
of Refinement for Strong and | CHESS project (file name xxx_result.txt and

Weak Contracts XXX_consistency_result.txt)

Fault Tree Generation (xSAP) | Under the CHESS project folder. .aird is a representation
file used by the Sirius
graphical tool14.

Contract-Based Safety Under the NuSMV-OCRA/Results folder of the The file .xml is the result

Analysis CHESS project (file name: of the analysis

selected_component_name +”_o0ss_
faultTree_result.xml”)

Contract-Based Safety Under the CHESS project folder. The file .aird is a
Analysis representation file used
by the Sirius graphical
tool. It is used to
graphically represent the

14 https://www.eclipse.org/sirius/doc/user/general/Modeling%20Project.html
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file .xml produced by the
analysis.

Document Generation Chosen by the user via GUI.

3.4.2 Link to Architectural Entities

One important result of the architecture-driven assurance is the possibility to have an adequate traceability
between the assurance case and the architectural entities, e.g. to allow assurance architect and assurance
manager/assessor to easily navigate all the available information.

The approach of contract-based design proposed in AMASS plays an important role on this aspect; e.g. the
assurance case has to elaborate on each safety contract validity and upon the composition of contracts
(derived from the composition of the associated components). So, traceability links can be provided between
assurance case entities elaborating upon a contract and the contract itself.

According to the envisaged approach (see D3.3 [28] Section 3.2.2.5 and 3.2.2.6), traceability links between
the following entities have been identified as useful:

e Contract and Assurance Case Package, the latter owning the assurance case entities related to the
contract.

e Contract and Assurance Case Agreement, the latter owning the arguments about how the
assumptions of a contract are fulfilled in the context of the system.

e Contract and Assurance Case Claim, the latter elaborating on the contract itself, e.g. that the contract
is derived from some analysis or is based on some specification.

e System component and Argumentation element, the latter owning all the assurance case fragment
information related to the associated component.

e Contract and Evidence, the latter supporting the contract statement, in particular its guarantee, e.g.
by using some verification/test result

Evidences associated to a contract can then be reused and referred from the assurance case.

Some of the aforementioned links are automatically managed in case of argument fragment generation; for
the parts of the assurance case not currently supported by such automatism, the links have to be created
manually by using the Capra tool support (see the AMASS User manual [33]).

In addition to the aforementioned links between the architecture and assurance case related elements,
traceability links should also be provided between the system model and the executed process, the latter
also modelled in OpenCert e.g. as an evidence model listing all the artefacts to be produced according to a
given standard/process step; these relationships can then be reused to support the demonstration of the
compliance of the architecture with respect to a given process. Again, the links to the executed process can
be manually managed by using the Capra tool support.

3.4.3 Document Generation

As part of the evidences to be used at support of the safety case, the tool can generate a document
summarizing the modelling of the system components and the verification, validation, and analysis results.

The generated document is composed by a list of sections. The first section includes the diagrams that are
not associated to a specific component, such as the block definition diagrams, an instance is shown in Figure
112.
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«Block, System»
System

properties

in bscu2_fault_Monitor- Boolean

in Pedal_Pos2: Boolean

in bscu2_fault_Command: Boolean

in Pedal_Pos 1- Boolean

inbscul_fault_Command: Boolean

in bscu1_fault_Monitor: Boolean

out Brake_Line: Continuous

operations

constraints
system_brake_time: System_Brake_Time

\L hydraulic bscu

«Block» «Block»
Hydraulic BSCU
properties properties
in Valid: Boolean in Pedal_Pos2: Boolean
in CMD_AS: Boolean in bscu2_fault_Monitor: Boolean
out Brake_Line: Continuous in Pedal_Pos1: Boolean
in bscut_fault_Monitor: Boolean
operalions in bscu1_fault_Command: Boolean
in bscu2_fault_Command: Boolean
constraints out Valid: Boolean
hydraulic_brake_time: Hydraulic_Brake_Time out CMD_AS: Boolean
testSuProperty. testSuType
operations
constraints

{\alid = bscu1.Valid or bscu2 Valid}
bscu_cmd_time: BSCU_CMD_Time
bscu_safety BSCU_Safety

bscu2 \L bscut switch

«Block» «Block»
SubBSCU Select_Switch_Impl
properties properties
in fault_Command: Boolean in Select Boolean
in fault_Monitor. Boolean in In2: Boolean
in Pedal_Pos: Boolean in In1: Boolean
out CMD_AS: Boolean out Out: Boolean
out\alid: Boolean
‘operations.
‘operations
constraints
Constraints select_switch_sel0_time: Select_Switch_Sel0_Time
subbscu_safety: SubBSCU_Safety select_switch_sel1_time: Select_Switch_Sel1_Time

subbscu_cmd_time: SubBSCU_CMD_Time

Figure 112. Block Definition Diagram exported as vector image

The other sections describe in detail every component. Each section contains:

Name of the component

Table of input ports with name and type

Table of output ports with name and type

Table of subcomponents with instance name and type name
Table of interface assertions

Table of refinement assertions

Table of connectors between ports

Table of contracts

Table of contract refinements

Table of uninterpreted functions

Table of parameters

Table of parameters assumptions

Zero, one or more internal block diagrams, see Figure 113.
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System

bscu: BSCU

in bscu2_fault_Command: Boolean DR Ere

[ hydraulic: Hydraulic

out CMD_AS: Boolean F-]—F-~]  in CMD_AS: Boolean -]
outBrake_Line: Continuous

in bscu2_fault_Monitor: Boolean out Brake_Line: Continuous .-

in Pedal_Pos2: Boclean in Pedal_Pos2: Boolean

in bscu2_fault_Monitor: Baolean

k] inValid: Boolean

in Pedal_Pos1:Boolean in Pedal_Pes1: Boolean

outValid- Boslean F-

in bscul_fault_Monitor: Boolean inbscul fault Monitor: Boolean

in bscu1_fault_Command: Boolean in bscul_fault_Command: Boolean

Figure 113. Instance of an Internal Block Diagram exported as vector image

To automatically generate the documentation, perform the following steps:

1. Select the root component: Select a component (in the “Model Explorer” view) or the corresponding
graphical representation (in the diagram editor). The information used to generate the
documentation will be related to the selected component and to its sub components. This operation
includes recursively the information from the root to the leaves of the selected component;

2. Perform the document generation: right click on the selected component, then go to “CHESS” —
“Safety Case” — “Document Generation” — “Generate documentation from selected component”.

a. A popup appears to set the options related to the format of the document and to the style of
the diagrams, see Figure 114. For this prototype the supported formats are HTML and Latex.
b. A popup appears to select the folder that will contain the document and the diagrams.

Document formak html -

Show all components Show sub components table
show input ports table show output ports table

Show interface assertions table Show refinement assertions table
Show contracts table Show connections table

Show uninterpreted functions table Show parameters table

Show contract refinements table Show parameter assumptions table

Cancel OK
Figure 114. Popup to set the preferences of the generated document and diagrams

3.4.4 Argument Fragments Generation

As mentioned in Section 2.1.7, safety argument is the backbone of a safety assurance case, which aims at
assuring that the system is acceptably safe to operate in a given context. Argument-fragments represent
parts of that safety argument focused on assuring a specific aspect of the system, e.g., a particular
component or requirement [67]. The Argument Generator plugin is implemented in CHESS. It generates a set
of argument-fragments from the selected CHESS model and stores them in the corresponding destination
assurance case in the Connected Data Objects (CDO) repository stated in the OpenCert preferences. Note
that the whole safety case is not generated automatically and the generated fragments should be reviewed
and integrated with the rest of the assurance case.

The Argument Generator assumes that the CHESS model is enriched with contracts and that contract
refinement has been performed such that contract status is updated to indicate if the contract is validated in
the given context or not [83]. Moreover, the Argument Generator assumes that the analysed model and the
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refinement check results are stored in the refinement analysis context. The attached screenshots (Figure 115
- Figure 119) illustrate the usage of the Argument Generator plugin. First, the plugin prompts selection of the
OCRA refinement analysis context (Figure 115 - Figure 116). Then, the user needs to indicate to which
assurance case on the corresponding CDO server the argument-fragments should be generated (Figure 117).
The argument-generation is performed for each component and for each validated contract (Figure 118). The
set of argument-fragments for each component can be viewed in the selected assurance case (Figure 119).
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Figure 115. Initiating the argument-fragment generation
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Figure 118. Generation successfully completed with argument-fragments for each block
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Figure 119. An example of the generated argument-fragment

3.5 Summary

The following Table 2 summarizes the modules supporting the different activities:

Table 2. Summary of modules supporting the different phases of the AMASS architecture-driven assurance

PHASE

SUPPORTED ACTIVITIES

1. System definition

Using SysML BDD, IBD and Requirements Diagrams, possibility to import
requirements from external tools, formalization of requirements supported
with syntax-driven editors.

2. Requirements early validation

Formal semantic analysis of formal properties, analysis of requirements
quality with machine learning techniques and requirements quality metrics.

3. Functional refinement

Using SysML IBD extended with contracts.

4. Component’s nominal and faulty
behaviour definition

Using State Machines or Simulink models extended with fault injection.

5. Functional early verification

Contract-based Verification of refinement and state-machines, Model
Checking, Contract-based Monitoring of Simulink models, Contract-based
Verification of Refinement with Strong and Weak Contracts.

6. Safety Analysis

Simulation-based Fault Injection, Model-Based Safety Analysis, Contract-
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Based Safety Analysis.

7. Safety Case

Evidence Generation, Link to Architectural Entities, Document Generation,
Argument Fragments Generation.
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4. Case Studies

In this section, three case studies applying the methodological guide are described. These case studies are
not meant to cover completely the methodology, but they have been chosen based on the past experience
of the partners involved in the development of the Architecture-Driven Assurance approach.

4.1 AIR6110

4.1.1 Case Study Description

4.1.1.1 AIR6110 and the FBK-Boeing Case Study

AIR6110 [18] is an informational document issued by the SAE that provides an example of the application of
the ARP4754A15 and ARP476116 processes to a specific aircraft function and implementing systems. The non-
proprietary example of a Wheel Brake System (WBS) in this AIR, demonstrates the applicability of design and
safety techniques to a specific architecture. In this example, The WBS comprises a complex hydraulic plant
managing two landing gears each with four wheels and controlled by a redundant computer system with
different operation modes. The WBS provides symmetrical and asymmetrical braking and anti-skid
capabilities.

The joint case study between FBK and Boeing, presented in [19], enhances the AIR6110 with formal methods.
First, WBS architectures in AIR6110 formerly using informal steps are recreated in a formal manner. Second,
methods to automatically analyse and compare the behaviours of various architectures with additional,
complementary information not included in the AIR6110 are presented. Third, an assessment of distinct
formal methods ranging from contract-based design, including model checking, to model-based safety
analysis is provided.

The models are imported into CHESS and perform the early V&V and safety analysis supported by the AMASS
platform to trace the results and link them to the safety case. The AIR6110 document details the
development of the WBS system architecture in four versions, each obtained after design choices of different
types. The AMASS platform will enable to trace and compare the different architectures.

The git repositoryl? (branch master) contains the 5 CHESS projects: AIR6110, AIR6110Arch2, AIR6110Arch3,
AIR6110Arch4, AIR6110Arch5. They respectively describe the modelling of the first version of the WBS
architecture Archl, Arch2, Arch3, Arch4, Arch5, all described in [18] and formalized in [19]. Currently, in
reference to the Table 2, this case study covers the following phases:

e System definition: creation of the System element of the model using the BDD, see Section 3.2.1.2.

e Requirement Formalization: creation of formal properties and contracts, see Section 3.2.3.1.

e Requirements Early Validation: Requirement Semantic Analysis, see Section 3.2.4.1 and Validation of
Contracts, see Section 3.2.4.2.

e Functional refinement: definition of the sub-components and their interactions using IBDs, see
Section 3.2.5.1.1. Refinement of contracts, see Section 3.2.5.2.

e Functional early verification: execution of the Check Validation Property and the Verification of
Contract Refinement, see Section 3.2.7.1

e Safety Analysis: Execution of the Contract-based Fault-Tree Generation, see Section 3.3.3.

15 http://standards.sae.org/arp4754a/
16 http://standards.sae.org/arp4761/
17 https://gitlab.fbk.eu/CPS Design/CHESS SystemArchitectureProjects
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e Safety Case: Automatic generation of documentation, see Section 3.4.3.
4.1.1.2 Overview of the Aircraft

The WBS is part of a hypothetical aircraft, designated model S18. The S18 is a passenger aircraft, with a
capacity of 300-350 passengers, capable of a flight duration of approximately five hours. The S18 comprises
two engines, two main landing gears and a nose landing gear. Each main landing gear contains four wheels.

The S18 aircraft systems manage nine basic functions:

provide structural integrity;

provide stability and control;

provide control of energy;

provide operational awareness;

provide a controlled environment;

provide power generation and distribution;

provide loading, maintenance, ground handling and occupant accommodation;
provide control on the ground;

provide control in the air.

4.1.1.3 Overview of the WBS

4.1.1.3.1 Functions

The WBS manages part of the “provide control on the ground” aspect of basic aircraft function. In particular,
it fully implements the subfunction “provide primary stopping force,” which decelerates the aircraft on the
ground. The WBS must ensure the behaviour of four leaf functions:

decelerate using wheel braking;

provide directional control on the ground through differential braking;
stop main landing gear wheel rotation upon gear retraction;

prevent aircraft motion when parked.

An overview of the functions covered by the WBS is given in Figure 120, based on the understanding of
AIR6110.

The case study used in this document takes into account two leaf functions: “Decelerate using wheel
braking” and “Provide directional control on the ground through differential braking”.

L 8. Provide ground

control J | Control speed Decelerate aircraft - -
| on the ground Provide primary :
! ing Decelerate using wheel

stopping force

braking

Provide directional control
on the ground through
differential braking

Stop the main landing
- gear rotation during upon
gear retraction

Prevent aircraft motion
when parked

E Functions covered by the case study

Figure 120. Functional decomposition of the AIR6110 case study
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4.1.1.3.2 Structure

The WBS manages the brakes on the eight wheels of the two main landing gears. The nose gear has no
brakes. The WBS receives hydraulic and electric power, and displays information to the crew (e.g. the validity
of the brake signal produced by the Control System). To enable these features, it interfaces with systems
associated to other functions:

e the hydraulic and electric power plants, which cover the “provide power generation and distribution”
function;

e the display system, which covers the “provide operational awareness” function.
An overview of the WBS is given in Figure 121.

4.1.1.4 WBS Architecture evolution

The development of the WBS in the AIR6110 document is described through four evolutionary steps, each
step resulting in a specific architecture:

e Archl: The highest view of the architecture of the WBS comprises one BSCU and one hydraulic circuit
backed by an accumulator. This is the first step in the architecture decomposition by defining the
main functional elements of system.

e Arch2: This is the basic architecture of the WBS. It includes redundancy principles: There are two
BSCUs, a green circuit and a blue circuit. At this step multiple braking modes are introduced.

e Arch3: This evolution of Arch2 replaces the two BSCUs of the control system by one dual channel
BSCU.

e Arch4: This evolution of Arch3 modifies the placement of the accumulator and adds a link from the
control system validity to the selector valve in the physical system.

Evolution from one architecture to the next occurs as a result of assessment activities during the
development process.
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Figure 121. WBS architecture overview (MV=Meter Valve; ASV=AntiskidShutoff Valve; W=Wheel)

4.2 ETCS Linking function

The present case study is intended to provide the final user with an example related to railway domain of the
use of the AMASS platform for Architecture-Driven Assurance. The case study is mainly focused on the
following activities:

e System Definition (see Section 3.2.1 of the present deliverable)

e Requirements Formalization (see Section 3.2.2 of the present deliverable)
e Functional Refinement (see Section 3.2.4 of the present deliverable)

e Functional Early Validation (see Section 3.2.6 of the present deliverable)

Furthermore, an example of Evidence Generation, as described in Section 3.4.1 of the present deliverable, is
provided, even if Safety Case activities are not directly in the scope of the present case study.

The git repository18 (branch master) contains the CHESS project ETCS_linking_02_ParamArch, which is up to
date version of the model of the linking function.

4.2.1 Case Study Description

The case study focused on the ERTMS/ETCS sub-system aims to model the Linking function through the
AMASS platform.

18 https://gitlab.fbk.eu/CPS Design/CHESS SystemArchitectureProjects
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The European Rail Traffic Management System (ERTMS) is the system of standards for management and
interoperation of signalling for railways within the European Union.

The main target of ERTMS is to promote the interoperability of trains in the European Union. It aims to
greatly enhance safety, increase efficiency of train transports and enhance cross-border interoperability of
rail transport in Europe. This is done by replacing former national signalling equipment and operational
procedures with a single new Europe-wide standard for train control and command systems.

ETCS, acronym for European Train Control System, enables information to be transmitted to the driver
related to line status, permitted speed and to continuously check that this information is being complied
with. Together with the GSM-R, radio system based on the GSM mobile phone standard and used in the
railway field to exchange information between the trackside equipment and the train, it forms the so-called
ERTMS.

The ETCS system can be developed at four application levels. For the purpose of this model, the architecture
will be focused on Level 1, where data transmission to the train is mainly performed discontinuously via
EUROBALISE.

EUROBALISE is the European system for the transmission of information relevant to safety between the train
and the trackside equipment. It’s a function of ERTMS and one of the ETCS sub-systems.

The EUROBALISE system consists of:

e Balise: beacons, fixed or controlled type, located along the railway track, which are energized and
enabled to transmit only when the train antenna is above them.

e On-board transmission system: consisting of the antenna unit and BTM (Balise Module Transmission)
function.

e Trackside signalling system: consisting of the lineside electronic units and other external equipment
involved in the signalling process constantly communicating with controlled Balise.

The requirements for the train ETCS on board subsystem and trackside are defined in the System
Requirements Specification UNISIG Subset-026, [20] and, in particular the linking function, the model it refers
to, is defined in section 3.4.4 of [20].

A balise is linked when its linking information containing location, location accuracy and direction is known in
advance.

In general, the aim of linking can be summarized in the following targets:

e To determine whether a balise group has been missed or not found within the expectation window
and take the appropriate action.

e To assign a co-ordinate system to balise groups consisting of a single balise.
e To correct the confidence interval due to odometer inaccuracy.
On the basis of this statement, a model of a simple railway system constituted by trackside and on-board

components has been defined. In parallel, all the requirements related to linking function defined in UNISIG
Subset-026 [20] as set of natural language has been imported in a UML model.

The Figure 122 depicts the architecture developed with focus on linking function implementation.
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Figure 122, Pictorial view of the Linked Balises on the track

4.2.2 System Definition

The first phase of the modelling activity consisted in the specification of the requirements related to linking
function as defined in UNISIG Subset-026 [20]. The requirements were represented in the model by using the
SysML standard support, creating the Requirements Diagram illustrated in Figure 123. In particular, two
subsets of requirements were graphically created: one related to train ETCS on board subsystem, which
means requirements that the ETCS on board system has to meet and the other to trackside, which means
requirements that the signalling trackside infrastructure has to meet.

The requirements were imported manually from the standard and the following fields of the SysML tab were
filled:

o “Id” —the number of the requirement as defined in Subset-026 [20]
e  “Name” —the name “Req.” followed by a progressive number
o “Text” —the requirement in natural language as defined in Subset-026 [20]

The requirements applicable to the model were then linked to the related formal properties, as described in
the following sections.

«Requirements
Req1

«Requirement=
Req2

«Requirements
Req3

«Requirements
Reqt

=Requirement=
Req8

=Requirement=

Req@

=Requirement=

Reql0

«Requirement=

Req12

«Requirement=

Regd

«=Requirement=

Req?

«Requirement»
Reqt

«Requirement=
Reqbt

«Requirements
Req2t

«Requirement=
Req5

«Requirement=
ReqTt

«Requirement=
Req10t

«Requirements
Req11t

«Requirement=
Req8t

Figure 123. ETCS Linking model - Requirements Diagram
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4.2.2.1 Basic assumptions

In the present section the basic assumptions and main constraints related to the creation of the model are
reported. The model aims at the application of AMASS platform to model only partially a real railway
scenario and consequently has some limitations and simplifications that must be taken into account by the
end user.

The main assumption are the followings:

e The movement of the train is considered only in one direction (forward).
e The Balise Group are constituted by only one Balise.

e The Linking information cannot be iterated: only the next expected Balise is announced by the
previous one.

4.2.2.2 Architecture

In order to model the linking function, a simplified railway system has been implemented in the AMASS
platform. The architecture of the system was designed by means of SysML Block Definition Diagram in which
the system components and their relationship were produced.

The basic concept of the model consists in defining the core block, called “Linking_System”, which is
constituted by the trackside component block, called “Trackside”, and on-board component block called
“Train”. These blocks can be considered as the logic functions related to linking with the apportionment of
the linking requirements at on board and trackside level. The “Trackside” constitutes the signalling
infrastructure of the railway line, which, for the purpose of this model, is only composed of the EUROBALISE
system. The “Train” constitutes the group of real equipment normally installed on board, which receives
input from external sources and acts on the train dynamic behaviour.

On the other hand, a physical part of the system has been defined by means of the block called “Physical”
which is divided, as done for the block “Linking_System”, in trackside and train components. This part of the
system represents the physical behaviour of a real system: the block “Physical_Trackside” contains the
balises located along the route, while the block “Physical_Train” contains the train location information
during its journey along the route.

The blocks “Braking_System” and “Driver” represent the third part of the model. The definition of these
components is based on the consideration that the output of the elaboration performed by the on-board
subsystem can be thought mainly oriented to the driver, by means of the display of icons and text in the DMI
(Driver Machine Interface) located in the cabin in front of the driver, and to the train brake sub-system, by
means of the command of emergency and/or service brakes.

A modelization of the braking sub-system and of the driver machine interface could be very complex and are
considered out of the scope of the present model. As reported in next sections, the only interface
implemented in the model consists in the reception of the brake triggers for the braking system and the
reception of the icon and text to be displayed to the driver.

Figure 124 illustrates the complete SysML Block Definition Diagram of the model.

For each component, including the System component, designed in the SysML Block Definition Diagram a
SysML Internal Block Diagram was created in order to model components input/output ports, its
decomposition into parts and how the parts are connected.

In the following section, a description of each part of the model is reported together with a description of the
main assumptions at the basis of the model.
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Figure 124. SysML Block Definition Diagram of the parameterized model
4.2.2.3 Physical part

Physical part is composed by the block “Physical” and its sub-components, “Physical trackside” and a
“Physical train”, as defined in its Internal Block Diagram, reported in Figure 125.
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Figure 125. Internal Block Diagram of parameterized Physical block

In particular, Physical trackside is composed by the Balises (components “BG”) and provides to the model the
location of each Balise along the route. The model is parametrized: a vector of BG is defined and in each
instantiation of the general architecture the number of BG can be defined actualizing the value of the
variable “n_balise_group”.

Physical train represents the real train with its movement along the route; it provides to the model the
travelled distance of the train together with the odometric error data related to the travelled distance.

4.2.2.4 Linking system part

Linking system part is composed by the block “Linking system” and its sub-components, “Trackside” and
“Train”, as defined in its Internal Block Diagram, reported in Figure 126.
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Figure 126. Internal Block Diagram of parameterized “Linking system” block
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The Trackside is composed by the Balise groups and, as done for the Physical part, the model is
parametrized: a vector of BG is defined and in each instantiation of the general architecture the number of
BG can be defined actualizing the value of the variable “n_balise_group”.

The Trackside provides to the model the Linking information composed by a set of variables related to the
next Balise to be overpassed by the train (distance to the next Balise, location accuracy of the next Balise,
etc.). A main assumption of the model consists in considering that the Linking information refers only to the
next Balise to be overpassed by the train: no iteration of this information related to further Balise is
implemented. In this way, each Balise provides Linking information related to the next one.

Every time the location of the train is equal to the location of a Balise a Message is generated and the Linking
information is transferred by the Trackside to the Train.

The Train is composed by the Control system block which represents the core of the ETCS on board
subsystem, it constitutes the vital computer of the train, the processing unit that elaborates the inputs and
determines the output in accordance to the requirements. As consequence, Control system block
implements the following features:

e It receives in input the Linking information provided by trackside each time a Message is generated.

e Itimplements the on board Linking requirements formalized in dedicated formal properties.

e It provides as output triggers of the brakes and triggers of the text and icon to be displayed on the
DMI.

4.2.2.5 Brake and Driver part

The blocks “Braking_System” and “Driver” are block which receive as input from the Train block respectively
the trigger of service and emergency brake and the text and icon to be displayed to the driver on the DMI. A
more detailed modelization of the braking sub-system and of the driver machine interface could be very
complex and are considered out of the scope of the present model.

4.2.3 Requirements Formalization

Once the system architecture was defined, the requirements of the Linking function were allocated to the
corresponding components and translated into dedicated Formal properties. The Formal properties, defined
by means of CHESS platform, belongs to three different categories:

e Formal Properties which express the formalization of requirements.

e Formal Properties which formalize the assumptions defining the model boundary, domain
knowledge and working hypothesis.

e Formal Properties which defines specific scenarios.

Formal properties which express the formalization of requirements were linked to the related requirement
defined in the Requirements Diagram using the tab Profile, as illustrated in Figure 127.

{% «FormalProperty» FormalProperty_Expetation_window

== Applied stereotypes: o= || 3
Comments W FormalProperty  (from CHESSContract) :

Profile =l Formalize: Requirement [*] = [Req7]

Advanced = concern: Concerns [1] = unspecified

Ports

PropertyEditor+

Figure 127. Tab Profile to link formal properties to requirements
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An example of this type of properties is the one called Exepctation_window defined in “ControlSystem”
block, reported in Figure 128, which defines the distance expectation window in which the on board shall
expect the next linked Balise.

{% «FormalProperty-= FormalProperty_Expetation_window

}'nodel::modeIS}rstem\fiew::ControIS)rstem::Formalproperty_Expetation_window

UML
Comments always(p5 implies(
- ((Est_Distance)*0.95-QlocAccLRBG)= (D_LINK+QLochcc)
Profile implies (
Acdvanced ((LinkingReaction=>5erviceBrake) implies (next (ServiceBrakeTrigger)=true and next (DMI_Text)=1 and next (DMI_lcon)=0)) and
Port ((LinkingReaction=TrainTrip) implies (next (EmergencyBrakeTrigger)=true and next (DMI_Text)=1 and next (DMI_lcon)=1))))}
orts
PropertyEditor+

Figure 128. Exepctation_window formal property

Formal Properties which formalize the assumptions defining the model boundary, domain knowledge and
working hypothesis are constraints of the model related to the specific implementation. An example is the
Formal properties defined in the “Physical_Train” block formalizing that the movement of the train in the
present model is considered always in positive direction.

Formal Properties which define specific scenarios are created after the instantiation of the architecture (see
Section 4.2.4), because they represent the formalization of the specific instantiation of the general model
with the attribution of specific values to the input variables. At the date of issue of the present deliverable,
three scenarios were defined. Figure 129 illustrates the value of the basic variables and the expectation for
each scenario.

Scenario 01

BG1 BG2 BG3 BG4

BG Physical loc. 0 BG Physical loc. 100 BG Physical loc. 200 BG Physical loc. 300 BG Physical loc. 400
Linking reac No Linking reac No Linking reac No Linking reac SB Linking reac SB
D_LINK 100 D_LINK 100 D_LINK 100 D_LINK 100 D_LINK 100
Q_LOCACC 12 Q_LOCACC 12 Q_LOCACC 12 Q_LOCACC 12 Q_LOCACC 12
Q_DIR 1 Q_DIR 1 Q_DIR 1 Q_DIR 1 Q_DIR 1
Expectation

Recieve correctly BG1, BG2, BG3, BG4 (BG in the correct posistion)
Generate Service Brake trigger and Service Brake icon after the expextation window of BG5

Scenario 02

BG1 BG2 BG3 before

BG Physical loc. 0 BG Physical loc. 100 BG Physical loc. 150
Linking reac No Linking reac TR Linking reac No
D_LINK 100 D_LINK 100 D_LINK 100
Q_LOCACC 12 Q_LOCACC 12 Q_LOCACC 12
Q DIR 1 Q DIR 1 Q DIR 1
Expectation

Recieve correctly BG1, BG2 (all BG in the correct posistion)
Generate Emergency Brake trigger and TR icon after the expextation window of BG5

Scenario 03

BG1 BG2 BG3 after outside

BG Physical loc. 0 BG Physical loc. 100 BG Physical loc. 250
Linking reac No Linking reac TR Linking reac No
D_LINK 100 D_LINK 100 D_LINK 100
Q_LOCACC 12 Q_LOCACC 12 Q_LOCACC 12
Q_DIR 1 Q_DIR 1 Q_DIR 1
Expectation

Recieve correctly BG1, BG2 (all BG in the correct posistion)
Recieve correctly BG3 but at 130m from BG2 -> outside the expectation window
Generate Emergency Brake trigger and TR icon after the expextation window of BG3

Figure 129. Scenarios formalization
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Scenarios definition has the scope to create a specific implementation of the Linking model on which
validation checks can be performed, see Section 4.2.6. The scope of these tests is to evaluate the correctness
and coherence of the requirements formalization and to check if the expected behaviour is compatible with
the requirements.

4.2.4 Parametrization of the Architecture

The present model has been designed with a parametric architecture in order to be able to create easily a
specific scenario as a particular implementation of the railway system.

The parametric structure involves the definition of the number of Balise group located along the route.
Instead of creating a finite number of Balise Groups, with the scope to reach a high degree of flexibility, only
one Balise Group was defined both in Physical part and in Linking system part as a vector of Balise group with
a multiplicity equal to the value of the variable “n_balise_group”. This variable has been defined as a static
flow port and was replicated in each required block.

The procedure adopted to create the parametrization follows the description reported in Section 3.2.5.1.4 of
the present deliverable.

The parametrized architecture was then instantiated assigning the value 5 to the variable “n_balise_group”,
obtaining an architecture with a fixed number of components, ports, connections, and static attributes of
components. Figure 130 shows the DBB of the instantiate architecture.
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Figure 130. SysML Block Definition Diagram of the instantiated model

The parametrization of the architecture can be considered very suitable to the modelization of a railway
infrastructure, that can be extremely various. Furthermore, with this feature, the AMASS platform allows the
end user to define a reference architecture against which all the specific instantiation are compliant for

definition.

In this sense, the parametrization of the architecture can be considered as an example of architecture driven

assurance.
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4.2.5 Error Parametrization

The parametric architecture has been extended also to the modelization of the odometric error. In a real
train, the estimation of the travelled distance is derived by the signals provided by a set of sensors measuring
speed and acceleration by different methods. This estimation is affected by an error which becomes higher
more distance is travelled. Every time the train overpasses a linked Balise group, the odometric error is reset
and the estimation of train position becomes more accurate being affected only by the accuracy of Balise
group location.

The maximum error (given in percentage of the travelled distance) that train odometric function can do is
defined by the reference standard: if the error entity is below this limit, the linking requirements can be met
by the on board system and the expected behaviour of instantiated scenario is coherent with the defined
formal properties; if the error entity is above this limit, the inaccuracy related to the estimation of the real
location of the train is too high and the expected behaviour becomes no more coherent.

In order to enable the simulation of the two scenarios above mentioned, one with the odometric error inside
the assurance range and the other outside the assurance range, a Boolean variable “odoerror” and related
formal properties defining the assurance range of the odometric error value has been defined in the
“Physical_train” block.

4.2.6 Result Analysis

On the instantiated architecture, the check validation property (described in Section 3.2.4.2) was performed
to check if the formalized scenarios are consistent with the other properties of the model.

The 3 scenarios mentioned in Section 4.2.3 are translated in LTL expressions as follows:

Scenario 1:

always(physical_1.physical_trackside.balisegroup[0].LocationBG=0 and
physical_1.physical_trackside.balisegroup[1].LocationBG=100 and
physical_1.physical_trackside.balisegroup[2].LocationBG=200 and
physical_1.physical_trackside.balisegroup[3].LocationBG=300 and
physical_1.physical_trackside.balisegroup[4].LocationBG=400 and
linking_system_1.trackside_1.balisegroup[0].LinkingReaction=NoReaction and
linking_system_1.trackside_1.balisegroup[1].LinkingReaction=NoReaction and
linking_system_1.trackside_1.balisegroup[2].LinkingReaction=NoReaction and
linking_system_1.trackside_1.balisegroup([3].LinkingReaction=ServiceBrake and
linking_system_1.trackside_1.balisegroup[4].LinkingReaction=ServiceBrake and
linking_system_1.trackside_1.balisegroup[0].D_LINK=100 and
linking_system_1.trackside_1.balisegroup[1].D_LINK=100 and
linking_system_1.trackside_1.balisegroup[2].D_LINK=100 and
linking_system_1.trackside_1.balisegroup[3].D_LINK=100 and
linking_system_1.trackside_1.balisegroup[4].D_LINK=100 and
linking_system_1.trackside_1.balisegroup[0].QLocAcc=12 and
linking_system_1.trackside_1.balisegroup[1].QLocAcc=12 and
linking_system_1.trackside_1.balisegroup[2].QLocAcc=12 and
linking_system_1.trackside_1.balisegroup[3].QLocAcc=12 and
linking_system_1.trackside_1.balisegroup[4].QLocAcc=12 and
linking_system_1.trackside_1.balisegroup[0].QDir=true and
linking_system_1.trackside_1.balisegroup[1].QDir=true and
linking_system_1.trackside_1.balisegroup[2].QDir=true and
linking_system_1.trackside_1.balisegroup[3].QDir=true and
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linking_system_1.trackside_1.balisegroup[4].QDir=true) and in the future
(physical_1.physical train_1.Location=physical_1.physical_trackside.balisegroup[0].LocationBG  and  not
physical_1.MissBG and in the future (
physical_1.physical_train_1.Location=physical_1.physical _trackside.balisegroup[1].LocationBG  and  not
physical_1.MissBG and in the future
(physical_1.physical train_1.Location=physical_1.physical_trackside.balisegroup[2].LocationBG  and  not
physical_1.MissBG and in the future (
physical_1.physical_train_1.Location=physical_1.physical_trackside.balisegroup[3].LocationBG  and  not
physical_1.MissBG and in the future
(physical_1.physical_train_1.Location=physical_1.physical_trackside.balisegroup[4].LocationBG and
physical_1.MissBG)))))

Scenario 2:
always(physical_1.physical_trackside.balisegroup[0].LocationBG=0 and
physical_1.physical_trackside.balisegroup[1].LocationBG=100 and
physical_1.physical_trackside.balisegroup[2].LocationBG=150 and
physical_1.physical_trackside.balisegroup[3].LocationBG=300 and
physical_1.physical_trackside.balisegroup[4].LocationBG=400 and
linking_system_1.trackside_1.balisegroup[0].LinkingReaction=NoReaction and
linking_system_1.trackside_1.balisegroup[1].LinkingReaction=TrainTrip and
linking_system_1.trackside_1.balisegroup[2].LinkingReaction=NoReaction and
linking_system_1.trackside_1.balisegroup[3].LinkingReaction=ServiceBrake and
linking_system_1.trackside_1.balisegroup[4].LinkingReaction=ServiceBrake and
linking_system_1.trackside_1.balisegroup[0].D_LINK=100 and
linking_system_1.trackside_1.balisegroup[1].D_LINK=100 and
linking_system_1.trackside_1.balisegroup[2].D_LINK=100 and
linking_system_1.trackside_1.balisegroup[3].D_LINK=100 and
linking_system_1.trackside_1.balisegroup[4].D_LINK=100 and
linking_system_1.trackside_1.balisegroup[0].QLocAcc=12 and
linking_system_1.trackside_1.balisegroup[1].QLocAcc=12 and
linking_system_1.trackside_1.balisegroup[2].QLocAcc=12 and
linking_system_1.trackside_1.balisegroup[3].QLocAcc=12 and
linking_system_1.trackside_1.balisegroup[4].QLocAcc=12 and
linking_system_1.trackside_1.balisegroup[0].QDir=true and
linking_system_1.trackside_1.balisegroup[1].QDir=true and
linking_system_1.trackside_1.balisegroup[2].QDir=true and
linking_system_1.trackside_1.balisegroup[3].QDir=true and
linking_system_1.trackside_1.balisegroup[4].QDir=true ) and in the future (
physical_1.physical_train_1.Location=physical_1.physical_trackside.balisegroup[0].LocationBG  and  not
physical_1.MissBG and in the future
(physical_1.physical train_1.Location=physical_1.physical_trackside.balisegroup[1].LocationBG  and  not
physical_1.MissBG and in the future
(physical_1.physical train_1.Location=physical_1.physical_trackside.balisegroup[2].LocationBG  and  not
physical_1.MissBG and in the future
(physical_1.physical train_1.Location=physical_1.physical_trackside.balisegroup[3].LocationBG ~ and  not
physical_1.MissBG and in the future (
physical_1.physical_train_1.Location=physical_1.physical_trackside.balisegroup[4].LocationBG  and  not

physical_1.MissBG )))))

Scenario 3:
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always(physical_1.physical_trackside.balisegroup[0].LocationBG=0 and
physical_1.physical_trackside.balisegroup[1].LocationBG=100 and

physical_1.physical_trackside.balisegroup[2].LocationBG=250 and
physical_1.physical_trackside.balisegroup[3].LocationBG=300 and

physical_1.physical_trackside.balisegroup[4].LocationBG=400 and
linking_system_1.trackside_1.balisegroup[0].LinkingReaction=NoReaction and
linking_system_1.trackside_1.balisegroup[1].LinkingReaction=TrainTrip and
linking_system_1.trackside_1.balisegroup[2].LinkingReaction=NoReaction and
linking_system_1.trackside_1.balisegroup[3].LinkingReaction=ServiceBrake and
linking_system_1.trackside_1.balisegroup[4].LinkingReaction=ServiceBrake and
linking_system_1.trackside_1.balisegroup[0].D_LINK=100 and
linking_system_1.trackside_1.balisegroup[1].D_LINK=100 and
linking_system_1.trackside_1.balisegroup[2].D_LINK=100 and
linking_system_1.trackside_1.balisegroup[3].D_LINK=100 and
linking_system_1.trackside_1.balisegroup[4].D_LINK=100 and
linking_system_1.trackside_1.balisegroup[0].QLocAcc=12 and
linking_system_1.trackside_1.balisegroup[1].QLocAcc=12 and
linking_system_1.trackside_1.balisegroup[2].QLocAcc=12 and
linking_system_1.trackside_1.balisegroup[3].QLocAcc=12 and
linking_system_1.trackside_1.balisegroup[4].QLocAcc=12 and
linking_system_1.trackside_1.balisegroup[0].QDir=true and
linking_system_1.trackside_1.balisegroup[1].QDir=true and
linking_system_1.trackside_1.balisegroup[2].QDir=true and
linking_system_1.trackside_1.balisegroup[3].QDir=true and
linking_system_1.trackside_1.balisegroup[4].QDir=true) and in the future (
physical_1.physical_train_1.Location=physical_1.physical_trackside.balisegroup[0].LocationBG  and  not
physical_1.MissBG and in the future (
physical_1.physical_train_1.Location=physical_1.physical_trackside.balisegroup[1].LocationBG ~ and  not
physical_1.MissBG and in the future (
physical_1.physical_train_1.Location=physical_1.physical_trackside.balisegroup(2].LocationBG  and  not
physical_1.MissBG and in the future (
physical_1.physical_train_1.Location=physical_1.physical_trackside.balisegroup[3].LocationBG ~ and  not
physical_1.MissBG and in the future (

physical_1.physical_train_1.Location=physical_1.physical_trackside.balisegroup(4].LocationBG  and  not
physical_1.MissBG)))))

4.2.7 Evidence Generation

At the end of the model implementation and result analysis, the collection of the artefacts containing the
evidence of the model architecture and analysis results was performed: a document summarizing the
modelling of the system components was generated through the AMASS platform, in accordance to the
description reported in Section 3.4.3 of the present deliverable, see Figure 131.
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Figure 131. Screenshot of a part of the documentation generated in HTML format
4.3 DC Motor Drive

4.3.1 Case Study Description

As a simplified version of the electric powertrain of the Velox Model Car (see [68]) this case study features a
standalone direct current (DC) motor drive system. This system is so simple that it allows easy understanding
and verification according to the process described in this document, while still exhibiting all relevant
properties of a typical embedded system, in particular the combination of discrete-state logic (e.g. simple
run/stop state machine) with event typed input signals (e.g. “Run” button pressed) and continuous-value
dynamics (e.g. proportional and integral (Pl) speed controller) with continuous input and output signals (e.g.
speed actual, current actual). So, it allows exploiting our approach in a nutshell, before porting the approach
to the much more complex small-scale model car.

The DC drive case study is described by a set of natural language requirements and an architecture
specification in SysML, followed by Simulink/Stateflow models (partner B&M) or SCADE Architect / SCADE
Suite models (partner ANSYS medini) from which the actual-time C-code for the application software has
been generated (a simple base software consisting of hardware abstraction layer, scheduler, signal pool and
parameter system has been provided). Also, the circuit diagrams, part lists and mechanical drawings are
available.

Using tools like SCADE Suite or Simulink/Stateflow for behavioural description and subsequent code
generation accelerates the software development, and allow assessing the system behaviour in advance. In
case of SCADE, even the code generation is performed by a formally verified code generator, certified for the
highest safety integrity levels in automotive and aerospace industries, so that some verification steps on
code level become obsolete.

The scientific considerations in the AMASS project regarding this case study are mainly based upon the
models. For the purpose of safety assurance, a top-level hazard (unauthorized acceleration) has been
defined, and safety analysis in terms of Fault Tree Analysis and FMEA has been performed, examining
different typical examples of sensor failures, e.g. speed sensor wire break, and their causal relationship to
the top-level hazard if no safety mechanism is built in. Subsequently, the case study is extended by a modular
safety concept, including practical implementation of some of the resulting safety mechanisms (e.g. runtime
wire break diagnosis for the speed sensor, based on motor voltage and current measurement and a model of
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the physical laws governing the DC motor) in the actual software that runs on the DC motor drive
demonstrator.

The DC motor drive system comes in several variants:

1. A very simple version with minimal hardware, allowing just operation in one sense of rotation. It
features a RUN and a STOP button, a potentiometer for speed selection, a green status LED and all
necessary sensors.

2. An extended version with an integrated circuit motor driver (full Transistor H-bridge) allowing
accelerate/decelerate operation in both senses of rotation (clockwise and counter-clockwise), and
consequently a slightly extended user interface (RUN_FORWARD, RUN_REVERSE, STOP). Version 1
and 2 do not include any safety features.

3. A version enhanced with some functional safety mechanisms (as a result of a FMEA safety analysis
and contract-based safety concept creation), allowing to demonstrate the effectiveness of safety
mechanisms that detect certain examples of a (provoked) sensor failure and reacts by putting the
drive system into its “safe state” (power stage switched off and red indicator LED switched on)

4. A version that further enhances the simple safety mechanisms (allowing just shutting off the DC
motor in case of any failure) towards a degradation cascade, referring to model-based replacement
values in case of sensor failures, so that a continuation of operation with slightly degraded
performance is still safely possible, even in presence of a single sensor failure. This latter version
comes close to the degradation cascades we will have to implement for vehicles forming a platoon
(CS3) for the case of communication loss or failures in a remote vehicle (in loosely coupled systems-
of-systems, unreliable communication is a standard use case, and due to the partial “fail operational”
requirements such systems usually exhibit, degradation cascades are a necessity in this case, see
[72]).

All variants of the DC motor drive case study have not just been specified as models and specifications, but
have been actually built up in a lab demonstrator (see Figure 133), which allows Hardware in the loop (HIL)
testing as an additional verification method and comparison of model predictions with real-world
observations. Of course, the lab demonstrator has been constructed in a way that there is no actual danger
to the operator: it contains a small toy motor, is surrounded by a transparent, but massive housing, and
operates at a supply voltage of 12V.

The case study has been described in some of our publications before [2][3], so that the rough description
can be quoted from there: “The DC motor drive system consists of a DC motor, a power electronics board, a
microcontroller board and a small user terminal with Run and Stop (in case of variant 1) push buttons, an
operation mode LED and a potentiometer to select the target speed. The power board contains a metal-
oxide-semiconductor field-effect transistor (MOSFET) to modulate the power supply voltage that is fed to the
motor armature circuit according to the Pulse Width Modulated (PWM) signal generated by the
microcontroller. The control software implements a state machine for the operation modes and a cascaded
PI controller, implemented in Simulink. The outer speed controller generates a current target value for the
inner current control loop. It evaluates the actual rotational speed, measured by an incremental encoder.
The current controller reads the motor current from a sensor via an Analog to Digital Converter (ADC) and
generates a target PWM signal for the power electronics corresponding to the required motor voltage. The
Run and Stop buttons (BTN_RUN and BTN_STOP) are evaluated by a simple discrete state machine (the state
machine containing just two states, namely Running and Stopped) that enables or disables the controller
output. An overview is given in Figure 132. The extension to the more advanced versions works analogously,
adding more buttons for forward/reverse operation and for reset of detected failures, and additional LEDs
for failure and degraded status.”
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Figure 132. Architecture Overview of DC Drive Case Study (simplest version)

The case study has been physically implemented in version 2 to 4 (which one of them depends only on
software), enabling forward/reverse operation and some exemplary safety features (e.g. a detection for a
wire break of the speed sensor, which is an incremental encoder). To enable a test of the safety mechanisms,
the hardware test rig offers possibilities for failure injection (by pulling some bridges on the front panel), as
well as a multi-pin socket for connection with a HIL (hardware-in-the-loop) system, as shown in Figure 133.
This case study allows execution and validation of many of the AMASS methods explained in this document,
such as specification and architecture refinement, model-based safety analysis and enhancement of the
architecture with safety mechanisms, as well as fault injection testing.
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Figure 133. The physical implementation of the DC Drive Case Study as an experimental setting in AMASS

4.3.2 Experience gained with DC Drive Case Study at the stage of AMASS P2

The DC Drive has been modelled hierarchically with the prototypical tool SAVONA [12] which allows contract-
based system modelling; the technical architecture has, in parallel, been modelled using SCADE Architect
(the automated interface between both tools has not yet been implemented at the time of the experiments
carried out). Based on Papyrus, SAVONA aims at an easy creation and validation of static system models
(SysML Internal Block Diagrams) and offers support for specifying and decomposing system behaviour
contracts with template expressions [12]. Several features have been added to the base functionality of
Papyrus to simplify development and enhance the user experience, such as automatic creation of white-box
internal block diagrams (IBD), tabular model representation with edit support, etc.

In a stepwise decomposition process, one system level is modelled after another. Starting at the top level,
the system is modelled as a component (SysML Block) and its interfaces to the environment are represented
as input and output ports (SysML FlowPort). At this point assertions on the system inputs, outputs and their
dependencies can be expressed with semi-formal expressions in the language SSPL. By using the system
model as an ontology, the tool assists the user by providing names of existing model entities to complete
template based system specifications (the name of every object present in the SysML model can be
referenced in a requirement or assertion). An integrated Assertion Wizard guides the user through possible
pattern constructs until a matching template is found. For the more advanced users an Assertion Editor
(Xtext Editor) is offered, with which assertions can be typed in as free text, but with “completion assistance”.
A more detailed description of the Assertion Wizard and Assertion Editor can be found in deliverable D3.6
“Prototype for architecture-driven assurance (c)” [29]. The semi-formal assertions can be used as
assumptions or guarantees in contracts of the systems components.
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At the beginning, only the top-level architecture with the external interfaces were modelled in SysML. In a
session with experienced engineers, a set of requirements to a typical drive system was collected and written
down in natural English language, managed by a usual requirements tool (DOORS in this case). From these
requirements, a selection of requirements dealing with the system’s behaviour was picked for further
formalization with the SAVONA tool. These requirements covered discrete-state behaviour (e.g. that the
drive shall start operating when the RUN FORWARD button is pressed), continuous-signal behaviour (e.g.
that the speed shall drop under a limit specified as “standstill speed limit” at max. 2000 ms after the STOP
BUTTON has been hit), performance requirements (e.g. that the actual speed shall enter in a tolerance range
around the selected target speed after 500 ms and stay in this range unless the target speed is changed or
the STOP BUTTON is hit), and, after completion of a simplified HARA and Safety Concept, also some safety
requirements (e.g. that wire break failure of the speed sensor shall not lead to self-acceleration hazard).
These requirements have been put into the semi-formal specification language SSPL (an example is shown in
Figure 134, the creation using a macro wizard in the AMASS tool SAVONA is shown in Figure 135). The xtext
based specification wizard of SAVONA featuring syntax highlighting and auto-complete as well as dropdown
boxes, in combination with the full access to the SysML architecture model as an ontology and to the
parameter and signal tables, helped the analyst specifying the requirements.

@ Edit the selected Aszertion Iﬁ

Whenever fwd_btn changes to TRUE .
while (the absolute value of speed_act is less or equal to & rpm )
then in response speed_act is always in the range [speed_tgt - 10 rpm, speed_tgt + 10 rpm]
starting within 500 ms
wnitil {
any of the following events occur:
- stop_btn changes to TRUE
- the absolute value change of speed_tgt is greater than 20 rpm
during a timespan of 10 ms

F ;

Hint: Use Ctrl+Space to activate the content assist.

0K

Figure 134. A semiformal requirement for the DC Drive

The final requirements were then interpreted as guarantees (w.r.t contract-based design) of the top-level
system, whereas the assumptions came from given assumptions about the usage context (e.g. that the
supply voltage is always between 11V and 13V, or that the motor runs without external load torque).
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- target speed step

Transform

Figure 135. Example of a macro expansion wizard allowing specification of semantically correct requirements

After the design and specification of the systems outer layer, the refinement process continues with creating
subcomponents, their respective interfaces and their connections to each other and the upper system level.
At this point the model can automatically be validated by detecting inconsistent ports and invalid
connections to reduce system errors early during development. Semi-formal contracts are also created in the
same way as for the upper system layer and assigned to the subcomponents. The stepwise refinement is
then repeated for all of the subcomponents until the static functional architecture model is complete and a
sufficient level of detail is reached. As we were opting for late formalization (see Section 2.2.2), the
refinement from one level of the SysML architecture to the next lower level had to be performed manually,
supported by the refinement check wizard. An alternative solution could be to formalize the requirements on
top level (as far as they are expressible in one of the offered languages, in particular, Othello) and then
export them into the CHESS tool (a filter from SAVONA is available). In CHESS, the system architecture and
semi-formal contract specifications serve as a foundation for various V&V techniques of the AMASS tool
platform, such as contract verification with OCRA [16] and fault injection via Sabotage [27].

Currently, in reference to the Table 2, this case study covers partly the phases System definition (IBD) and
Functional refinement (IBD and Contracts).
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5. Conclusions

The Architecture-Driven Assurance approach of AMASS aims at enriching the architectural design with a
variety of model-based techniques that provide evidence and argument fragments to the assurance case.
These model-based techniques are mainly based on SysML diagrams and various analysis techniques that
comprise requirements semantic analysis, requirements quality analysis, contract-based reasoning, model
checking, runtime verification, simulation-based fault-injection and monitoring, and model-based safety
analysis (including FTA and FMEA), and analysis based on parametrized architectures.

This document defines a methodological guide to use the AMASS Architecture-Driven Assurance approach
and the related tool support by the AMASS platform. It describes the workflow, the steps to perform each
activity, and some case studies that are provided with the AMASS platform prototype.

This guide refers to the final Prototype P2 of the AMASS platform.
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Abbreviations and Definitions

Abbreviation Explanation
ACC Adaptive Cruise Control

ADC Analog to Digital Converter

API Application Programming Interface

ARP Aerospace Recommended Practice

ASIL Automotive Safety Integrity Level

BDD Block Definition Diagram

BSCU Braking System Control Unit

BTM Balise Module Transmission

CAE Claims, Arguments and Evidence

CHESSML CHESS Modelling Language

CDhO Connected Data Objects

CFT Component Fault Tree

CPS Cyber-Physical Systems

Ccsv Comma Separated Value

CTL Computation-tree Temporal Logic

DAL Design Assurance Level

DC Direct Current

DMI Driver Machine Interface

DOORS Dynamic Object-Oriented Requirements System
ERTMS European Rail Traffic Management System
ETCS European Train Control System

FHA Functional Hazard Analysis

FI Fault Injection

FMEA Failure Mode and Effect Analysis

FTA Fault Tree Analysis

FSM Finite-State Machine

GCSL Goal and Contract Specification Language
GSM Global System for Mobile communications
GSN Goal-Structuring-Notation

GUI Graphical User Interface

HARA Hazard Analysis and Risk Assessment

HAZOP Hazard and Operability study

HIL Hardware in the loop

HRELTL Hybrid LTL

HTML HyperText Markup Language

IBD Internal Block Diagram

IEC International Electrotechnical Commission
IESE Institute for Experimental Software Engineering
ISO International Organization for Standardization
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Abbreviation Explanation
KM Knowledge Management

LTL Linear-time Temporal Logic

MARTE Modeling and Analysis of Real Time and Embedded systems
MBSA Model-Based Safety Analysis

MIL Model in the Loop

MOSFET Metal-oxide-semiconductor field-effect transistor
NLP Natural-Language Processing

OCRA Othello Contracts Refinement Analysis

OoMG Object Management Group

OSLC Open Services for Lifecycle Collaboration

0SS Othello System Specification

PI Proportional and Integral

PSL Property Specification Language

PWM Pulse Width Modulated

RSL Requirement Specification Language

RQA Requirement Quality Analyzer

SAE Society of Automotive Engineers

SCM System Conceptual Model

SERE Sequential Extended Regular Expressions

SIL Software in the Loop

SKB System Knowledge Base

SMV Symbolic Model Verifier

SOTIF Safety Of The Intended Functionality

SSPL System Specification Pattern Language

STL Signal Temporal Logic

STO Scientific Technical Objective

SUT System Under Test

Sw Software

SysML System Modelling Language

UML Unified Modelling Language

V&V Verification and Validation

VHDL Very High speed integrated circuit Hardware Description Language
WBS Wheel Brake System

XSAP eXtended Safety Assessment Platform
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Appendix A: Document changes respect to D3.7

New Sections:

Section Title
2.2.2 Transfer of the AMASS Main Idea to an Industry-Proof Working Process
3.2.3.2 Requirements Formalization Using SAVONA
3.2.4.3.6 Correctness metric for models
3.2.4.3.7 Checklist metrics
3.25.1.2 Architectural Refinement in SAVONA
3.2.5.1.3 Architectural Pattern-based support
3.25.14 Parameters and Configurations
3.2.5.2.2 Contract Refinement in SAVONA
3.3.23 FMEA generation
3.3.1.2 Eclipse solution: Integration with the AMASS Platform

Modified Sections:

Section Title Change
Executive Summary Updated
2.1.2 Contract-Based Design Rephrased some parts.
2.15 Verification and Validation of Added note on AMASS support
Behavioural Models
2.1.6.1 Simulation-Based Revised section including simulation-based analysis
and minimal cut sets analysis into one section on
model-based safety analysis.
2.2.3 Tool Support Overview Extended with clearer overview of external tools
3.1 Workflow Overview Figure 13 and 14 changed
3.2.11 Requirements Specification/Import | Added info about requirements traceability
3.2.4.3 Requirement Quality Analyser in the | Extended section of the integration of RQA with
AMASS platform AMASS.
Included new metrics developed: correctness
metrics for models and metrics of checklists.
3.2.5.2.1 Contract Refinement in CHESS Added info about requirements refinement
3.2.6 Component’s Nominal and Faulty Updated with extended support for state machines
Behaviour Definition and error model.
3.3.1 Simulation-based Fault Injection Introduction modified and figure 88 changed
3.4.2 Link to Architectural Entities Minor updates.
3.4.3 Document Generation Updated with new features added to the reports.
4.2 ETCS Extended section with the description of the model
and link to the methodological guide.
43 DC Motor Drive Minor updates.
5 Conclusions Minor updates.
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