
This deliverable is part of a project that has received funding from the ECSEL JU under grant agreement No 692474.
¢Ƙƛǎ Wƻƛƴǘ ¦ƴŘŜǊǘŀƪƛƴƎ ǊŜŎŜƛǾŜǎ ǎǳǇǇƻǊǘ ŦǊƻƳ ǘƘŜ 9ǳǊƻǇŜŀƴ ¦ƴƛƻƴΩǎ IƻǊƛȊƻƴ нлнл ǊŜǎŜŀǊŎƘ ŀƴŘ ƛƴƴƻǾŀǘƛƻƴ ǇǊƻƎǊŀƳƳŜ
and from Spain, Czech Republic, Germany, Sweden, Italy, United Kingdom and France.

ECSEL Research and Innovation actions (RIA)

AMASS
Architecture-driven, Multi-concern and Seamless Assurance and

Certification of Cyber-Physical Systems

Prototype for Architecture-Driven Assurance (b)

D3.5

Work Package: WP3: Architecture-Driven Assurance

Dissemination level: PU = Public

Status: Final

Date: September,29 2017

Responsible partner: B&M

Contact information: Peter M. Kruse <peter.kruse@berner-mattner.com>

Document reference: AMASS_D3.5_WP3_B&M_V1.0

PROPRIETARY RIGHTS STATEMENT

This document contains information, which is proprietary to the AMASS consortium. Permission to reproduce any
content for non-commercial purposes is granted, provided that this document and the AMASS project are credited as
source.

Contributors

Reviewers

Names Organisation

Stefano Puri Intecs (INT)

Peter M. Kruse Assystem Germany (B&M)

Eugenio Parra, José Luis de la Vara, Gonzalo Génova,
Valentín Moreno

Universidad Carlos III de Madrid (UC3)

Luis Alonso The REUSE Company (TRC)

Alberto Debiasi Fondazione Bruno Kessler (FBK)

Garazi Juez, Estibaliz Amparan, Huáscar Espinoza,
Alejandra Ruiz

Tecnalia Research & Innovation (TEC)

¢ƻƳłǑ YǊŀǘƻŎƘǾƝƭŀΣ tŜǘǊ .ŀǳŎƘΣ ±Ɲǘ Yƻƪǎŀ Honeywell (HON)

Jaroslav Bendík Masaryk University (UOM)

Names Organisation

Gael Blondell (Peer reviewer) Eclipse Foundation (ECL)

Martin Helmut (Peer reviewer) Virtual Vehicle (VIF)

Cristina Martinez (Quality Manager) Tecnalia Research & Innovation (TEC)

Jose Luis de la Vara (Technical Committee Review) Universidad Carlos III de Madrid (UC3)

 AMASS Prototype for architecture-driven assurance (b) D3.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 3 of 62

TABLE OF CONTENTS

Executive Summary.. 6

1. Introduction ... 7

2. Implemented Functionality ... 10

2.1 Scope .. 10

2.2 Implemented Requirements .. 11

2.2.1 System Component Specification..11

2.2.2 System Architecture Modelling for Assurance ..20

2.2.3 V&V-based Assurance Impact Assessment ...22

2.2.4 Contract-based Assurance Composition ...43

3. Installation and User Manuals ... 48

4. Implementation Description ... 49

4.1 Implemented Modules ... 49

4.1.1 System Component Specification Block ..49

4.1.2 Architecture-Driven Assurance Block ..49

4.2 Source Code Description .. 50

4.2.1 System Component Specification Block ..50

4.2.2 Architecture-Driven Assurance Block ..52

5. Conclusions .. 59

Abbreviations .. 60

References ... 62

 AMASS Prototype for architecture-driven assurance (b) D3.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 4 of 62

List of Figures

Figure 1. AMASS Building blocks ... 8

Figure 2. Layered structure of AMASS tool modules .. 10

Figure 3. Description of main building blocks: System component specification and architecture
driven assurance .. 11

Figure 4. Papyrus editor .. 12

Figure 5. Modelling FormalProperty ... 14

Figure 6. First step in the Assertion-Wizard: Select a General Pattern Type to formulate an assertion.
Each selection features a short description and example to offer the user an easy decision. 16

Figure 7. Second step in the Assertion-Wizard: Choose a pattern instantiation of the previously
selected general pattern type .. 16

Figure 8. Last step of the Assertion-Wizard: Refine the pattern instance with names of available
model elements. Only element names which are valid for the corresponding placeholder
are allowed to be used ... 17

Figure 9. Pattern-suggestion feature of the Assertion Editor ... 17

Figure 10. Contract and FormalProperty example.. 18

Figure 11. Assign Contract to Component .. 19

Figure 12. After the creation of a ContractProperty, a Popup appears to decide whether a new
contract has to be created or an existing one has to be instantiated ... 20

Figure 13. Links through EAnnotation ... 21

Figure 14. Links through traceability meta-model .. 22

Figure 15. Automatic translation general diagram - From NL to LTL .. 23

Figure 16. Configuration window to setup the K number .. 23

Figure 17. Metric results visualization .. 24

Figure 18. Result window for realiable experiment .. 24

Figure 19. Window result for not realiable experiment ... 25

Figure 20. Correctness metrics related to nouns .. 26

Figure 21. Correctness metrics related to verbs ... 27

Figure 22. Tool to generate classifiers using machine learning with metrics of RQA 28

Figure 23. Example of classifier ... 28

Figure 24. Completeness metrics for models ... 29

Figure 25. Consistency metrics for models ... 29

Figure 26. Saving snapshot with the quality of the project .. 30

Figure 27. Graphical representation of the quality evolution .. 30

Figure 28. Information of the snapshot .. 31

Figure 29. GUI element used to run the V&V Manager .. 32

Figure 30. Switch in on the V&V Result view .. 32

Figure 31. Example of requirements from Gesture Recognition system (Case Study 7) that are only
trivially realisable ... 34

Figure 32. Example of requirements that are consistent, non-redundant and not realisable 34

Figure 33. Details for requirements checking ... 35

Figure 34. Checking and proposed error handling .. 36

 AMASS Prototype for architecture-driven assurance (b) D3.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 5 of 62

Figure 35. CHESS error model state machine ... 37

Figure 36. Example of fault tree represented as a table... 37

Figure 37. Example of fault tree represented as tree ... 38

Figure 38. Sabotage design architecture ... 39

Figure 39. Example of a Massif model .. 40

Figure 40. Example of the generated Fault Injector code... 41

Figure 41. Example of a saboteur code ... 41

Figure 42. Analysis Context ... 42

Figure 43. Contract Editor with content assist .. 44

Figure 44. Hierarchical view of the system decomposed into sub-components and contracts 44

Figure 45. Contract Refinement View ... 45

Figure 46. Part of the OCRA input file, also called OSS (OCRA System Specification). It describes the
system architecture represented by a tree of components (given by the decomposition into
sub-components) ... 46

Figure 47. Selecting analysis context for contract refinement ... 46

Figure 48. Part of an .SMV file representing the behaviour of the leaf components of the model 47

Figure 49. In this example, for each contract the results of the Contract-based verification are listed in
the Trace View .. 48

Figure 50. Tool modules for System Component Specification .. 49

Figure 51. CHESS plugins supporting Contract Based Design ... 51

Figure 52. CHESS methodology constraint .. 52

Figure 53. Massif and Sabotage meta-models .. 53

Figure 54. Connection between Sabotage and Massif meta-models ... 53

Figure 55. Code Generation workspace .. 54

Figure 56. Diagram showing the dependences among the plugins. The direction of the arrow means
that the origin plugin depends on the target plugin .. 58

 AMASS Prototype for architecture-driven assurance (b) D3.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 6 of 62

Executive Summary

The deliverable D3.5 άPrototype for Architecture-Driven Assurance (b)έ is the second output of the AMASS
task T3.3 Implementation for Architecture-driven Assurance, whose objective is the development of a
tooling framework to support architecture-driven assurance. D3.5 is the evolution of D3.4, which described
the first prototype.

AMASS has planned three prototype iterations for the framework; this deliverable reports the status of the
aforementioned tooling framework for the second prototype release (Prototype P1), in particular for what
regards the system component specification and the tooling framework supporting architecture-driven
assurance, by describing the supported functionalities and the details about implementation.

This deliverable takes into account the work performed in the other project work-packages, mainly WP2,
WP4, WP5 and WP6 because they have strong dependencies with T3.3. Indeed, in this deliverable a set of
functionalities regarding the system component specification have been selected from AMASS deliverable
D2.1 άBusiness cases and high-level requiremenǘǎέ. D3.5 describes the technologies that allow
implementing all selected functionality.

The logical structural view of the AMASS reference tool architecture elaborated in deliverable D2.3
άAMASS Reference Architectureέ [6] has been also considered in this deliverable; in particular physical
components have been mapped to the logical tool components Component Editor and Contract Editor
identified in deliverable D2.3.

WP4 and WP5 results have been particularly useful for what concerns the argumentation and evidence
metamodel specification; indeed one important point related to the implementation for architecture-
driven assurance is related to the way system architecture-related information can be traced to the
argumentation and evidence models. Two possible solutions are currently under investigation about the
implementation of traceability between system architecture and other assurance-related information.
These solutions are also presented.

The deliverable D3.6 άPrototype for architecture-driven assurance (c)έ will be the evolution of this
deliverable; in particular, D3.6 will document the progress about the implementation of the tooling
framework supporting architecture-driven assurance.

 AMASS Prototype for architecture-driven assurance (b) D3.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 7 of 62

1. Introduction
The AMASS approach focuses on the development and consolidation of an open and holistic assurance and
certification framework for Cyber Physical Systems (CPS), which constitutes the evolution of the

OPENCOSS1 and SafeCer2 approaches towards an architecture-driven, multi-concern assurance, and
seamlessly interoperable tool platform.

The AMASS tangible expected results are:

a) The AMASS Reference Tool Architecture, which will extend the OPENCOSS and SafeCer
conceptual, modelling and methodological frameworks for architecture-driven and multi-concern
assurance, as well as for further cross-domain and intra-domain reuse capabilities and seamless

interoperability mechanisms (e.g. based on Open Services for Lifecycle Collaboration (OSLC)3
specifications).

b) The AMASS Open Tool Platform, which will correspond to a collaborative tool environment
supporting CPS assurance and certification. This platform represents a concrete implementation of
the AMASS Reference Tool Architecture, with a capability for evolution and adaptation, which will
be released as an open technological solution by the AMASS project. AMASS openness is based on
both standard OSLC Application Programming Interfaces (APIs) with external tools (e.g. engineering
tools including V&V tools) and on open-source release of the AMASS building blocks.

c) The Open AMASS Community, which will manage the project outcomes for maintenance,
evolution and industrialization. The Open Community will be supported by a governance board,
and by rules, policies, and quality models. This includes support for AMASS base tools (tool
infrastructure for database and access management, among others) and extension tools (enriching
AMASS functionality). As Eclipse Foundation is part of the AMASS consortium, the Polarsys/Eclipse

community4 is a strong candidate to host AMASS (See D7.3 and D7.5 for further details).

To achieve the AMASS results, as depicted in Figure 1, the multiple challenges and corresponding project
scientific and technical objectives are addressed by different work-packages.

1 www.opencoss-project.eu

2 www.safecer.eu

3 https://open-services.net

4 www.polarsys.org

http://www.opencoss-project.eu/
http://www.safecer.eu/
https://open-services.net/
http://www.polarsys.org/

 AMASS Prototype for architecture-driven assurance (b) D3.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 8 of 62

WP3 WP4 WP5 WP6
WP5 WP2

WP5

WP3 WP4

WP6

Figure 1. AMASS Building blocks

Since AMASS targets ambitious objectives related to architecture-driven assurance, multi-concern
assurance, seamless interoperability support and cross-domain and intra domain assurance reuse, the
AMASS Consortium has decided to follow an incremental approach by developing rapid and early
prototypes.

The benefits of following a prototyping approach are:

¶ Better assessment of ideas by focusing on a few aspects of the solution.

¶ Ability to change critical decisions by using practical and industrial feedback (case studies).

AMASS has planned three prototype iterations:

1. During the first prototyping iteration (Prototype Core), the AMASS Platform Basic Building Blocks,
are aligned, merged and consolidated at Technology Readiness Level (TRL) 4 (technology validated
in laboratory).

2. During the second prototyping iteration (Prototype P1), the single AMASS-specific Building Blocks
will be developed and benchmarked at TRL 4.

3. Finally, at the third prototyping iteration (Prototype P2), all AMASS building blocks will be
integrated in a comprehensive toolset operating at TRL 5 (technology validated in relevant
environment).

Each of these iterations has the following three prototyping dimensions:

¶ Conceptual/research development: development of solutions from a conceptual perspective.

¶ Tool development: development of tools implementing conceptual solutions.

 AMASS Prototype for architecture-driven assurance (b) D3.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 9 of 62

¶ Case study development: development of industrial case studies using the conceptual and tooling
solutions.

As part of the Prototype P1, WP3 is responsible for driving the work resulting on architecture specification
ƛƴ ƻǊŘŜǊ ǘƻ ŘŜǎƛƎƴ ŀƴŘ ƛƳǇƭŜƳŜƴǘ ǘƘŜ ōŀǎƛŎ ōǳƛƭŘƛƴƎ ōƭƻŎƪ ŎŀƭƭŜŘ άSystem Component Specificationέ όsee
Figure 1). This part of the AMASS platform manages component and contract-based design (see D3.1 [9]
Section 3.1.1), also related to architecture-driven assurance.

This deliverable reports the tool development results ƻŦ ǘƘŜ άSystem Component {ǇŜŎƛŦƛŎŀǘƛƻƴέ ōŀǎƛŎ
building block. It presents in detail the pieces of functionality implemented in the AMASS platform tools,
their software architecture, the technology used, and some source code references.

Other important parts of D3.5 document are:

¶ Installable AMASS Platform tools for the first prototype

¶ User Manuals and installation Instructions

¶ Source code description

 AMASS Prototype for architecture-driven assurance (b) D3.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 10 of 62

2. Implemented Functionality

2.1 Scope

The scope for the second prototype iteration is the provision of modelling tools for system component
specification, including a contract-based approach and the link with the assurance case specification. The
main scope is highlighted with a red rectangle on Figure 2, which shows the general layered structure of
the AMASS platform (from AMASS deliverable D2.3 [17]).

Figure 2. Layered structure of AMASS tool modules

Figure 3 illustrates the component decomposition of these tools based on the design specification
documented in deliverable D3.2.

 AMASS Prototype for architecture-driven assurance (b) D3.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 11 of 62

Figure 3. Description of main building blocks: System component specification and architecture driven assurance

2.2 Implemented Requirements

From the requirements point of view, this second prototype iteration focuses on a set of AMASS
requirements as defined in the AMASS deliverable D2.1 άBusiness cases and high-ƭŜǾŜƭ ǊŜǉǳƛǊŜƳŜƴǘǎέ [16].
Each requirement together with the implementation done so far to implement the requirement is shortly
outlined in the following sections.

2.2.1 System Component Specification

2.2.1.1 System Architecture Edition

System architecture specification is supported by the Papyrus UML/SysML editor [5]. The selection of
UML/SysML has been driven by the wide adoption of these modelling languages in the industry in different
domains. Then, the selection of Papyrus UML/SysML editor has been driven by the fact that Papyrus is one
of the most appreciated solid open source tools available in the industry for professional modelling; in
particular, recently the Papyrus Industry Consortium has been created to support a model-based
engineering platform based on the domain specific and modelling capabilities of the Eclipse Papyrus family

 AMASS Prototype for architecture-driven assurance (b) D3.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 12 of 62

of products. It is worth noting that Papyrus has also integration facilities with other tools, such as the
commercial IBM UML Rhapsody tool; in addition, it supports the XMI OMG standard [8] for the interchange
of UML models between UML tools.

Through Papyrus editor (see Figure 4), SysML Blocks and UML Components can be used to model the
architectural entities as required by the AMASS component meta-model definition (see D2.3 [6]).
Decomposition of block/components into sub-blocks/sub-components can be modelled by using internal
block diagrams or composite structure diagrams. Both Papyrus Editor and other AMASS components are
under the same Open Source license, which supports the reuse of these previous results into the AMASS
platform.

Information about the functional behaviour of a given component/block can be provided through state
machine diagrams.

System architecture UML/SysML models and diagrams are stored in individual files in the Eclipse
workspace.

Figure 4. Papyrus editor

The Papyrus UML editor supports the definition and application of UML profiles. In AMASS, Papyrus tool is
used together with the CHESS profile extension [3]; in particular CHESS is used here as extension of the
UML and SysML modelling languages to allow the modelling of contracts, as explained in the following
sections, according to the AMASS component meta-model needs (see D2.3 [6]).

 AMASS Prototype for architecture-driven assurance (b) D3.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 13 of 62

CHESS also provides extension to the Papyrus tool, for instance by adding dedicated diagram palettes to
facilitate the creation of the CHESS entities, or by adding a dedicated property tabs view for editing CHESS
entities properties (see Section 4).

It is worth noting that the CHESS profile also provides other modelling capabilities, such as the
dependability profile [10] for failure modelling and specific support for timing properties (see Section 4
about CHESS features). Moreover, CHESS provides a methodology for the design, verification and
implementation of CPS SW systems [1]. The aforementioned features are not currently part of the AMASS
basic building blocks; their possible role and integration in AMASS will be studied during the project. The
CHESS profile follows the same licenses approach as Papyrus and other AMASS components, which
supports the easy integration of the developments from the intellectual property perspective.

2.2.1.2 Formalize Requirements with Formal Properties

Requirements can be modelled in Papyrus using the SysML profile; indeed, SysML comes with the
dedicated Requirement stereotype (see Figure 5) which can be managed through Requirement Diagrams.
The availability of system requirements represented in the model allows to model their traceability to the
different parts of the system model. In particular, by using the SysML profile, requirements can be traced
to the entities of the architecture, by using the Satisfy link defined by SysML. In this way, model-driven
support can be enabled to support requirement traceability (see e.g. [7]), which is an important quality
factor to be guaranteed while building systems.

In AMASS, a formal property represents a distinct entity which is used to provide a formal description of a
given system requirement, the latter usually described using informal textual language.

To model formal properties, CHESS profile defines a class called FormalPropert y as an extension of UML
Constraint (see Figure 5). A FormalProperty can be created first in the model and then it has to be
linked to the requirement that it formalizes; the SysML trace link can be created in the SysML Requirement

diagram or through the tabular editor provided by Papyrus5. Then the formal description of the
requirement has to be provided by using the specification attribute coming with the FormalProperty
entity.

5 https://wiki.eclipse.org/Papyrus_User_Guide/Table_Documentation

https://wiki.eclipse.org/Papyrus_User_Guide/Table_Documentation

 AMASS Prototype for architecture-driven assurance (b) D3.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 14 of 62

Figure 5. Modelling FormalProperty

It is worth noting here that the CHESS profile does not force the usage of a particular formal language; the
choice of the formal language to be adopted for the formalization of requirements is made by the
modeller, typically according to the adopted process/methodology. CHESS currently supports integration

with the OCRA contract specification language6; in particular, through the CHESS Contract plugins
explained in Section 4 it is possible to verify formal properties specification with respect to OCRA syntax.

2.2.1.3 Semi-Formal Contract Definition

As users might not be familiar with formal expressions to define contracts, we offer the possibility to use a
set of patterns with which many assertions can be formulated. We thought about different ways to

6 https://ocra.fbk.eu

https://ocra.fbk.eu/

 AMASS Prototype for architecture-driven assurance (b) D3.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 15 of 62

support the user at writing template assertions and ended up providing two ways, which allow the user to
specify assertions by using our patterns more easily.

The first option is to use an Assertion Wizard, which guides him or her through a preselected set of
available pattern constructs together with examples. If the user has decided on a pattern, he or she just
needs to adjust minor details such as variable names or conditional relations until the assertion is
completed. The other option for the user is to write assertions in a text editor, which features syntax
checks and auto-completion. In the following paragraphs we explain both concepts in detail.

Assertion Wizard

As applying a template language can be quite difficult without any guidelines, we decided to implement a
wizard that guides the user through the process of choosing and filling out an appropriate pattern
structure for their statement. The first page of the wizard shows the user the three main pattern types of
our template language: Global Invariant Patter, Simultaneity Pattern, and Trigger-Reaction Pattern (see
Figure 6). We have added a short description and an example for each one so that it is easier for the user
to make a decision.

After selecting the main pattern type, several possible pattern instances of the type will be presented to
the user. Each of them features an example to demonstrate a possible application (see Figure 7). If an
appropriate pattern instance is chosen, the user will be directed to the last page of the wizard, where the
patterns construct needs to be customized. The user can now replace non-terminals by simply clicking on
them. A drop-down menu shows possible substitutions and the option to use a macro. If a terminal that
must be replaced by an event name is selected, a list containing all event interface names of the currently
selected component appears. That way the user can only choose and use model elements that are in scope
(see Figure 8). The same holds for terminals that must be replaced by variable names except that the
suggested names come from all available ports except the event ports. We also provide a set of time units
the user can choose from when specifying timed behavior. Only if no non-terminals remain in the pattern
instance and all terminals are replaced by actual interface names, values, units, etc., the assertion can be
assigned on a selected component. Otherwise, the wizard will hint the user at the remaining non-terminals
or terminals.

 AMASS Prototype for architecture-driven assurance (b) D3.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 16 of 62

Figure 6. First step in the Assertion-Wizard: Select a General Pattern Type to formulate an assertion. Each selection
features a short description and example to offer the user an easy decision.

Figure 7. Second step in the Assertion-Wizard: Choose a pattern instantiation of the previously selected general
pattern type

 AMASS Prototype for architecture-driven assurance (b) D3.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 17 of 62

Figure 8. Last step of the Assertion-Wizard: Refine the pattern instance with names of available model elements.
Only element names which are valid for the corresponding placeholder are allowed to be used

Assertion Editor

If the user has already gathered some experience with our template language, the use of the Assertion
Wizard might include too many unnecessary steps to formulate a valid assertion. The right pattern
structure is already known by the user, so going through the wizard seems inefficient. With the Assertion
Editor, we allow the user to directly type in the desired assertion. As writing valid assertions free-hand can
be difficult and error-prone, we offer support with an online syntax check and suggestions for auto-
completion of the statement, already known from various programming IDEs. Figure 9 shows the Assertion
Editor suggesting valid possibilities to continue the current statement.

We chose Xtext as the technology to base our text editor on. That allowed us to easily implement the
editor merely only by providing the BNF in the Xtext grammar format and slightly adjusting the auto-
completion suggestions. The rest was done automatically by the code generation feature of Xtext. Another
important reason why we chose Xtext is because it features methods to automatically translate
expressions from one language to another. This can be used later to translate our template expressions
into a formal language expression.

Figure 9. Pattern-suggestion feature of the Assertion Editor

 AMASS Prototype for architecture-driven assurance (b) D3.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 18 of 62

The translation of pattern expressions to LTL or similar temporal logics is planned to be supported in the
final prototype.

2.2.1.4 Structure Properties into Contracts

CHESS profile supports the modelling of weak and strong contracts to support contract-based design (the
reader can refer to AMASS D3.1 [9] for an introduction to weak and strong contracts and contract-based
design).

Contracts are available in the CHESS profile as a special kind of classifiers (i.e. an entity used to describe
instance-level entities of the same kind). Contracts can be created in UML class, component, or SysML
block diagrams. A Contract comes with two attributes representing the assumption and guarantee formal
properties.

By using the CHESS Papyrus extension, when a Contract is created in the model, the tool automatically
creates a pair of empty FormalProperties , the latter playing the role of assumption and guarantee of
the Contract itself.

Alternatively, a given FormalProperty available in the model before the creation of the Contract can
later be assigned to the Contract itself, as assumption or guarantee.

Figure 10 below shows an example of Contract and FormalProperty modelling; the figure shows the
Assume and Guarantee attributes owned by the Contract , which in the example are bounded to the
represented FormalProperty . A link between the Contract and the FormalProperty is also
depicted.

Figure 10. Contract and FormalProperty example

2.2.1.5 Assign Contract to Component

In CHESS, a Contract is assigned to a given UML Component/SysML Block by instantiating the Contract
itself in the Component/Block. In particular, a ContractProperty attribute has to be created for the
Component/Block first and then the ContractProperty type must be set to the particular Contract .
Therefore, in CHESS one important piece of information related to contract-based design is modelled
through the contract instance, which represents a Contract associated to a Component/Block.

 AMASS Prototype for architecture-driven assurance (b) D3.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 19 of 62

ContractProperty has also an attribute that allows specifying if the associated Contract has to be

applied to the Component/Block according to the weak or strong semantics7 [9].

As example, Figure 11 shows the criticalValueIsManaged ContractProperty owned by the FunctionalSystem
Block (the ContractProperty is shown in the diagram in the Constraint compartment of the Block). The
criticalValueIsManaged property is typed as CriticalValueIsManaged Contract
(criticalValueIsManaged:CriticalValueIsManaged), the latter is also represented in the diagram. The
criticalValueIsManaged property represents the association of the CriticalValueIsManaged Contract to the
FunctionalSystem Block.

Figure 11. Assign Contract to Component

This allows to potentially reusing the same Contract in different contexts/systems (as analogous to the
practice of sharing requirements across projects, i.e. software/system requirements reuse).

7 As discussed [9], while strong assumptions define compatible environments in which the component/block can be
used, weak assumptions define specific contexts where additional information is available. Hence, a component/block
should never be used in a context where some strong assumptions are violated, but if some weak assumptions do not
hold, it just means that the corresponding guarantees cannot be relied on.

 AMASS Prototype for architecture-driven assurance (b) D3.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 20 of 62

The second AMASS prototype (Prototype P1) enables also the possibility to automatically create a contract
when a ContractProperty is created, see Figure 12. In this case, the association contract-component is
1 to 1. The first advantage is that, during the editing of the contract, the content assist supports the user
suggesting which are the ports and the attributes name of the component. The second advantage is that,
the operation of contract definition is improved in terms of time spent.

Figure 12. After the creation of a ContractProperty, a Popup appears to decide whether a new contract has to be
created or an existing one has to be instantiated

2.2.1.6 Contract Refinement

The CHESS profile allows to model contracts refinement/decomposition along the
refinement/decomposition of the architectural entities, the latter provided through UML composite
structural diagrams or SysML block definition diagrams. In particular, contract instances play a key role
during the refinement specification. Indeed, contracts refinement is modelled for contract instances, not
for the Contracts entities; this is because the same Contract can be reused in several contexts (i.e.
instantiated in several Components/Blocks), and for each context the refinement of the same Contract
could be different. So through the CHESS profile it is possible to model how a given contract instance is
refined by a set of other contract instances.

In practice, given a contract instance C assigned to a component A, and given the decomposition of A into
subcomponents (A1ΣΧΣ!n) and the contracts instances assigned to each subcomponent (C1<1..k>ΣΧ Σ/n<1..j>)., it
is possible to model how C is decomposed by (a subset of) (C1<1..k>ΣΧ,Cn<1..j>).

2.2.1.7 Modelling Failure Behavior

For the modelling of failure and security behavior (e.g. an accidental / malicious fault occurring at a given
ŎƻƳǇƻƴŜƴǘΩǎ ƛƴǇǳǘκƻǳǘǇǳǘ ǇƻǊǘύ no specific implementation has been currently identified as official part of
the AMASS building block; this is currently an ongoing task in the AMASS project.

Existing support for failure behavior modelling is available from state of the art projects and modelling
tools, like the UML/MARTE dependability profile coming with the CHESS modelling language [3] (see e.g.
section 2.2.3.4).

The investigation of the extension of the CHESS dependability profile to support definition of security
threats is currently an ongoing task.

2.2.2 System Architecture Modelling for Assurance

2.2.2.1 Link Architecture-Related Entity to Assurance Case Information

The allowed links between architectural entities and the other parts of the CACM AMASS meta-model
(about management of the assurance project as indicated in Figure 2) are currently described in the
CONCERTO deliverable D2.2 [4].

 AMASS Prototype for architecture-driven assurance (b) D3.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 21 of 62

As explained in the previous sections, the AMASS component model has been made available as Eclipse
plugin as UML/SysML language extended with the CHESS profile for contracts, while the other parts of the
CACM (argumentation, evidence, compliance management) are currently implemented as Ecore meta-

mode8 (not as UML profile).

Within the UML profile definition, it is not possible to refer to an Ecore entity which is not related to the
UML language, so the aforementioned links (e.g. from a CHESS-Contract to an argumentation-Claim)
cannot be expressed through the CHESS profile; the links have to be managed with some additional
modelling support, as explained below in the text.

Indeed, in the context of Task 3.3 we are currently investigating the best approach to allow the modelling
of the links between the component model entities and the other parts of the CACM. One solution could
be to use the EAnnotation mechanism available in Ecore: EAnnotation allows to attach extra
information to any object available in an Ecore model. In our case, EAnnotation could be created for a

UML model entity (for instance a Contract)9; then EAnnotation could be used to refer to an entity of
the CACM defined in some external (to the UML) model (as a Claim in an argumentation model). Figure 13
gives a picture of what has been stated above (CACM model in the figure has to be intended as the model
for argumentation, evidence, and compliance management).

Figure 13. Links through EAnnotation

Another possibility is to use a traceability support based upon a dedicated traceability meta-model (see
Figure 14). In this way, a link would be created according to the traceability meta-model; each link would
own a reference to the UML model entity and a reference to the CACM model entity to be associated. We

8 Ecore is a model provided by the Eclipse EMF project (https://www.eclipse.org/modeling/emf); Ecore can be used to
model the structure of a given domain of data models. Typically, Ecore is referenced as meta-meta-model; the
structure of a given domain of data models is referenced as meta-model, where a model is a concrete instance of this
meta-model.

9 It is worth noting that EAnnotation can be added to UML model entities because UML models in Eclipse are
implemented as Ecore models.

https://www.eclipse.org/modeling/emf

 AMASS Prototype for architecture-driven assurance (b) D3.5 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 22 of 62

are also currently evaluating the applicability of this approach to the needs of traceability addressed in
WP5.

Figure 14. Links through traceability meta-model

It is worth noting that both the aforementioned solutions can also be used to model links between
architectural entities and process related information, being the latter defined according to WP6 results (at
the time of writing, the specification of the links between architectural entities and process related
information has not yet been fully formalized, it will be defined in the context of task T3.2).

We are still investigating the benefits and limits of each of the aforementioned solutions, in particular by
using the CAPRA tool which offers an implementation for the solution depicted in Figure 14; CAPRA is also
under extension in the context of WP5. What is worth noting is that the usage of a dedicated traceability
meta-model could be made generic in order to support traceability between assurance case information
and architecture-related entit ies specified with other non-UML modelling languages. For instance, by

assuming the availability of an Architecture Analysis and Design Language (AADL)10 editor in Eclipse, the
same traceability model could be used to create links between AADL entities and argumentation/evidence
entities available in the CACM model.

2.2.3 V&V-based Assurance Impact Assessment

2.2.3.1 Requirements Formalization for analysis of Temporal Realizability �t Requirement Quality
Analyzer approach

Requirement Quality Analyzer (RQA) tools provide the possibility to create custom-coded metrics made by
a user. Using this feature, a metric has been created for the detection and evaluation of the temporal
elements in a set of requirements.

The implementation consists of a NLP software mechanism applied to textual requirements in order to
make a quality assessment, in terms of temporal consistency. The quality assessment is an automatic
translation from requirements written in Natural Language to LTL, using the RSHP Model applied to textual
requirements.

To summarize, the metric looks for elements representing time in the requirements and then checks that
they do not present temporal conflicts. This process starts by formalizing requirements using certain
writing patterns, with the objectives of extracting relevant information from them (concepts, relationships
and properties), storing and reusing them thanks to RSHP.

10 http://www.aadl.info/aadl/currentsite

