
This deliverable is part of a project that has received funding from the ECSEL JU under grant agreement No 692474. 
¢Ƙƛǎ Wƻƛƴǘ ¦ƴŘŜǊǘŀƪƛƴƎ ǊŜŎŜƛǾŜǎ ǎǳǇǇƻǊǘ ŦǊƻƳ ǘƘŜ 9ǳǊƻǇŜŀƴ ¦ƴƛƻƴΩǎ IƻǊƛȊƻƴ нлнл ǊŜǎŜŀǊŎƘ ŀƴŘ ƛƴƴƻǾŀǘƛƻƴ 
programme and from Spain, Czech Republic, Germany, Sweden, Italy, United Kingdom and France. 

 

 

 

ECSEL Research and Innovation actions (RIA) 

 

 

 

 

 

AMASS 
Architecture-driven, Multi-concern and Seamless Assurance and 

Certification of Cyber-Physical Systems 

 
Prototype for Architecture-Driven Assurance (c)  

D3.6 
 
 

Work Package: WP3: Architecture-Driven Assurance 

Dissemination level: PU = Public 

Status: Final 

Date: 31st August 2018 

Responsible partner: B&M 

Contact information: Peter M. Kruse <peter.kruse@berner-mattner.com>  

Document reference: AMASS_D3.6_WP3_B&M_V1.0 
 

PROPRIETARY RIGHTS STATEMENT 

This document contains information, which is proprietary to the AMASS consortium. Permission to reproduce any 
content for non-commercial purposes is granted, provided that this document and the AMASS project are credited 
as source. 



 

 

 

Contributors 

 

Reviewers 

 

Names Organisation 

Stefano Puri Intecs (INT) 

Peter M. Kruse, Markus Grabowski Assystem Germany (B&M) 

Eugenio Parra, José Luis de la Vara, Gonzalo Génova, 
Valentín Moreno 

Universidad Carlos III de Madrid (UC3) 

Luis Alonso The REUSE Company (TRC) 

Stefano Tonetta, Alberto Debiasi Fondazione Bruno Kessler (FBK) 

Garazi Juez, Estibaliz Amparan Tecnalia Research & Innovation (TEC) 

¢ƻƳłǑ YǊŀǘƻŎƘǾƝƭŀΣ ±Ɲǘ Yƻƪǎŀ Honeywell (HON) 

Jaroslav Bendík Masaryk University (UOM) 

Names Organisation 

Marc Sango (Peer review) ALL4TEC (A4T) 

Zoë Stephenson (Peer review) Rapita Systems (RPT) 

Alejandra Ruiz (TC review) Tecnalia Research & Innovation (TEC) 

Cristina Martinez (Quality Manager) Tecnalia Research & Innovation (TEC) 



              

         AMASS Prototype for architecture-driven assurance (c)  D3.6 V1.0 

 

 

H2020-JTI-ECSEL-2015 # 692474 Page 3 of 82 

 

TABLE OF CONTENTS 

Executive Summary ...................................................................................................................................... 6 

1. Introduction (*) ....................................................................................................................................... 7 

2. Implemented Functionality ................................................................................................................... 10 

2.1 Scope (*) ........................................................................................................................................ 10 

2.2 Implemented Requirements (*)...................................................................................................... 11 

2.2.1 System Component Specification.......................................................................................... 15 

2.2.2 System Architecture Modelling for Assurance....................................................................... 32 

2.2.3 V&V-based Assurance Impact Assessment ............................................................................ 37 

2.2.4 Contract-based Assurance Composition................................................................................ 59 

3. Installation and User Manuals .............................................................................................................. 66 

4. Implementation Description ................................................................................................................. 67 

4.1 Implemented Modules ................................................................................................................... 67 

4.1.1 System Component Specification Block ................................................................................ 67 

4.1.2 Architecture-Driven Assurance Block .................................................................................... 67 

4.2 Source Code Description ................................................................................................................ 68 

4.2.1 System Component Specification Block ................................................................................ 68 

4.2.2 Architecture-Driven Assurance Block .................................................................................... 70 

5. Conclusions(*) ....................................................................................................................................... 79 

Abbreviations ............................................................................................................................................ 80 

References (*) ............................................................................................................................................ 82 

 



              

         AMASS Prototype for architecture-driven assurance (c)  D3.6 V1.0 

 

 

H2020-JTI-ECSEL-2015 # 692474 Page 4 of 82 

 

List of Figures 

Figure 1. AMASS Building blocks ................................................................................................................ 8 

Figure 2. Layered structure of AMASS tool modules ................................................................................. 10 

Figure 3. Description of main building blocks ........................................................................................... 11 

Figure 4. Papyrus editor ........................................................................................................................... 17 

Figure 5. SysML IBD showing multiple system layers ................................................................................ 18 

Figure 6. Revised Context Menu of the Model Explorer ............................................................................ 18 

Figure 7. Model Table showing all signals of a SysML Block ...................................................................... 19 

Figure 8. Properties View in SAVONA ....................................................................................................... 19 

Figure 9. CHESS Export function of SAVONA ............................................................................................. 20 

Figure 10. Modelling FormalProperty ........................................................................................................ 21 

Figure 11. First step in the Assertion-Wizard: Select a General Pattern Type to formulate an assertion. 
Each selection features a short description and example to offer the user an easy decision. ...... 23 

Figure 12. Second step in the Assertion-Wizard: Choose a pattern instantiation of the previously 
selected general pattern type .................................................................................................... 23 

Figure 13. Last step of the Assertion-Wizard: Refine the pattern instance with names of available 
model elements. Only element names which are valid for the corresponding placeholder 
can be used ............................................................................................................................... 24 

Figure 14. Pattern-suggestion feature of the Assertion Editor .................................................................... 24 

Figure 15. Macros Section of the Properties View in SAVONA .................................................................... 25 

Figure 16. The first page of SAVONA's Macro Wizard ................................................................................. 26 

Figure 17. Data Dictionary View in SAVONA ............................................................................................... 27 

Figure 18. Contract and FormalProperty example ...................................................................................... 28 

Figure 19. After the creation of a ContractProperty, a Popup appears to decide whether a new 
contract has to be created or an existing one has to be instantiated .......................................... 29 

Figure 20. Assign Contract to Component .................................................................................................. 30 

Figure 21. Assertions Section in the Properties View of SAVONA................................................................ 30 

Figure 22. Contracts Section in the Properties View of SAVONA ................................................................. 31 

Figure 23. Collapsed contracts in the Contract Section of SAVONA ............................................................. 31 

Figure 24. Contract Wizard of SAVONA ...................................................................................................... 31 

Figure 25. Links through EAnnotation ........................................................................................................ 34 

Figure 26. Links through traceability meta-model ...................................................................................... 34 

Figure 27. 9ȄŀƳǇƭŜ ƻŦ ŦƛƭŜΦƻǎǎ ŀƴŘ ǘƘŜ άaƻŘŜƭ 9ȄǇƭƻǊŜǊ ±ƛŜǿέ ǇƻǇǳƭŀǘŜŘ ǿƛǘƘ ǘƘŜ ƛƳǇƻǊǘŜŘ ŜƴǘƛǘƛŜǎΦ ........ 35 

Figure 28. BDD describing a parameterized architecture ............................................................................ 36 

Figure 29. Correctness metrics for models ................................................................................................. 38 

Figure 30. Window to answer the questions of the checklist metrics .......................................................... 38 

Figure 31. Results presentation of the checklist metrics ............................................................................. 39 

Figure 32. Correctness checklist metric configuration ................................................................................ 40 

Figure 33. Completeness checklist metric configuration ............................................................................. 41 

Figure 34. GUI element used to run the V&V Manager ............................................................................... 43 

Figure 35. Switch in on the V&V Result view .............................................................................................. 43 

Figure 36. Example of constraint's guarantee. ............................................................................................ 44 

Figure 37. LTL going to and V&V results coming from the Verification Server ............................................. 45 



              

         AMASS Prototype for architecture-driven assurance (c)  D3.6 V1.0 

 

 

H2020-JTI-ECSEL-2015 # 692474 Page 5 of 82 

 

Figure 38. Example of requirements from Gesture Recognition system (Case Study 7) that are only 
trivially realisable ...................................................................................................................... 46 

Figure 39. Example of requirements that are consistent, non-redundant and not realisable....................... 47 

Figure 40. Details for requirements checking ............................................................................................. 47 

Figure 41. Checking and proposed error handling ...................................................................................... 48 

Figure 42. Counterexample shown in the "Behaviour Trace View" ............................................................. 49 

Figure 43. CHESS error model state machine ............................................................................................. 50 

Figure 44. Example of fault tree represented as a table.............................................................................. 50 

Figure 45. Example of fault tree represented as tree .................................................................................. 51 

Figure 46. Sabotage design architecture. ................................................................................................... 52 

Figure 47. Sabotage Fault List .................................................................................................................... 53 

Figure 48. Massif model of the DC drive system ......................................................................................... 54 

Figure 49. Example of the generated saboteur ........................................................................................... 54 

Figure 50. Xtend templates for the generation of saboteurs and readouts ................................................. 55 

Figure 51. Example of a saboteur code ....................................................................................................... 55 

Figure 52. Integration with safety contracts ............................................................................................... 56 

Figure 53. Analysis Context ........................................................................................................................ 57 

Figure 54. Excerpt of 2 pages of the generated report. ............................................................................... 59 

Figure 55. Contract Editor with content assist ............................................................................................ 60 

Figure 56. Hierarchical view of the system decomposed into sub-components and contracts .................... 61 

Figure 57. Contract Refinement View......................................................................................................... 61 

Figure 58. Part of the OCRA input file, also called OSS (OCRA System Specification). It describes the 
system architecture represented by a tree of components (given by the decomposition into 
sub-components) ...................................................................................................................... 62 

Figure 59. Selecting analysis context for contract refinement..................................................................... 63 

Figure 60. tŀǊǘ ƻŦ ŀƴ ΨΦ{a±Ω ŦƛƭŜ ǊŜǇǊŜǎŜƴǘƛƴƎ ǘƘŜ ōŜƘŀǾƛƻǳǊ ƻŦ ǘƘŜ ƭŜŀŦ ŎƻƳǇƻƴŜƴǘǎ ƻŦ ǘƘŜ ƳƻŘŜƭ ............. 64 

Figure 61. In this example, for each contract the results of the Contract-based verification are listed in 
the Trace View .......................................................................................................................... 65 

Figure 62. Tool modules for System Component Specification ................................................................... 67 

Figure 63. CHESS plugins supporting Contract Based Design ...................................................................... 69 

Figure 64. CHESS methodology constraint .................................................................................................. 70 

Figure 65. Massif and Sabotage meta-models ............................................................................................ 71 

Figure 66. Connection between Sabotage and Massif at meta-model level ................................................ 71 

Figure 67. Code Generation workspace ...................................................................................................... 72 

Figure 68. Diagram showing the dependencies among the plugins. The direction of the arrow means 
that the origin plugin depends on the target plugin. .................................................................. 77 

Figure 69. Papyrus plugins for architectural pattern definition and manipulation support .......................... 78 

 

 



              

         AMASS Prototype for architecture-driven assurance (c)  D3.6 V1.0 

 

 

H2020-JTI-ECSEL-2015 # 692474 Page 6 of 82 

 

Executive Summary 

The deliverable D3.6 άPrototype for Architecture-Driven Assurance (c)έ is the last output of the AMASS task 
T3.3 Implementation for Architecture-driven Assurance, whose objective is the development of a tooling 
framework to support architecture-driven assurance. D3.6 is the evolution of D3.5, which described the 
second prototype, the sections modified with respect to D3.5 have been marked with (*) in the headlines. 

AMASS task T3.3 has three prototype iterations, described in D3.4 [20] , D3.5 [21] and D3.6 (this document). 
This deliverable reports the status of the aforementioned tooling framework for the final prototype release 
(Prototype P2), in particular for what regards the system component specification and the tooling 
framework supporting architecture-driven assurance, by describing the supported functionalities and the 
details about implementation.  

This deliverable takes into account the work performed in the other project work-packages, mainly WP2, 
WP4, WP5 and WP6 because they have strong dependencies with T3.3. Indeed, in this deliverable a set of 
functionalities regarding the system component specification has been selected from the AMASS 
ŘŜƭƛǾŜǊŀōƭŜ 5нΦм ά.ǳǎƛƴŜǎǎ ŎŀǎŜǎ ŀƴŘ ƘƛƎƘ-ƭŜǾŜƭ ǊŜǉǳƛǊŜƳŜƴǘǎέ [18]. D3.6 describes the technologies that 
allow the implementation of all selected functionality also covering requirements which have not been 
implemented in previous prototype iterations.  

The logical structural view of the AMASS reference tool architecture elaborated in the άAMASS Reference 
Architectureέ deliverables, D2.3 [6] and D2.4 [7], have also been considered in this deliverable; in particular 
physical components like CHESS and its contract editing functionality have been successfully mapped to the 
logical tool components Component Editor and Contract Editor. 

WP4 and WP5 results have been particularly useful in guiding the argumentation and evidence metamodel 
specification; importantly, system architecture-related information can now be traced to the 
argumentation and evidence models.  

The deliverable D3.6 άPrototype for architecture-driven assurance (c)έ is the final evolution of this 
deliverable; in particular, D3.6 documents the final state of the tooling frameworkΩǎ ƛƳǇƭŜƳŜƴǘŀǘƛƻƴ 
supporting architecture-driven assurance using contract based design. 



              

         AMASS Prototype for architecture-driven assurance (c)  D3.6 V1.0 

 

 

H2020-JTI-ECSEL-2015 # 692474 Page 7 of 82 

 

1. Introduction (*)  

The AMASS approach focuses on the development and consolidation of an open and holistic assurance and 
certification framework for Cyber Physical Systems (CPS), which constitutes the evolution of the 

OPENCOSS1 and SafeCer2 approaches towards an architecture-driven, multi-concern assurance, and 
seamlessly interoperable tool platform. 

The AMASS tangible expected results are: 

a) The AMASS Reference Tool Architecture, which will extend the OPENCOSS and SafeCer conceptual, 
modelling and methodological frameworks for architecture-driven and multi-concern assurance, as 
well as for further cross-domain and intra-domain reuse capabilities and seamless interoperability 

mechanisms (e.g. based on Open Services for Lifecycle Collaboration (OSLC)3 specifications). 

b) The AMASS Open Tool Platform, which will correspond to a collaborative tool environment 
supporting CPS assurance and certification. This platform represents a concrete implementation of 
the AMASS Reference Tool Architecture, with a capability for evolution and adaptation, which will 
be released as an open technological solution by the AMASS project. AMASS openness is based on 
both standard OSLC Application Programming Interfaces (APIs) with external tools (e.g. engineering 
tools including V&V tools) and on open-source release of the AMASS building blocks. 

c) The Open AMASS Community, which will manage the project outcomes for maintenance, evolution 
and industrialization. The Open Community will be supported by a governance board, and by rules, 
policies, and quality models. This includes support for AMASS base tools (tool infrastructure for 
database and access management, among others) and extension tools (enriching AMASS 
functionality). As Eclipse Foundation is part of the AMASS consortium, the Polarsys/Eclipse 

community4 is a strong candidate to host AMASS (See D7.3 [27], D7.5 [28] and D7.6 [29] for further 
details). 

To achieve the AMASS results, as depicted in Figure 1, the multiple challenges and corresponding project 
scientific and technical objectives are addressed by different work-packages. 

                                                             

1 www.opencoss-project.eu 

2 https://artemis-ia.eu/project/40-nsafecer.html    

3 https://open-services.net 

4 www.polarsys.org 

http://www.opencoss-project.eu/
https://artemis-ia.eu/project/40-nsafecer.html
https://open-services.net/
http://www.polarsys.org/


              

         AMASS Prototype for architecture-driven assurance (c)  D3.6 V1.0 

 

 

H2020-JTI-ECSEL-2015 # 692474 Page 8 of 82 

 

WP3 WP4 WP5 WP6
WP5 WP2

WP5

WP3 WP4

WP6

 

Figure 1. AMASS Building blocks 

Since AMASS targets ambitious objectives related to architecture-driven assurance, multi-concern 
assurance, seamless interoperability support and cross-domain and intra domain assurance reuse, the 
AMASS Consortium has decided to follow an incremental approach by developing rapid and early 
prototypes. 

The benefits of following a prototyping approach are: 

¶ Better assessment of ideas by focusing on a few aspects of the solution. 

¶ Ability to change critical decisions by using practical and industrial feedback (case studies). 

AMASS has planned three prototype iterations: 

1. During the first prototyping iteration (Prototype Core), the AMASS Platform Basic Building Blocks, 
are aligned, merged and consolidated at Technology Readiness Level (TRL) 4 (technology validated 
in laboratory).  

2. During the second prototyping iteration (Prototype P1), the single AMASS-specific Building Blocks 
will be developed and benchmarked at TRL 4. 

3. Finally, at the third prototyping iteration (Prototype P2), all AMASS building blocks will be 
integrated in a comprehensive toolset operating at TRL 5 (technology validated in relevant 
environment). 

Each of these iterations has the following three prototyping dimensions: 

¶ Conceptual/research development: development of solutions from a conceptual perspective. 

¶ Tool development: development of tools implementing conceptual solutions. 

¶ Case study development: development of industrial case studies using the conceptual and tooling 
solutions. 



              

         AMASS Prototype for architecture-driven assurance (c)  D3.6 V1.0 

 

 

H2020-JTI-ECSEL-2015 # 692474 Page 9 of 82 

 

As part of the Prototype P2, WP3 is responsible for driving the architecture specification in order to design 
ŀƴŘ ƛƳǇƭŜƳŜƴǘ ǘƘŜ ōŀǎƛŎ ōǳƛƭŘƛƴƎ ōƭƻŎƪ ŎŀƭƭŜŘ άSystem Component Specificationέ όsee Figure 1). This part 
of the AMASS platform manages component and contract-based design (see D3.1 [10] Section 3.1.1). 

This deliverable follows the outcomes of D3.5 [21], which comprised a thorough report on the tool 
development results of the άSystem Component {ǇŜŎƛŦƛŎŀǘƛƻƴέ ōŀǎƛŎ ōǳƛƭŘƛƴƎ ōƭƻŎƪΦ It presents in detail the 
pieces of functionality implemented in the AMASS platform tools, their software architecture, the 
technology used, and some source code references. In that framework, D3.6 strongly focuses on the 
integration of different approaches and ideas into one unified AMASS tooling framework supporting 
architecture-driven assurance.  

Other important parts of the D3.6 document are: 

¶ Description of the AMASS Platform tools for the final prototype 

¶ Finalized User Manuals and installation Instructions 

¶ Source code description 



              

         AMASS Prototype for architecture-driven assurance (c)  D3.6 V1.0 

 

 

H2020-JTI-ECSEL-2015 # 692474 Page 10 of 82 

 

2. Implemented Functionality 

2.1 Scope (*) 

The scope for the third prototype iteration is the provision of modelling tools for system component 
specification, including a contract-based approach and the link with the assurance case specification. The 
main scope is highlighted with red rectangles on Figure 2, which shows the general layered structure of the 
AMASS platform (from AMASS deliverable D2.3 [19]). 

 

Figure 2. Layered structure of AMASS tool modules 

Figure 3 illustrates the component decomposition of these tools based on the design specification 
documented in deliverable D3.3 [16]. 



              

         AMASS Prototype for architecture-driven assurance (c)  D3.6 V1.0 

 

 

H2020-JTI-ECSEL-2015 # 692474 Page 11 of 82 

 

 

Figure 3. Description of main building blocks 

The System component specification enables the design of: the overall architecture, each single component 
and the requirements. Moreover, it provides features of contract editing. The architecture driven assurance 
is decomposed in different modules; the System Architecture Modelling for Assurance module that 
interacts with the External Design Tools, the V&V-based Assurance Impact Assessment module that 
provides V&V analysis invoking external V&V tools, the Contract-based Assurance Composition that 
provides contact-based features, and the Assurance Patterns Library Management module that implements 
the concept of assurance pattern. 

2.2 Implemented Requirements (*) 

From the requirements point of view, this last prototype iteration focuses on a set of AMASS requirements 
as defined in the AMASS deliverable D2.1 ά.ǳǎƛƴŜǎǎ ŎŀǎŜǎ ŀƴŘ ƘƛƎƘ-ƭŜǾŜƭ ǊŜǉǳƛǊŜƳŜƴǘǎέ [18]. Table 1 shows 
all relevant requirements which the final prototype shall implement. Even though some of the 
requirements are still pending or in development at the release of this document, the final prototype will 
cover all of them. 

 

 

 



              

         AMASS Prototype for architecture-driven assurance (c)  D3.6 V1.0 

 

 

H2020-JTI-ECSEL-2015 # 692474 Page 12 of 82 

 

Table 1. Requirements implemented in the final prototype of the AMASS platform (P2) 

Requirement No Name Description Status Tools Involved Partners 

WP3_APL_001 Drag and drop an 
architectural pattern 

The system shall be able to 
instantiate in the component 
model and architectural pattern 
selected from the list of patterns 
stored 

Solved 

Papyrus INT, TEC, CEA 

WP3_APL_002 Edit an architectural 
pattern 

The system should be able to 
edit, store and retrieve 
architectural patterns 

Solved 
Papyrus INT, TEC, CEA 

WP3_APL_003 Use of architectural 
patterns at different levels 

The system shall be able to apply 
to the component model 
architectural patterns at 
different levels: AUTOSAR, IMA, 
Safety/Security Mechanisms 
(security controls) 

Solved 

Papyrus INT, TEC, CEA (B&M) 

WP3_APL_005 Generation of 
argumentation fragments 
from architectural 
patterns/decisions 

The system shall be able to 
generate arguments fragments 
based on the usage of specific 
architectural patterns in the 
component model 

Pending 

OpenCert TEC, CEA 

WP3_CAC_001 Validate composition of 
components by validating 
their contracts 

The system shall be able to 
validate the composition of 
components by supporting the 
validation of their contracts, 
analysing the relationship among 
assumptions and guarantees 

Solved 

CHESS, 
OCRA 

FBK 

 

WP3_CAC_002 Assign contract to 
component 

The system shall allow to 
associate a contract to a 
component. Then, the system 
shall allow to drop a contract 
from a component  

Solved 

CHESS, 
SAVONA 

MDH, FBK, B&M 

 

WP3_CAC_003 Structure properties into 
contracts 
(assumptions/guarantees) 

The system shall be able to 
support the extraction of 
assumptions and guarantees to 
be used in component contracts 
based on component properties 

Solved 

CHESS/SAV
ONA 

FBK, B&M 

WP3_CAC_004 Specify contract 
refinement 

The system shall enable users to 
specify the refinement of the 
contract along the hierarchical 
ŎƻƳǇƻƴŜƴǘΩǎ ŀǊŎƘƛǘŜŎǘǳǊŜ 

Solved 

CHESS/SAV
ONA 

FBK, B&M 

WP3_CAC_005 General management of 
contract-component 
assignments 

The system should enable users 
to have a view of the association 
between contracts and 
components for the entire 
system architecture (thus, not 
only a view on the single 
contract assignment for each 
component) 

Solved 

CHESS INT, FBK 

 

WP3_CAC_006 Refinement-based 
overview 

The system should enable users 
to have a hierarchical view of 
the contract refinements along 
the system architecture  

Solved 

CHESS, 
SAVONA 

FBK, B&M 



              

         AMASS Prototype for architecture-driven assurance (c)  D3.6 V1.0 

 

 

H2020-JTI-ECSEL-2015 # 692474 Page 13 of 82 

 

Requirement No Name Description Status Tools Involved Partners 

WP3_CAC_007 Overview of check 
refinements results 

The system should enable users 
to have an overview in terms of 
status of check refinement of all 
the defined contracts. 

Solved 

CHESS FBK 

 

WP3_CAC_008 Contract-based validation 
and verification 

The system must provide 
support for contract-based 
system validation and 
verification, including 
refinement checking, 
compositional verification of 
behavioural models, contract-
based fault-tree generation 

Solved 

CHESS FBK 

 

WP3_CAC_009 Improvement of Contract 
definition process  

The operation of contract 
definition should be improved in 
terms of time spent. 

Solved 
CHESS, 

SAVONA 
FBK, B&M 

WP3_CAC_011 Overview of contract-
based validation for 
behavioural models 

The system could enable users 
to have an overview of the 
validation of a contract over a 
state-machine. In case of failure, 
the system could enable users to 
have information about the 
trace that does not fulfil the 
contract. 

Solved 

CHESS FBK 

WP3_CAC_012 Browse Contract status The user shall be able to browse 
the contracts associated within a 
component and their status 
(fulfilled or not) 

Solved 

CHESS INT 

 

WP3_CAC_013 Specify contracts defining 
the assumption and the 
guarantee elements 

The system shall provide the 
capability to create a contract 
defining two new properties 
(assumptions/guarantees) 
implicitly associated to that 
contract.  

Solved 

 

CHESS 

 INT 

WP3_CAC_014 Drop contract from 
component 

The system shall allow to drop a 
contract from a component  

Solved 
CHESS, 

SAVONA 
INT, B&M 

WP3_CAC_015 Reassign contract to 
component 

The system shall allow to 
substitute the already assigned 
contract to a component with 
another contract 

Solved 

CHESS INT 

WP3_SAM_001 Trace component with 
assurance assets 

The supplier of a component 
shall be able to trace all the 
assurance information with the 
specific component 

Solved 

CAPRA INT 

WP3_SAM_002 Impact assessment if the 
component changes 

The system shall provide the 
capability for a component 
change impact analysis Pending 

CAPRA B&M, INT 

WP3_SAM_003 Compare different 
architectures according to 
different concerns which 
ƘŀǾŜƴΩǘ ōŜŜƴ ǎǇŜŎƛŦƛŜŘ 
before 

The system shall be able to 
compare different system 
architectures based on 
predefined criteria, like 
dependability or timing concerns 

Solved 

CHESS FBK 



              

         AMASS Prototype for architecture-driven assurance (c)  D3.6 V1.0 

 

 

H2020-JTI-ECSEL-2015 # 692474 Page 14 of 82 

 

Requirement No Name Description Status Tools Involved Partners 

WP3_SAM_004 Integration with external 
modelling tools 

The system could interact with 
external tools for system design 
and development (e.g., 
Rhapsody, AutoFocus, Compass) 
to get the system architecture. 

Solved 

CHESS, 
Papyrus 

INT, UC3, TRC, FBK, 
B&M 

WP3_SC_001 System abstraction levels The user shall be able to browse 
along the different abstractions 
levels (system, subsystem, 
component) 

Solved 

CHESS, 
SAVONA 

INT, B&M 

WP3_SC_002 System abstraction levels The user shall be able to move 
and edit along the different 
abstractions levels (system, 
subsystem, component) 

Solved 

CHESS, 
SAVONA 

INT, B&M 

WP3_SC_003 Modelling languages for 
component model 

The system shall be able to 
support different modelling 
languages to model the 
component/Subsystem/system 

Solved 

CHESS, 
OCRA, 

SAVONA, 
Papyrus 

FBK, B&M 

WP3_SC_004 Formalize requirements 
with formal properties 

The system shall be able to 
specify requirements about a 
component in a formal way 

Solved 
CHESS, 

SAVONA 
INT, B&M 

WP3_SC_005 Requirements allocation The system shall provide the 
capability for allocating 
requirements to parts of the 
component model. More in 
general, requirements 
traceability shall be enabled. 

Solved 

CHESS, 
Papyrus, 
CAPRA 

INT, KMT 

WP3_SC_006 Specify component 
behavioural model (state 
machines) 

The system shall be able to 
specify the component 
behavioural model 

Solved 
CHESS FBK 

 

WP3_SC_007 Fault injection (include 
faulty behaviour of a 
component)  

The system shall have fault 
injection capabilities Solved 

CHESS, 
SABOTAGE 

 

INT, TEC 

WP3_VVA_001 Traceability between 
different kinds of V&V 
evidence 

The system shall provide the 
ability to trace immediate 
evidence (obtained during the 
execution of the left-hand side 
of the V-model) with direct 
evidence (obtained during the 
execution of the right-hand side 
of the V-model). For instance: a 
contract-based, component-
based specification should be 
traced with the corresponding 
analysis-results. 

Solved 

CAPRA INT 

WP3_VVA_002 Trace model-to-model 
transformation 

The system shall be able to trace 
all component model 
transformations executed during 
V&V model-based analysis 

Pending 

CAPRA INT 

WP3_VVA_003 Validate requirements 
checking consistency, 
ǊŜŘǳƴŘŀƴŎȅΣ Χ ƻƴ ŦƻǊƳŀƭ 
properties 

The system shall be able to 
validate formal 
requirements/properties 

Solved 

CHESS, 
OCRA, V&V 
Manager 

FBK, HON, UOM 

WP3_VVA_004 Trace requirements 
validation checks 

The system shall be able to trace 
requirements validations 

Solved 
Papyrus, 
CAPRA 

INT 



              

         AMASS Prototype for architecture-driven assurance (c)  D3.6 V1.0 

 

 

H2020-JTI-ECSEL-2015 # 692474 Page 15 of 82 

 

Requirement No Name Description Status Tools Involved Partners 

WP3_VVA_005 Verify (model checking) 
state machines 

The system shall be able to 
verify the component 
behavioural model match with 
the specification 

Solved 

CHESS, 
NuXmv, 

V&VManag
er 

FBK, HON, UOM 

WP3_VVA_006 Automatic provision of 
HARA/TARA-artifacts  

The system shall provide the 
capability for automating HARA 
(Hazard Analysis Risk 
Assessment)/TARA (Threat 
Assessment & Remediation 
Analysis)-related artefacts (e.g., 
FTA, FMEA, attack trees.). 

Solved 

MediniAnal
yze, 

SafetyArchi
tect, CHESS 

B&M, KMT, A4T 

WP3_VVA_007 Generation of reports 
about system description/ 
ǾŜǊƛŦƛŎŀǘƛƻƴ ǊŜǎǳƭǘǎ ΧΦ 

The system shall generate 
reports about 
system/subsystem/component 
verification results 

Pending 

CHESS, 
V&VManag

er 

FBK, HON 

WP3_VVA_010 Model-based safety 
analysis  

The system shall allow the user 
to generate fault trees and 
FMEA tables from the 
behavioural model and the fault 
injection 

Pending 

CHESS, 
XSAP 

INT, FBK 

WP3_VVA_011 Simulation-based Fault 
Injection  

The system should allow the 
user to generate fault injection 
simulations from the fault trees 
and FMEA tables 

Pending 

SABOTAGE TEC, AIT, B&M 

WP3_VVA_012 Design Space Exploration The system could support the 
design space exploration of a 
system for a certain 
safety/security criticality level 

Pending 

CHESS FBK 

Each requirement together with the implementation completed so far to implement the requirement is 
briefly outlined in the following sections. 

2.2.1 System Component Specification 

2.2.1.1 System Architecture Editor (* ) 

Table 2. Requirements implemented in the System Architecture Editor 

Requirement No Name Description Status Tools Involved Partners 

WP3_SC_001 System abstraction levels The user shall be able to browse 
along the different abstractions 
levels (system, subsystem, 
component) 

Solved 

CHESS, 
SAVONA 

INT, B&M 

WP3_SC_002 System abstraction levels The user shall be able to move 
and edit along the different 
abstractions levels (system, 
subsystem, component) 

Solved 

CHESS, 
SAVONA 

INT, B&M 

WP3_SC_003 Modelling languages for 
component model 

The system shall be able to 
support different modelling 
languages to model the 
component/Subsystem/system 

Solved 

CHESS, 
OCRA, 

SAVONA, 
Papyrus 

FBK, B&M 



              

         AMASS Prototype for architecture-driven assurance (c)  D3.6 V1.0 

 

 

H2020-JTI-ECSEL-2015 # 692474 Page 16 of 82 

 

System architecture specification is supported by the Papyrus UML/SysML editor [5]. The selection of 
UML/SysML has been driven by the wide adoption of these modelling languages in the industry in different 
domains. Then, the selection of the Papyrus UML/SysML editor has been driven by the fact that Papyrus is 
an open source tool with very strict adherence to the OMG standards definition and very good support for 
customization (i.e. profiling), with also different successfully use case stories in the industry already 

available5. In particular, recently the Papyrus Industry Consortium has been created to support a model-
based engineering platform based on the domain specific and modelling capabilities of the Eclipse Papyrus 
family of products. It is worth noting that Papyrus also has integration facilities with other tools, such as the 
commercial IBM UML Rhapsody tool; in addition, it supports the XMI OMG standard [9] for the interchange 
of UML models between UML tools. 

Through the Papyrus editor (see Figure 4), SysML Blocks and UML Components can be used to model the 
architectural entities as required by the AMASS component meta-model definition (see D2.4 [7]). 
Decomposition of blocks/components into sub-blocks/sub-components can be modelled by using internal 
block diagrams or composite structure diagrams. Both the Papyrus Editor and other AMASS components 
are under the same Open Source license, which supports the reuse of these previous results within the 
AMASS platform. 

Information about the functional behaviour of a given component/block can be provided through state 
machine diagrams. 

The resulting UML/SysML models and diagrams are stored in individual files in the Eclipse workspace. 

                                                             

5 https://www.eclipse.org/papyrus/testimonials.html  

https://www.eclipse.org/papyrus/testimonials.html


              

         AMASS Prototype for architecture-driven assurance (c)  D3.6 V1.0 

 

 

H2020-JTI-ECSEL-2015 # 692474 Page 17 of 82 

 

 

Figure 4. Papyrus editor 

The Papyrus UML editor supports the definition and application of UML profiles. In AMASS, the Papyrus 
tool is used together with the CHESS profile extension [3]; in particular CHESS is used here as extension of 
the UML and SysML modelling languages to allow the modelling of contracts, as explained in the following 
sections, according to the AMASS component meta-model needs (see D2.4 [7]). 

CHESS also provides extension to the Papyrus tool, for instance by adding dedicated diagram palettes to 
facilitate the creation of the CHESS entities, or by adding a dedicated property tabs view for editing CHESS 
entities properties (see Section 0).  

For the GUI perspective, the CHESS theme enriches UML and SysML diagrams with useful information for 
the user, such as multiplicity attributes for ports and components, and guard expressions in state machines. 
The user may also hide graphical elements that cause visual clutter such as the stereotypes applied to the 
CHESS entities. CHESS enables the automatic generation of SysML diagrams from the CHESS model and 
provides a layout facility for arranging the diagram elements based on the Eclipse Layout Kernel (ELK)[12]. 

It is worth noting that the CHESS profile also provides other modelling capabilities, such as the 
dependability profile [11] for failure modelling and specific support for timing properties (see Section 0 
about CHESS features). Moreover, CHESS provides a methodology for the design, verification and 
implementation of CPS SW systems [1]. The CHESS profile follows the same licensing approach as Papyrus 
and other AMASS components, which supports the easy integration of the developments from the 
intellectual property perspective.  



              

         AMASS Prototype for architecture-driven assurance (c)  D3.6 V1.0 

 

 

H2020-JTI-ECSEL-2015 # 692474 Page 18 of 82 

 

2.2.1.1.1 Easy System Architecture Modelling with SAVONA (* ) 

As Papyrus and CHESS can be used for various different modelling activities their options and possibilities 
might overcome an average system engineer without an extensive background on applying SysML. It has 
been found that a restricted user interface, which only allows meaningful actions would result in a higher 
user acceptance. SAVONA has been developed to support system engineers in creating static system 
architectures in SysML.  

 

Figure 5. SysML IBD showing multiple system layers 

The SysML Internal Block Diagram (IBD) has been chosen as the main diagram type for designing the 
systems architecture in SAVONA, as it allows an intuitive understanding of the model though multiple 
system layers. Mechanisms have been added that generate whitebox diagrams of selected system blocks, 
which can automatically be synchronized on model changes. This enables an effortless display of the 
ƳƻŘŜƭΩǎ ŎǳǊǊŜƴǘ ŘŜǎƛƎƴ ǎǘŀǘǳǎΦ 

The Model Explorer is customized to only show relevant model elements such as blocks, parts, ports, 
signals and diagrams.  Its context menu (see Figure 6) has been revised to only allow applicable copy/paste 
operations and to create new model elements and diagrams.  

 

Figure 6. Revised Context Menu of the Model Explorer 



              

         AMASS Prototype for architecture-driven assurance (c)  D3.6 V1.0 

 

 

H2020-JTI-ECSEL-2015 # 692474 Page 19 of 82 

 

SAVONA also allows a tabular view of model elements. Such Model Tables can be viewed for each SysML 
block, containing the parts, ports and signals of the block. Figure 7 shows the Signals-tab containing all 
signals of the selected block. Model element names and descriptions can be edited directly inside the 
model table.  

 

Figure 7. Model Table showing all signals of a SysML Block 

The custom Properties View in SAVONA combines all relevant information for each model element. 
Element descriptions can be formatted and may contain hyperlinks as shown in Figure 8. The view also 
contains sections for specifying contracts, which is further described in section 2.2.1.5.1. 

 

Figure 8. Properties View in SAVONA 

aƻŘŜƭƭƛƴƎ ŀ ǎȅǎǘŜƳΩǎ ŀǊŎƘƛǘŜŎǘǳǊŜ ƻŦǘŜƴ ǊŜǎǳƭǘǎ ƛƴ ƭŀǊƎŜ ŘƛŀƎǊŀƳǎ ǘƘŀǘ ŀǊŜ ŘƛŦŦƛŎǳƭǘ ǘƻ ƭŀȅ out by hand. Based 
on the Eclipse Layout Kernel (ELK)[12] SAVONA offers the automatic layout of SysML IBD, which simplifies 
the laying out of new diagrams or parts of it. 

Since SAVONA is also based on Papyrus it offers possibilities for interoperability to the AMASS Platform / 
CHESS. A CHESS export function allows conversion of the SAVONA model into a CHESS model (see Figure 9). 
That way, the initial architecture design can be performed in SAVONA and later be reopened in CHESS to 
perform various V&V activities on the model without any loss of information. 



              

         AMASS Prototype for architecture-driven assurance (c)  D3.6 V1.0 

 

 

H2020-JTI-ECSEL-2015 # 692474 Page 20 of 82 

 

 

Figure 9. CHESS Export function of SAVONA 

2.2.1.2 Formalize Requirements with Formal Properties (* ) 

Table 3. Requirements regarding the formalization of system requirements 

Requirement No Name Description Status Tools Involved Partners 

WP3_SC_004 Formalize requirements 
with formal properties 

The system shall be able to 
specify requirements about a 
component in a formal way 

Solved 
CHESS, 

SAVONA 
INT, B&M 

WP3_SC_005 Requirements allocation The system shall provide the 
capability for allocating 
requirements to parts of the 
component model. More in 
general, requirements 
traceability shall be enabled. 

Solved 

CHESS, 
Papyrus, 
CAPRA 

INT, KMT 

Requirements can be modelled in Papyrus using the SysML profile; indeed, SysML comes with the 
dedicated Requirement stereotype (see Figure 10) which can be managed through Requirement Diagrams.  
The availability of system requirements represented in the model allows the user to model their 
traceability to the different parts of the system model. In particular, by using the SysML profile, 
requirements can be traced to the entities of the architecture, by using the Satisfy link defined by SysML. In 
this way requirements traceability (see e.g. [8]), which is an important quality factor to be guaranteed while 
building systems, can be obtained while using model-driven support. 

In AMASS, a formal property represents a distinct entity which is used to provide a formal description of a 
given system requirement, the latter usually described using informal textual language. 

To model formal properties, the CHESS profile defines a construct called FormalPropert y as an extension 
of UML Constraint  (see Figure 10). A FormalProperty  can be created first in the model and then linked 
to the requirement that it formalizes; the SysML trace link can be created in the SysML Requirement 

diagram or through the tabular editor provided by Papyrus6. Then the formal description of the 
requirement is provided by using the specification attribute coming with the FormalProperty  entity. This 

                                                             

6 https://wiki.eclipse.org/Papyrus_User_Guide/Table_Documentation  

https://wiki.eclipse.org/Papyrus_User_Guide/Table_Documentation


              

         AMASS Prototype for architecture-driven assurance (c)  D3.6 V1.0 

 

 

H2020-JTI-ECSEL-2015 # 692474 Page 21 of 82 

 

attribute can refer to the UML OpaqueExpression  element that contains language-specific texts to 
express one formal property in different modelling languages.  

 

Figure 10. Modelling FormalProperty 

It is worth noting here that the CHESS profile does not force the usage of a particular formal language; the 
choice of the formal language to be adopted for the formalization of requirements is made by the modeller, 
typically according to the adopted process/methodology. CHESS currently supports integration with the 

OCRA contract specification language7; in particular, through the CHESS Contract plugins explained in 
Section 0 it is possible to verify formal properties with respect to OCRA syntax. 

                                                             

7 https://ocra.fbk.eu 

https://ocra.fbk.eu/


              

         AMASS Prototype for architecture-driven assurance (c)  D3.6 V1.0 

 

 

H2020-JTI-ECSEL-2015 # 692474 Page 22 of 82 

 

2.2.1.3 Semi-Formal Requirement Definition 

As users might not be familiar with formal expressions to define contracts, we adopted a custom text-based 
editor with syntax checks and auto-completion, and a wizard to set up assertions with pre-defined 
templates for the most common assertion patterns. 

In the following paragraphs we explain both concepts in detail. 

2.2.1.3.1 Assertion Wizard 

As applying a template language can be quite difficult without any guidelines, we decided to implement a 
wizard that guides the user through the process of choosing and filling out an appropriate pattern structure 
for their statement. The first page of the wizard shows the user the three main pattern types of our 
template language: Global Invariant Pattern, Simultaneity Pattern, and Trigger-Reaction Pattern (see Figure 
11). We have added a short description and an example for each one so that it is easier for the user to 
decide.  

After selecting the main pattern type, several possible pattern instances of the type are presented to the 
user. Each of them features an example to demonstrate a possible application (see Figure 12). If an 
appropriate pattern instance is chosen, the user will be directed to the last page of the wizard, where the 
patterns construct needs to be customized. The user can now replace non-terminals by simply clicking on 
them. A drop-down menu shows possible substitutions and the option to use a macro. If a terminal that 
must be replaced by an event name is selected, a list containing all event interface names of the currently 
selected component appears. That way the user can only choose and use model elements that are in scope 
(see Figure 13). The same holds for terminals that must be replaced by variable names except that the 
suggested names come from all available ports except the event ports. We also provide a set of time units 
the user can choose from when specifying timed behaviour. Only if no non-terminals remain in the pattern 
instance and all terminals are replaced by actual interface names, values, units, etc., can the assertion be 
assigned to a selected component. Otherwise, the wizard will give a hint to the user about the remaining 
non-terminals or terminals. 



              

         AMASS Prototype for architecture-driven assurance (c)  D3.6 V1.0 

 

 

H2020-JTI-ECSEL-2015 # 692474 Page 23 of 82 

 

 

Figure 11. First step in the Assertion-Wizard: Select a General Pattern Type to formulate an assertion. Each selection 
features a short description and example to offer the user an easy decision. 

 

Figure 12. Second step in the Assertion-Wizard: Choose a pattern instantiation of the previously selected general 
pattern type 
























































































































