ECSEL
X Joint Undertaking * ek

European
Commission
I

ECSEL Research and Innovation actions (RIA)

AMASS

Architecture-driven, Multi-concern and Seamless Assurance and
Certification of CybetPhysical Systems

Prototype for Architecture-Driven Assurancgb)
D3.5

Work Package: WP3: ArchitectureDriven Assurance
Dissemination level: PU= Public

Status: Final

Date: Septembej292017

Responsible partner: B&M

Contact information: Peter M. Kruse <peter.kruse@bernamiattner.com>
Document reference: AMASS B5 WR3 B&M V1.0

PROPRIETARY RIGHTS SENEM

This document contains information, which is proprietary to the AMASS consortium. Permission to reproduce any

content for noncommercial purposes is granted, provided that this document and the AMASS project are credited as
source

This deliverable is part of a project that has received funding from the ECSEL JU undsgrgeaméent No 692474,
CKAA W2AYyUld ! YRSNIF1Ay3d NBOSAO®SA adzlJLl2NI FTNBY G(GKS 9dzNE L
and from Spain, Czech Republic, Germany, Sweden, Italy, United Kingdom and France.

Contributors

Names

Organisation

Stefano Puri

Intecs(INT)

Peter M. Kruse

Assystem Germany (B&M)

Eugenio Parra, José Luis de la Y&anzalo Génova
Valentin Moreno

Universidad Carlos Ill de Mad(idC3)

Luis Alonso

The REUSE CompafRC)

Alberto Debiasi

FondazioneBruno Kessler(FBK)

Garazi Juez,
Alejandra Ruiz

Estibaliz Amparan, Huascar Espi

Tecnalia Research & Innovati¢hEC)

¢2Yt O YN G2O0K@NE I X t SiNJ

Honeywell(HON)

Jaroslav Berid

Masaryk University (UOM)

Reviewers

Names

Organisation

Gad Blondell (Peer reviewgr

Eclipse FoundatiofECL)

Martin Helmut(Peer reviewer

Virtual VehiclgVIF)

Cristina Martinez (Quality Manager)

Tecnalia Research & InnovatireC)

Jose Luis de la Vara (Technical Committee Review)

Universidad Carlos Il déadrid (UC3)

UA A M AS S Prototype forarchitecturedriven assurancéo) D3.5V1.0

TABLE OF CONTENTS

EXECULIVE SUMIMIALY.etttiiiiii e e e ieeeettti e et e e e e e e e e e e ettt rmr e e e e aaa e e eeeeeeeesssaan s ameessnnnn e eeeeeeeessnnnnnnsnnsd 6
I [11 T [o o) o TP 7
2. Implemented FUNCHONAITYccoiiiiii e eerr e e e e e e e e e e e e amr e e e eeaes 10
N R Yoo | o= PP 10

2.2 Implemented REQUIFEMENTIS.........coiiiiie e e e e e e e e e aaaaaaaaeas 11
2.2.1 System Component SPECIfiCatiQn..........cccuuriiiiiiiiiiiiiiiiirieer e e 11

2.2.2 System Architecture Modelling for ASSUIaNCE............uuviviiiiiiiieiieeiiereeeeeeeeeeaeeeeeenn 20

2.2.3 V&\based Assurance Impact ASSESSMENL..........ccccoeeeiiiiiiieei e 22

2.2.4 Contractbased Assurance COMPOSItION........ceviiiiiiiiiiiiiieieieieee e, 43
Installation and USEr MaNUALS.............uuuiiiii e eer e e e et a s e e e e e e e eeasneeae s 48
IMplementation DESCHPLION..........uuiiiii e e e e et me e e e e e et e e e e e e e e eesseaamreeanees 49

4.1 Implemented MOAUIES............cooooeiiiii e eee e e s eaaaaaeeaeeen . 4O
4.1.1 System Component Specification BIOCK............cccccoiiiiiiiiiieeeeee e, 49

4.1.2 ArchitectureDriven ASSUrance BIOCK............ccccoiiiiiiiiiiiiiiiiii e 49

4.2 Source Code DESCIIPLON.ciiiiiiiie e e e e e e e e aaaaaaaaeas 50
4.2.1 System Component Specification BIOCK............cccccoiiiiiiiiiiiiieeeeee e, 50

4.2.2 ArchitectureDriven ASSUranCBIOCK..............couiiiiiiiiiiiiie e 52

ST O 0] V] 1113 T L3P 59
Y o] 0] €AV 1A [LR 60
=] (=T €= o = R 62

H2020JTHECSERO1S5 # 692474 Page3 of 62

U~A A M AS S Prototype forarchitecturedriven assurancéo) D3.5V1.0

List of Figures

Figure 1. AMASS BUIIAING DIOCKS.....ceveiiiieeiiiiceec e e e e 8
Figure 2. Layered structure of AMASS to0ol MOdUIES..........oooooeiiiii e 10
Figure 3. Description of main building blocks: System component specification and architecture
Lo)Yt I LTS U] =g o OO 11
FIQUIE 4. PaPYIUS EUITON.eieeeiieeiiiiie ittt e e e e e e e e e e e e r e e e e e eanber e e e e e e e e annnnnneeaeeas 12
Figure 5. Modelling FOrmMalPrOPEITY.ccuiiiiiiee ettt e e e e e e e anne 14

Figure 6. First step in theAssertionWizard: Select a General Pattern Type to formulate an assertion.
Each selection features a short descoptiand example to offer the user an easy decisionl6

Figure 7. Second step in theAssertionWizard: Choose a pattern instantiation of the previously
selected general Pattern TYPE........uiie et 16

Figure 8. Lag step of the AssertionWizard: Refine the pattern instance with names of available
model elements. Only element names which are valid for the corresponding placeholder

are allowed t0 DB USEA........ooiiiie e a e e 17
Figure 9. Patternsuggestion fature of the ASSertion EditQr...........c.coouiiiiiiieeeiiiiiiiieecee e 17
Figure 10.Contract and FormalProperty @Xample.........cccuiiiiiiiiiiiieeccee e 18
Figure 11.Assign Contract t0 COMPONEIL.cieiiiiiiiiiiiieeees it e e e e s s e e e e e s s r e e e e s s b eeeeeeeaanes 19
Figure 12.After the creation of a CordctProperty, a Popup appears to decide whether a new

contract has to be created or an existing one has to be instantiated............................... 20
Figure 13.Links through EANNOTALION.uuuuiiiiiiiiiiiiieiieeee e ee e e e e e e e e e e e ee e e e e e e e s e e e s e e e s e nneaneenees 21
Figure 14.Links through tracdaility metamodel................oooiiiiii e 22
Figure 15.Automatic translation general diagranfrrom NL 0 LTL.......ccccccciiiiiiiiiiiiiiiieeeccceeeeeee e 23
Figure 16.Configuration window to setup the K NUMBEE..........ooviiiiiiiii i, 23
Figure 17.Metric reSUlts VISUALIZALION.ooiiiiiiii e a e e e 24
Figure 18.Result window forealiableeXperiment............uuuiiiiiiiiiiiiieeeeeeeeee e 24
Figure 19.Window result for notealiableeXperiMment.. ..o, 25
Figure 20.Correctness metricelated 10 NOUNS............uuuiiiiiiiiiiiiiiieriieeeeee e 26
Figure 21.Correctness metrics related t0 VEIRS............ooooi oo a e 27
Figure 22.Toolto generate classifiers using machine learning with metrics of RQA......................... 28
Figure 23.Example Of CIaSSIfi@I........uuuiiiiiiiiieiiiieieee e 28
Figure 24.Completeness metrics for MOUEIS..........ooooiiiii e 29
Figure 25.Consistency mMetrics for MOAEIS........oooiiiiiiiii e 29
Figure 26.Saving snapshot with the quality ofetproject.............ooo oo 30
Figure 27.Graphical representation of the quality evolutiQn.................eeveei, 30
Figure 28.Information of the snapshQl..........cccciiii s 31
Figure 29.GUI element used to run the V&V MaJB.........ccccooiimiiiiiiiiiiieeiiieeieeeeeeeee et a e e e e e 32
Figure 30.Switch in on the V&V RESUIt VIBMV..........ooviiiiiiiiiiiie e 32
Figure 31.Example of requirements from Gesture Recognition system (Case Study 7) that are only

trVIAILY FAIISADIE. e e ———————————— 34
Figure 32.Example of requirements that are consistent, ralundant and not realisable.................. 34
Figure 33.Details for requIrements CRECKINGuuuiiiiiiiiiiiiiee e 35
Figure 34.Checking and proposed error NAandliNg..........ccuuveiiiiiiiiiiiiiiie e 36

H2020JTHECSERO1S5 # 692474 Paged of 62

UA A M AS S Prototype forarchitecturedriven assurancéo) D3.5V1.0

Figure 35.CHESS error model state MacChing.............oooiiiiii i 37
Figure 36.Example of fault tree represented as atable...............ccccc 37
Figure 37.Example of fault tree represSented AS thEE........uuiiiiiiiiiiiiiiceeeeee e 38
Figure 38.Sabotage design arChiteCtUE.evviiiiiiiiiiiceeee e 39
Figure 39.Example of @ MasSif MOUEL............oooiiiiiii e e 40
Figure 40.Example of the generated Fault INJeCtOr CQdE...........ccccuuiiiiiiiiiiiiiiiiieeeeceee e 41
Figure 41.Example of @ SADOtEUI COUR........ccoi i e e e e e e e aaaae e s 41
Figure 42.ANalYSiS CONEXL......cciiiiiiiiiiiiiiec e rereerreeeeeeeaeaaaaaaaaaeen e D2
Figure 43.Contract Editor With CONtENt @SSISL.........ccciiiiici e e e e a4
Figure 44.Hierarchical view of the sy&in decomposed into subomponents and contracts................ 44
Figure 45.Contract REfINEMENT VIBWL.........uuuiiiiiiiiiiiiiiiieiiieeeeeer et e e e e e e e e e e e aa e e e e e e e s e e s e s e s s e aaeanennee 45

Figure 46.Part of the OCRA input file, also called OSS (OCRA System Specification). It describes the
sysem architecture represented by a tree of components (given by the decomposition into

LS10 ooTo] g g oTo] g T=T g1 £ ORI 46
Figure 47.Selecting analysis context for contract refinement..............cc.ccccceeeccieinennn 46
Figure 48.Part of an .SM¥ile representing the behaviour of the leaf components of the madel....... 47
Figure 49.In this example, for each contract the results of the Contlated verification are listed in

tNE TTACE VIBW..coiiiiiiiiiiiee ettt e e e e e e e e e et e e e e aaaeaaeeeaaeeeeenas 48
Figure 50.Tool modules for System Component SPecifiCatiQn............ccuueveiiiiiiiiiiiiiieciiee e 49
Figure 51.CHESS plugins supporting Contract Based DesSign...........cccueverieiiiiiiiiiiieeeeeiieeeee e 51
Figure 52.CHESS methodology CONSIIAUNL.coiiiiiiiiiiee et 52
Figure 53.Massif and Sabotage MeBOUEIS.........ocooiiiiiiiiiie e 53
Figure 54.Connection between Sabotage and Massif m@tadels...............ccvveeveiiiiiiiiii e, 53
Figure 55.Code Generation WOIKSPACE.uuiieiiiiriiieee e ettt e e e s s e e e e e s s e e e e e s s asbreneeaeseaaans 54
Figure 56.Diagam showing the dependences among the plugins. The direction of the arrow means

that the origin plugin depends on the target plugin............cccovevieeiiiiiiiiie e 58

H2020JTHECSERO1S5 # 692474 Pageb of 62

U~A A M AS S Prototype forarchitecturedriven assurancéo) D3.5V1.0

Executive Summary

The deliverable D8.dPrototype for Achitecture-Driven Assuranced)¢ is thesecondoutput of the AMASS
task T3.3Implementation for Architecturdriven Assurangewhose objective is thedevelopment of a
tooling framework to support architecturdriven assuranced3.5 is the evolution of D3.4, which described
the first prototype.

AMASSasplamed three prototype iterations for the frameworkhis deliverablereports the status of the
aforementioned tooling frameworkor the secondprototype releasgPrototype P}, in particular for what
regards the system componempecifi@ation and the tooling frameworksupporting architecturedriven
assuranceby describing theupported functionalities and thdetails aboutmplementation.

This deliverable takes into account the work performed in the otimeject work-packages, mainly R2
WP4 WP5 andNP6 because theyhave strong dependencies with T318deed,in this deliverablea set of
functionalitiesregardingthe system componenspecificationhave been selectedrom AMASSieliverable
D2.1 dBusiness cases antighlevel requiremefi & ©35 describes the technologies that allow
implementingall selected functionality

The logical structural viewof the AMASS reference tool architectusgaborated in deliverable D2.
OAMASS Reference Architectarf§] has beenalso considered in this deliverable; in particulphysical
components have been mapped the logical tool component€omponent Editoand Contract Editor
identified in deliverable D3.

WP4and WFs results have been particulgruseful for what cacerrs the argumentationand evidence
metamodel specification) indeed one important point related to the implementation for architecture
driven assurance is related to the way system architectetated information canbe traced © the
argumentationand evidencemodels Two possiblesolutionsare currently under investigatiombout the
implementation of traceability between system architecture aather assuranceelated information
These solutionare alsopresented.

The deliverable D3.@Prototype for achitecturedriven assurance (€)will be the evolution of this
deliverable in particular, D3.6 will document the progress about the implementatiaf the tooling
framework supporting architecturdrivenassurance

H2020JTHECSERO1S5 # 692474 Pageb of 62

UA A M AS S Prototype forarchitecturedriven assurancéo) D3.5V1.0

1. Introduction

The AMASS approach focissen the development and consolidation of an open and holistic assurance and
certification framework for Cyber Physical Systen{CPS) which constitutes the evolution of the
OPENCO$Sand SafeCér approaches towards an architectudgiven, multiconcern asurance, and
seamlessly interoperable tool platform.

The AMASS tangible expected results are:

a)

b)

The AMASS Reference Tool Architecturavhich will extend the OPENCOSS and SafeCer
conceptual, modelling and methodological frameworks for architectimeen andmulti-concern
assurance, as well as for further craksmain and intradomain reuse capabilities and seamless
interoperability mechanismse(g. based onOpen Services for Lifecycle Collaborati@SL{3
specifications).

The AMASS Open Tool Platformwhich will correspond to a collaborative tool environment
supporting CPS assurance and certification. This platform represents a concrete implementation of
the AMASS Reference Tool Architecture, with a capability for evolution and adaptation, which will
be released as an open technological solution by the AMASS project. AMASS openness is based on
both standard OSL@&pplicationProgramminginterfaces (API3 with external tools (e.g. engineering

tools including V&V tools) and on openurce release of the AMASSIdirig blocks.

The Open AMASS Communitywhich will manage the project outcomes for maintenance,
evolution and industrialization. The Open Community will be supported by a governance board,
and by rules, policies, and quality models. This includes supporAMASS base tools (tool
infrastructure for database and access management, among others) and extension tools (enriching
AMASS functionality). As Eclipse Foundation is part of the AMASS consortium, the Polarsys/Eclipse

community? is a strong candidate thost AMAS$See D7.3 and D7.5 for further details)

To achieve the AMASS results, as depictelignrel, the multiple challenges and corresponding project
scientific and technical objectives are addressed bewdifft workpackages.

1 \www.opencossroject.eu

2 www.safecer.eu

3 https://open-services.net

4www.polarsvs.orq

H2020JTHECSERO1S5 # 692474 Page7 of 62

http://www.opencoss-project.eu/
http://www.safecer.eu/
https://open-services.net/
http://www.polarsys.org/

@ A M AS S Prototype forarchitecturedriven assurancéo) D3.5V1.0

AMASS Reference Tool Architecture

Architecture-Driven Assurance (STO1) Multi-Concern Assurance (STO2) @ -
s, g, | M =

Certification Safety/S€curity
Liaison Assessment

1
1
: Component Supplier

\
1
1
1

Component ~ Module Assurance

AMASS Platform Basic Building Blocks Release Case Development

WP WP5 WP6
- = CommonAssurance &
System Component Assurance Case Evidence Compliance Certification Metamodel
Specification Specification nent | Management (CACM) Product Engineering
& e

S
U S
Design Validation &
Verification

Development Quality
Management

el S Sy

Figurel. AMASS Building blocks

Since AMASS targetambitious objectives related to architecturedriven assurance multi-concern
assurance seamless interoperability suppoend cossdomain and intra domairassurance reusethe
AMASS Consortiunmas decided to follow an incremental approach by developing rapid and early
prototypes.
The benefits of following a prototyping approach are:

1 Better assessment of ideas by focusing on a few aspects of the solution

9 Abiity to change critical decisions by using practical and industrial feedback (case studies)

AMASSasplanned three prototype iterations:

1. During thefirst prototyping iteration (Prototype Core), the AMASS Platform Basic Building Blocks,
are aligned, mergd and consolidated afechnology Readiness Le{¢ER) 4 (technology validated
in laboratory)

2. During thesecond prototypingiteration (Prototype P1), the single AMA§&:cific Building Blocks
will be developed and benchmarked at RL

3. Finally, at thethird prototyping iteration (Prototype P2), all AMASS building blocks will be
integrated in a comprehensive toolset operating at TRI(technology validated in relevant
environment)

Each of these iterations has the following three prototyping dimensions:

1 Camceptuallresearch @velopment development of solutions from a conceptual perspective.

1 Tool cevelopment development of tools implementing conceptual solutions.

H202GJTHECSERO1S # 692474 PageB of 62

UA A M AS S Prototype forarchitecturedriven assurancéo) D3.5V1.0

1 Case study evelopment development of industrial case studies using the conceptual and tooling
solutions.

As part of the Prototyp®1, WP3 is responsible fodrivingthe workresultingon architecture specification

AY 2NRSN) G2 RSaA3IY | YR AYLIX Systény GompbieBSpetificdtiaiOseéd dzA f R .
Figurel). This part of the AMASS platform managesnponent and contraebased desigriseeD3.1[9]

Section 3.1.1) also related tarchitecturedriven assurance

This deliverable reports théool developmentresults2 ¥ (Bys®em Gomponenf LISOA FA Ol G A 2 Y«
building blockIt presents in detail the pieces of functionality implemented in the AMASS platform tools,
their software architecture, the technology used, asamesource code references.

Other important pats of [8.5 document are:
1 Installable AMASS Platform tools for the first prototype
1 User Manuals and installation Instructi®n

1 Source code description

H2020JTHECSERO1S5 # 692474 Paged of 62

"/"‘.‘ A M AS S Prototype forarchitecturedriven assurancéb) D3.5V1.0

2. Implemented Functionality

2.1 Scope

The scope for thesecondprototype iteration is the provision of modellingpols for system component
specification, including contractbased approach anthe link with the assurance case specificatidine
main scope is highlighted with a regctangleon Figure2, which shows the generallayered stucture of

the AMASS platforrtfrom AMASSleliverable D23 [17]).

]
AMASS HMI
nininiete s b § v s & 3 1 & o v 5Suiiuiiatintioiioiieiiiie e el
* .

. s [—1 1 1

[] a
c : Contracts : Assurance Analysis Cross-Intra domain Seamless
O = Management] reuse Interoperability
o .
w = .
2 oe . __ B e .
Q = -
< ;

H — E— E—

|} .

=| System Component Evidence Assurance Case Compliance

. Specification Management Specification Management

.

..IIIIIIIIIIII"
Infrastructure —]
Assurance Project Assurance
Lifecycle Traceability
Management

General Purpose]

Platform Management

Figure2. Layered structure of AMASS tool modules

Figure 3 illustrates the compoent decomposition of these tools based on the design specification
documented in deliverable D3.2.

H2020JTHECSERO1S5 # 692474 Pagel0of 62

U@ A M AS S Prototype forarchitecturedriven assurancéo) D3.5V1.0

3 Architecture-Driven Assurance

3 External System - Design Tools Somponents
ch g | . «componen.t» V&V-based Assurance Impact Assessment
System Architecture Modeling for Assurance|
Interaction with external tools p——— o =component
not implemented in Prototype 2 =_| Requirement Analysis
5 ki , 1 CHESS Plugins 1 r
‘l’ F «component:
=component. = 1 CHESS Plugins
Rhapsody —l
3 External V&V tools
«components «Components
AutoFocus3 «components =] Behavioural Analysis 5
Assurance Patterns Library Management - - o= “components
«scomponents scomponents OCRA
Compasy Module not implemented =1 CHESS Plugins
«components in Prototype 2
«components
=] Safety Anaysis =components
XSAP
«components
=] CHESS Plugins
«components «Component»
Contract-based Assurance Compaosition nuXmy
«components
=] Contract Editor with Content assit

«components
=] Contract-based Analysis r"\
= 1 CHESS Plugins Y S \

«component»
=] CHESS Plugins

«components
=] Contract-based Views

«components
=] CHESS Plugins

[|
3 AMASS Platform basic building blocks | use! !
]

'
X W use
«components
System Component Specification

«Components «Ccomponent»
=] Architecture/ Component/Requirement Editor = | Contract Editor

«Ccomponent» «components
= 1SysML plugins =1 CHESS plugins

Figure3. Description of main building blocks: System component specification and architecture driven assurance

2.2 Implemented Requiements

From the requirements point of viewthis second prototype iteration focuses on a set oAMASS
requiremens as defined ithe AMASSleliverable D2.1Business cases ahighf S @St NI I[[16]A NB Y Sy
Each requirement tgether with the implementation done so fan implement the requirement is shortly

outlined in the following sections.

2.2.1 System Component Specification

2.2.1.1 System Architecture Edition

System architecturespecification is suppoed bythe Papyus UMISysMLeditor [5]. The selection of
UML/SysML has been drivey the wide adoption of these modelling languages in the industry in different
domains.Then, he selection oPapyrudJML/SysML editohas been driven by the fathat Papyruds one

of the most appreciated solid open source tools available in the industry for professionallimgde
particular, recently he Papyrus Industry Consortiumas been created to support a modshsed
engineering platform based on trdomain specific and modleng capabilities of the Eclipse Papyrus family

H2020JTHECSERO1S5 # 692474 Pagellof 62

UA A M AS S Prototype forarchitecturedriven assurancéo) D3.5V1.0

of products.It is worth noting that Papyrus has also integration facilities with other tagish asthe
commercial IBM UML Rhapsody tpwiaddition, it supports the XMl OMG staadd [8] for the interchange
of UML models between UML tools.

Through Papyrus editofsee Figure4), SysML Blocks and UML Components can be used to model the
architectural entitiesas required by the AMSS componenmeta-model definition (see D2.3 [6]).
Decompositionof block/components ito sub-blocks/subcomponentscan be modelled by using internal
block diagrams or composite structure diagraBsth Papyrus Editor and othdMASS components are
under the same Open Source licenadich supports the reuse of these previous results into the AMASS
platform.

Information about the functionabehaviourof a given component/block can be provided through state
machine diagrams.

Sysem architecture UML/SysML modeblnd diagrams are stored in individual files in the Eclipse
workspace.

£ runtime-New_configuration - Papyrus - WBS/WBS.di - Eclipse Platform - X
File Edit “J Diagram Navigate Search Papyrus Project Run CHESS Window Help
BN e B iR A = Ralv He RN IE R A Rl R TR R v S g - 100% s QT Qi G
P IS RS AT o | A~ &g~ [ovick Access] | % | i [04
[Project Explorer 52 = B |~ wBSdi 2 =0
2 %| N Blacks A | b Palette P
1 Online Transactional Checkout ~ System @ el -m.
v = WBs = properties -
v 3 WES in Pedal_Pos: Boolean o Asseciations <
-3 di B in Pedal_ Pos2: Boolean / Bssociation
= notation El out Brake _Line: Continuous
& umi =1 No_Double_Fault: Boolean ¢ Directedhssoci...
o a o Compaosition
B: Model Explorer 53 - g E s &2 ModelElements <
EEFEBE - 3 Package
S traints Actor
v [z WheelBrakingSystem X cons X £
E modelRequirementView (S brake time: System Brake Time Rlack

aBlocks

~ B3 modelSystemView t o5 PortAndFlows
~ B3 PhysicalArchitecture +bscy * @ Port
«Blocks System
+ hydraulic

Blocks Hydraulic S B FlowPort
«Blacks BSCU IORETtEE Blocks [FlowSpecificati...
?Assniiatiﬂrﬂ © in Pedal_PosT: Boolean Hydraulic o5 DataTypes @

Association2 [in Pedal_Pos2: Boolean

_t properties o)
<Blocks SUbBSCU & out Valick Boolean out Brake Line: Cantinuous DataType
out | AS: Boolean & in CMD_AS: Boolean aluelype

A_bscul_bscu El out CMD_AS: Bool ¥ [ValueTyp
" Associations & No_Double_Fault: Boolean B in Valid: Boolean PrimitiveType
& A_bscu?_bscu & CommentAn... «
BZ Diagram PhysicalArchitecture BDD operations X
Eg Diagram PhysicalArchitecture_CD operations [ConstraintBlock

censtraints

i [ConstraintPro...
B2 Diagram PhysicalArchitecture CD {2} [Valid := bscul Valid or bscu2 Valid } 7l ConstraintPro.

v
E3 Contracts - 5 Parameter
E modelComponentView -

B3 modelDeploymentView
B3 modelAnalysisView

»,
3

BR PhysicalArchitect... 52 Hydraulic_IBD | [Bd SubBSCU_IBD | By Contracts | [System_IBD By SowtwareComponent... | Bg SoftwareContracts_CD

[} S =
Properties 53 % = a
. e [Props |
B - System
A
UML Name ‘ System
Comments Qualified name WheelBrakingSystem:: modelSystemView: PhysicalArchitecture: System
SysML
% ls abstract Otrue @ false ls active Otrue @ false
Profile
Style Is leaf Otrue @ false
Appearance Visibility public w
Rulers And Grid
Owned attribute G| & 4| %8|
Advanced
| (= hydraulic : Hydraulic ‘
= 1= hseu: RSCLI e

Figured4. Papyrus editor

ThePapyrus UML editor supparthe definition andapplicationof UML profiles. In AMASBapyrus tol is
used together with the CHESS profile extengjn in particular CHESS is used here as extensidimeof
UML and SysML modelling language allow the modelling of contracts, as explained in the following
sections according to théAMASS componemheta-modelneeds(seeD2.3[6]).

H2020JTHECSERO1S5 # 692474 Pagel2 of 62

UA A M AS S Prototype forarchitecturedriven assurancéo) D3.5V1.0

CHESS also provides extension to the Papyrus tool, for instance by adding dedicated diagram palettes to
facilitate the creation of the CHESS entitiespy addinga dedicated property tabs view for editing CHESS
entities propertiegseeSection4).

It is worth noting thatthe CHESS profile also provides other modelling capabilisash asthe
dependability profile[10] for failure modelling and specific support for timing properties (see Seetion
about CHESS featuredyloreover, CHESS provides methodology for the degn, verification and
implementtion of CPS SW systeifi$. The aforementioned features are not currently part of the AMASS
basic building blocks; thepossible role andntegration in AMASS will be studied during the proj&dte
CHESS profile follows theame licenses approach as Papyrus and other AMASS components, which
supports the easy integration of the developments from the intellectual property perspective.

2.2.1.2 Formalize Requirementwith Formal Properties

Requiremens can be modelled in Papyrus usinghe SysML profileindeed, SysML comes with the
dedicatedRequiement stereotype (seeFigure5) which can be managed througRequirement Diagram
The availability of system requirements represented in the model allows to modgltthceability to the
different parts of the system model. In particulaby using the SysML profileequirements can be traced
to the entities of the architectureby using theSatisfylink defined by SysMLn this way, modetiriven
support can be erfaled to support requirement traceability(see e.g[7]), which is an important quality
factorto be guaranteed whilduilding systems

In AMASSa formal property represents a distinct entity which is usegtovidea formal description of a
given system requirementhe latter usually described using informal textual language

To model formal propertieSCHESS profile defiga classalledFormalPropert y asanextension of UML
Constraint(see Figure5). A FormalProperty can becreated firstin the modeland thenit has to be
linked tothe requirementthat it formalizes; the SysML tracdéink can becreatedin the SysML Requirement
diagram or through the tabular editor provided by Papyris Then the fomal description of the
requirement has tobe provided by using thepecificationattribute coming withthe FormalProperty
entity.

5https://wiki.eclipse.orq/Papvrus User Guide/Table Documentation

H2020JTHECSERO1S5 # 692474 Pagel3of 62

https://wiki.eclipse.org/Papyrus_User_Guide/Table_Documentation

UA A M AS S Prototype forarchitecturedriven assurancéo) D3.5V1.0

~P “WBS.di i3 = 8

«Requirement=
Brake_Delay
«Reguirements
text=The delay between a brake command (given
via the brake pedal) and its execution (by
applying brake force to the wheel) shall not
exceed 10ms

«Formal Property=
{7} System_Brake_Time_Guarantee
{always ((change{Pedal_Pos1) or change{Pedal_Pos2)) - =
(time_until{ change{Brake_Line)) ==10)}}

LF SowtwareComponent... By SoftwareContracts_CD Select_Switch_C5D BSCU_CSD | | WES_Requirements 23 | ¥t
[T] Properties &3 4 ~ = 0

{7} System_Brake_Time_Guarantee

UML MNarme Systermn_Brake_Time_Guarantee Constrained element NI
Comments Visibility public v

Profile

Style Context B3 Contracts e | |G| | o

Appearance

Rulers And Grid

L = constraintSpec="always ((change(Pedal_Pos1) or change(Pedal_Pos2)) -»
Advanced specification = {time_until{ change(Brake_Ling)) <=10))"

|| |
Figure5. Modelling FormalProperty

It is worth noting here thathe CHESS profile does not force thsage of a particular formal language; the
choice of the formal language to be adopted for the formalization of requirementmade bythe
modeller, typically accordingto the adopted process/methodologyCHESS currently supp®ihtegration
with the O@A contract specification langudyein particular, through the CHESS Contract plugins
explained inSection4 it is possible to verify formal properties specification with respect to OCRA syntax.

2.2.1.3 SemiFormal Contract Definition

As users might not be familiar with formal expressions to define contracts, we offer the possibility to use a
set of patterns with which many assertions can be formulatédte thought about different ways to

6 https://ocra.fbk.eu

H2020JTHECSERO1S5 # 692474 Pagel4 of 62

https://ocra.fbk.eu/

U~A A M AS S Prototype forarchitecturedriven assurancéo) D3.5V1.0

support the user at writing template assertioaad ended up providing two ways, which allow the user to
specify assertions by using our patterns more easily.

The first option is to use aAssertion Wizardwhich guides him or her through a preselected set of
available pattern constructs together wittkamples. If the user has decided on a pattern, he or she just
needs to adjust minor details such as variable names or conditional relations until the assertion is
completed. The other optiorior the user is to write assertions in a text editor, which feati syntax
checks and aut@ompletion. In the following paragraphs we explain both concepts in detail.

Assertion Wizard

As applying a template language can be quite difficult without any guidelines, we decided to implement a
wizard that guides the userthrough the process of choosing and filling out an appropriate pattern
structure for their statement. The first page of the wizard shows the user the three main pattern types of
our template language: Global Invariant Patter, Simultaneity Pattend, Trigger-Reaction Pattern (see
Figure6). We have added a short description and an example for each one so that it is easier for the user
to make a decision.

After selecting the main pattern type, several possible pattern instancéiseofype will be presented to

the user. Each of them features an example to demonstrate a possible applicatioRri@sge7). If an
appropriate pattern instance is chosen, the user will be directed to the lag péthe wizard, where the
patterns construct needs to be customized. The user can now replacéenmimals by simply clicking on
them. A dropdown menu shows possible substitutions and the option to use a macro. If a terminal that
must be replaced by aavent nameis selecteda list containing all event interface names of the currently
selected component appears. That way the user can only choose and use model elements that are in scope
(see Figure8). The sameéholds for terminals that must be replaced by variable names except that the
suggested names come from all available ports except the event ports. We also provide a set of time units
the user can choose from when specifying timed behavior. Only if negearamnals remain in the pattern
instance and all terminals are replaced by actual interface names, values,atoifghe assertion can be
assigned on a selected compone@therwise the wizard will hint the user at the remaining négrminals

or terminak.

H2020JTHECSERO1S5 # 692474 Pagel5 of 62

A M AS S Prototype forarchitecturedriven assurancéo) D3.5V1.0

s 5
B Assertion Wizard l SR X

Create a new Assumption or Guarantee based on patterns

Select whether you want to create an assumption or a guarantee and choose a general
pattemn type.

Select which kind of Assertion you want to define:
Assertion Type
(@) Assertion () Assumption () Guarantee

Select which Pattern you want to use:

General Pattern Type

() Global Invariant Patterns
For nearly all systems we want to define conditions, which shall always held,
regardless of the state the system is currently in.
The Glebal Invariant Pattern allows the definition of those conditions,
as they do not have a restricted scope but need to be fulfilled at all points in time.

Example: the supply_voltage is always in the range from 5V to 12V.

() Simultanety Patterns

These Patterns are used to specify the dependency system behavior,
that happens simultancusly. They can express the dependency of one condition to another
or can state that a specific event is only allowed to occur while a certain condition holds.

Example: While ignition occurs, car_key_status is INSERTED",

@) Trigger-Reaction Patterns

System behavior can also stand in some trigger reaction relation to each other.
So does some event occurence always need to trigger another event or
result in the satisfaction of a specifc condition

Example: Whenever crash_detected occurs then in response airbag_ignition occurs during within 50ms.

< Back Mext = Finish

%

Figure6. First step in theéAssertionWizard: Select a General Pattern Type to formulate an assertion. Each selection
features a short description and example to offer the user an easy decision.

B Assertion Wizard l of X

Create a new Assertion based on Trigger-Reaction Patterns

Select a pattern of a more specified set of patterns based on your choices,

Please select a pattern that will be the base of your specification,
On the next page you will be able to modify it further.

General Pattern Type
@ T1: Whenever [event] then in response [timed_cond_or_event].

Example: Whenever QueryFails occurs then in response ErrorMessage occurs within Sms.

() T2: Whenever [event] while { [conditions_temporal_duration]) then in respense [timed_cond_or_event].

Example: Whenever QueryFails occurs while sys_state is "ACTIVE”
then in response ErrorMessage occurs within Sms.

~) T3: Whenever [condition] [duration] then in response [timed_cond_or_event].

Example: Whenever brakeForce is greater than 80 % for at least 500ms
then in response InitiateFullBraking occurs within 100ms.

() T4: Whenever [condition] [duration] and ([conditions_temporal_duration]) then in response [timed_cond_or_e

Example: Whenever brakeForce is greater than 80 % for at least 500ms and brake_pedal state is "BRAKII
then in response InitiateFullBraking occurs within 100ms.

(7) C1: Whenever [precond_or_events] then in response [postcond_or_events].

Example: Whenever dataProcessing occurs and then dataReceived occurs within Sms
then in response dataAck occurs within 10ms.

[< Back ” MNext =] Finizh

%

Figure7. Second step in thAssertionWizard: Choose a pattern instantiation of the previously selected general
pattern type

H2020JTHECSERO1S5 # 692474 Pagel6 of 62

UA A M AS S Prototype forarchitecturedriven assurancéo) D3.5V1.0

-
i ' Assertion Wizard l El &J

Create a new Assertion based on Trigger-Reaction Patterns

Customize the template based on your model.

You choose the following Pattern:
T1: Whenever [event] then in response [timed_cond_or_event].

You may now customize the pattem fitting your needs.

Whenever {the absolute value of] Pedal_Pos changeste " DOWMN " thenin response

{the absolute value of} [PORTMAME] increases above [value] after at most [number] [timeunit]

Revert to "[var_change]"

Transform Pedal Pos
Brake_Line
< Back Mext = Finish Cancel

b

4

Figure8. Last step of théssertionWizard: Refine the pattern instance with names of available mogehehts.
Only element names which are valid for the corresponding placeholder are allowed to be used

Assertion Editor

If the user has already gathered some experience with our template language, the use of the Assertion
Wizard might include too many uenessary steps to formulate a valid assertion. The right pattern
structure is already known by the user, so going through the wizard seems inefficient. Witsgetion

Editor, we allow the user to directly type in the desired assertion. As writind aalertions frednand can

be difficult and errofprone, we offer support with an online syntax check and suggestions for auto
completion of the statement, already known from various programming IBigare9 shows the Assertion

Editor suggesting valid possibilities to continue the current statement.

We choseXtextas the technology to base our text editor on. That allowed us to easily implement the
editor merely only by providing the BNF in the Xtext grammar &rand slightly adjusting the auto
completion suggestions. The rest was done automatically by the code generation feature of Xtext. Another
important reason why we chose Xtext is because it features methods to automatically translate
expressions from oneahguage to another. This can be used later to translate our template expressions
into a formal language expression.

.
.| Create a new Assertion &J
Whenever Pedal_Pos changes to 'DOWN' then in responseJ -
(2] Brake_Line : Continuous -

2| Pedal_Pos: Enumeration
'= all of the following conditions hold:
'= any of the following events occur:

'= at least of the fellowing conditions holds:

m

'= none of the following condition holds:

QK '= none of the following events eccur:

\, '= not all of the following condition hold:

'= only one of the following conditions holds:
'= the absolute value change of

'= the absolute value of

'= the following events eccur in arbitrary order:

Figure9. Patternsuggestion feature of the Assertion Editor

H2020JTHECSERO1S5 # 692474 Pagel7 of 62

UA A M AS S Prototype forarchitecturedriven assurancéo) D3.5V1.0

The translation of pattern expressions to LTL orilsir temporal logics is planned to be supported in the
final prototype.

2.2.1.4 Structure Properties into Contracts

CHESS#rofile suppors the modelling ofweak and strongeontracts to support contragbased design (the
reader can refer to AMASS D39 for an introduction toweak and strongontracts and contraebased
design).

Contracs are available in the CHESS profitea special kind of classifiers (i.e. an entityed todescribe
instancelevel entities of the same kindContracts can be created itJML class, componentor SysML
block diagramsA Contract comes with two attributes representing the assumption and guarantee formal
properties.

By usingthe CHESBapyrus extensignwhen a Contract is created in the modele tool automatically
creates a pair ofempty FormalProperties , the latter playing the role ochssumption and guarantee of
the Contract itself.

Alternatively, a givenFormalProperty available in the model befe the creation of the Contraatan
later be assignedo the Contract itselfas assumptioor guarantee

Figurel0 below shovs an example ofContract andFormalProperty modelling; the figure shows the
Assumeand Guarantee attributes owned by theContract , which in the example are baded to the
represented FormalProperty . A link between theContract and the FormalProperty is also
depicted.

«contract»
«constraint»
CriticalValuelsManaged
«Contract»
Assume=TRUE
Guarantee=FunctProp
Formalize=CriticalValueFunctRequirement

parameters

constraints

N
«formalProperty»
TRUE

«formalProperty»
FunctProp
{always (critical_value implies

in the future SHM)} {TRUE}

Figurel0. Contract and FormalProperty example

2.2.1.5 Assign Contract t&omponent

In CHESS Contract is assigned to a giveML Component/SysML Block by instantiating the Contract
itself in the Component/Block. Iparticular,a ContractProperty attribute has to be created for the
Component/BlocKirst andthen the ContractProperty type must be set to the particula€ontract .
Therefore in CHES®ne important piece of information related to contrabfsed design isnodelled
through the contract instance which represerg a Contract associatd to a Component/Block.

H2020JTHECSERO1S5 # 692474 Pagel8of 62

A M AS S Prototype forarchitecturedriven assurancéo) D3.5V1.0

ContractProperty has also arattribute that allows specifyingif the associated Contract has to be
applied to the Component/Block according to the weak or strong semdrots

As exampleFigurell shows thecriticalValuelsManage@ontractPropertypwned by theFurctionalSystem
Block (the ContractPropertyis shown in the diagram in th€onstraintcompartment of the Block)The
criticalValuelsManaged property is typed as (QiticalValuelsManaged Contract
(criticalValuelsManagecriticalValuelsManagegd the latter is also represented in the diagram. The
criticalValuelsManagegroperty represents the association of tigiticalValuelsManage®ontractto the
FunctionalSysterBlock

2% *model.di &

«system»
«block»
FunctionalSystem
properties
in critical_value: Boolean
out SHM: Boolean

operations

constraints
iticalValuelsManaged: CriticalValuelsManaged

«contract»
«constraint»
CriticalValuelsManaged
«Contract»
Assume=TRUE
Guarantee=FunctProp
Formalize=CriticalValueFunctRequirement

B3 FunctionalArchite... 2 | B ComponentTypesAnd...| Ba Componentimplemen... LogicalToPhysical... £& Fun
1 Properties &3

= <Property> criticalValuelsManaged : CriticalValuelsManaged

UML Applied stereotypes: E‘ [E
Profile & ContractProperty |
Appearance

Advanced

Ports

Figurell. Assign Contract to Component

This allows to potentiafl reusing the sam€ontract in different contexs/systems(as analogous to the
practice of Baring requirements across projecise. software/system requirements reuse

7 ps discussed9], while strong assumptions define compatible environments in which the component/block can be

used, weak assumptions define specific contexts where additional information is available. Hence, a component/block
should nerer be used in a context where some strong assumptions are violated, but if some weak assumptions do not

hold, it just means that the corresponding guarantees cannot be relied on.

H2020JTHECSERO1S5 # 692474 Pagel9 of 62

UA A M AS S Prototype forarchitecturedriven assurancéo) D3.5V1.0

ThesecondAMAS $rototype (PrototypeP1) enables alsaéhe possibility to automatich} create a contract

when aContractProperty is created seeFigurel2. In this casgthe association contraetomponent is

1 to 1. The first advantage is that, during the editing of the contract, the content assist supportsethe u
suggesting which are the ports and the attributes name of the component. The second advantage is that,
the operation of contract definition is improved in terms of time spent.

& Question pe

'.6.' Do you want to create a new contract or instantiate an existing one?

7

Figurel2. After the creation of a ContractBperty, a Popumppears to decide whether a new contract has to be
created or an existing one has to be instantiated

2.2.1.6 ContractRefinement

The CHESS profile allows to model contractsefinement/decomposition along the
refinement/decomposition of the architectutaentities the latter provided through UML composite
structural diagrars or SysML block definition diagrain particular, contract instances plag key role
during the refinement specificatiorindeed, contractsrefinementis modelledfor contract instances not

for the Contracs entities; this is because the same Contract can be reused in several corfiexts
instantiated in several Components/Blockand for each context therefinement of the same Contract
could be different.So through the CHESSofile it is possible to model how a given contract instance is
refined by a set of other contract instances.

In practice, given a contrafstanceC assigned to a component A, and given the decomposition dbA in
subcomponents (& X.xdnd the contractinstancesassigned to each subcompong@i<i k2 X n<13), it
is possible to model how C is decomposedagubset offG<1. kZ K<t).

2.2.1.7 Modelling Failure Behavior

For the modelling of failurand securitybehavior (e.gan accidental / maliousfault occurring at a given
O2YLR Yy Sy Qa A yhokmckicirnplemdmation BasNiBen currently identified as official part of
the AMASS building block; this is currently an ongoing task in the AMASS project.

Existing support for failure behewr modelling is available from state of the art projects and modelling
tools, like theUML/MARTHElependability profile coming with the CHESS modelimguage[3] (see e.g.
section2.2.3.9.

The investigation of the extension of the CHESS dependability profile to support definition of security
threats is currently an ongoing task

2.2.2 System ArchitecturéModelling for Assurance

2.2.2.1 LinkArchitecture-Related Entity to AssuranceCaselnformation

The allowed links between architectural entities and the other parts of the CACM AMAtaS$nodel
(about management of the assurance project as indicatedrigure 2) are currently described ithe
CONCERT@2liverableD2.2[4].

H2020JTHECSERO1S5 # 692474 Page20 of 62

A M AS S Prototype forarchitecturedriven assurancéo) D3.5V1.0

As explained in the previous sections, the AMASS component model has been made aasattilese
pluginas UMLSysMUanguageextended withthe CHES@rofile for contracts,while the other parts of the
CACM(argumentation evidence, compliance managememtie currently implemented as Ecoraeta

mode3 (not asUMLprofile).

Within the UML profile definitionit is not possible to refeto an Ecore entitywhichis not related to the
UML language so the aforementionedlinks (e.g. from a CHESSntract to an argumentaticlaim)
cannot beexpressedthrough the CHESS profilehe links hae to be managed with someadditional
modellingsupport, as explained below in the text

Indeed, inthe context of Task 3.3 avare currentlynvestigating the best approach to allow the modelling
of the links between the component model entities and the other parts of the CA®#! solution could

be to use theEAnnotation mechanismavailable in EcoreEAnnotation allows to attach extra
information to any objectavailable inan Ecoremodel. In our casezAnnotation could be created for a
UML model entity(for instance eContract)?; then EAnnotation could be used to refeto an entity of

the CACMlefined in some external (to the UML) model (as&rlin an argumentation modellrigurel3
gives a picture of whatas beerstated above (CACM model in the figure has to be intended as the model
for argumentation, evidencegnd compliance management).

Ecore
metamodel

UML2 meta- CACM meta-
model model

refers

UML profile

compliant with compliant with

UML model

CACM model

Using EAnnotation

Figurel3. Links through EAnnotation

Another possibility is to use a traceability support based upon a dedicated traceabilitynnoetal (see
Figue 14). In this waya linkwould be created according to the tradeiity metamodel each link would
own a reference to the UML model entity aadeferenceto the CACM model entity to be associated. We

8 Ecore is a model provided by the Eclipse EMF profegis(//www.eclipse.org/modeling/emy; Ecore can be used to
model the structure of a given domain of data modelypically,Ecore is referenced as metaeta-model; the
structure of a given domain of data models is refarett as metanodel, where a model is a concrete instance of this
meta-model.

9 It is worth noting thatEAnnotationcan be added to UML model entities because UML models in Eclipse are
implemented as Ecore models.

H2020JTHECSERO1S5 # 692474 Page21 of 62

https://www.eclipse.org/modeling/emf

U~A A M AS S Prototype forarchitecturedriven assurancéo) D3.5V1.0

are also currently evaluating the applicability of this approach to the needs of traceability addressed in
WP5.

Figure 14. Links through traceabilitpneta-model

It is worth noting that both the aforementioned solutisrtan also be used to modéihks between
architectural entitiesand process related informatiarbeingthe latter defined accordig to WP6results (at
the time of writing, the specification of the links between architectural entities @nocess related
information has not yet beerfully formalized, it will be defined in the context of task T3.2)

We are still investigating the beritf and limits of each of the aforementioned solutions particular by

using the CAPRA tool which offers an implementation for the solution depictéidure 14; CAPRA is also
under extension in the context of WPB/hat is worh noting is that the usage of a dedicated traceability
meta-model could bemade generidn orderto support traceability between ssurancecaseinformation

and achitecturerelated entities specified with other non-UML modelling language For instance by
assuming the availability of afrchitecture Analysis and Design Langu@y&DL30 editor in Eclipse, the
same traceability model could be used to create links between AADL entities and argumentation/evidence
entities available in the CACM model.

2.2.3 V&V-basead Assurancempact Assessment

2.2.3.1 Requirements Formalizatiorfor analysis of Temporal Realizability t Requirement Quality
Analyzerapproach

Requirement Quality AnalyzeRQA tools provide the possibility to create custeroded metrics made by
a user. Using ik feature, a metric has been created for the detectemd evaluationof the temporal
elementsin a set of requirements.

The implementation consists of a NLP software mechanism applied to textual requirements in order to
make a quality assessment, in tes of temporal consistency. The quality assessment is an automatic
translation from requirements written in Natural Language to LTL, using the RSHP Model applied to textual
requirements.

To summarize, the metric looks for elements representing time inrédolirements and then checks that
they do not present temporal conflicts. This process starts by formalizing requirements using certain
writing patterns, with the objectives of extracting relevant information from them (concepts, relationships
and propertes), stomgand reusngthem thanks to RSHP.

10 http://www.aadl.info/aadl/currentsite

H2020JTHECSERO1S5 # 692474 Page22 of 62

