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Executive Summary  

This deliverable, output of Task 3.2 Conceptual Approach for Architecture-driven Assurance, focuses on the 
design of the architecture-driven assurance approach by elaborating the way forward identified in D3.1 [2] 
and by covering the requirements identified in D2.1 [1]. 

The conceptual approaches, logical architecture, and meta-model supporting architecture-driven assurance 
are presented in this deliverable.  

Concerning the conceptual approaches, elaborations about the following functionalities focusing the 
support of system assurance definition are provided: 

¶ modelling of the system architecture,  

¶ definition and instantiation of architectural patterns,  

¶ contract-based design approach, 

¶ activities supporting assurance case.  

The logical architecture in charge of realizing the architecture-driven assurance on top of the AMASS 
platform is illustrated by refining the initial logical model presented in D2.2 [3] and then D2.3 [8]; in 
particular logical components and interfaces that will be in charge of realizing the presented approaches 
have been identified. 

The metamodel for system component specification originally presented in D2.2 has been also reviewed 
and extended to support what has been elaborated at the conceptual level. 

A way forward for the implementation is also proposed, by tracing the sections elaborating the conceptual 
approaches to the requirements currently assigned to WP3 and by providing some considerations about 
the current feedback received from the evaluation of the Prototype Core and Prototype P1 of the AMASS 
platform. 

These results, presented in this deliverable, will guide the implementation of the architecture-driven 
assurance features of the AMASS prototype (Task 3.3 Implementation for Architecture-driven Assurance). 

Finally, Task 3.4 Methodological Guidance for Architecture-driven Assurance will build upon the results 
identified here to provide methodological guidance to the AMASS end-users for the application of the 
architecture-driven assurance approach. 

This deliverable represents an update of the AMASS D3.2 [7] deliverable released at M15; the sections 
modified with respect to D3.2 have been marked with (*), then the details about the differences and 
modifications are provided in Appendix F: Document changes respect to D3.2 (*). 
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1. Introduction (*) 

This deliverable is the output of Task 3.2. It reports the design of the architecture-driven assurance 
prototype, including its conceptual aspects and tool infrastructure. We group the functionalities provided 
by the prototype into four blocks. 

System Architecture Modelling for Assurance. This block contains the functionalities that are focused on 
the modelling of the system architecture to support the system assurance, which are: 

¶ Supporting the modelling of additional aspects (not already included in the system component 
specification), related to the system architecture, that are needed for system assurance. 

¶ Tracing the elements of the system architecture model to the assurance case. 

¶ Generating evidence for the assurance case from the system architecture model or from the 
analysis thereof. 

¶ Importing the system architecture model from other tools/languages. 

Architectural Patterns for Assurance. This block contains the functionalities that are focused on 
architectural patterns to support system assurance, which are: 

¶ Management of a library of architectural patterns. 

¶ Automated application of specific architectural patterns. 

¶ Generation of assurance arguments from architectural patterns application. 

Contract-Based Design for Assurance. This block introduces the functionalities that support the contract-
based design of the system architecture, which provides additional arguments and evidence for system 
assurance. These functionalities, also include: 

¶ /ƻƴǘǊŀŎǘǎ ǎǇŜŎƛŦƛŎŀǘƛƻƴΣ ƛΦŜΦΣ ǎǇŜŎƛŦƛŎŀǘƛƻƴ ƻŦ ŎƻƳǇƻƴŜƴǘǎΩ ŀǎǎǳƳǇǘƛƻƴǎ ŀƴŘ ƎǳŀǊŀƴǘŜes. 

¶ Contract-based reuse of components, i.e., a component reuse that is supported by checks on the 
contracts. 

¶ Generation of assurance arguments from the contract specification and validation. 

Activities Supporting Assurance Case. This block contains the functionalities that are focused on enriching 
the assurance case with advanced analysis to support the evidence of the assurance case. These 
functionalities include: 

¶ Requirements formalization into temporal logics. 

¶ !ƴŀƭȅǎƛǎ ƻŦ ǊŜǉǳƛǊŜƳŜƴǘǎΩ ǎŜƳŀƴǘƛŎǎ ōŀǎŜŘ ƻn their formalization into temporal logics. 

¶ Analysis of requirements based on quality metrics. 

¶ Contract-based verification and analysis, i.e. exploiting contracts to verify the architectural 
decomposition, to perform compositional analysis, and to analyse the safety and reliability of the 
system architecture. 

¶ Formal verification (model checking) of requirements on the system design. 

¶ Design space exploration to compare different architectural configurations. 

¶ Model-based specification of fault-injection and analysis of faulty scenarios with simulation or 
model checking (model-based safety analysis). 

 
The deliverable is structured in the following way: 

¶ Section 2 provides the conceptual vision supporting the aforementioned features. 

¶ Section 3 provides a logical architecture supporting the conceptual vision. 

¶ Section 4 provides information related to the WP3 requirements coverage. 

¶ Section 5 provides the conclusions. 
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2. Conceptual level 

This chapter builds on the way forward discussed in AMASS D3.1 [2] Section 5 while covering the WP3 
requirements identified in D2.1 [1]. For each of the main topics of interest for AMASS related to 
architecture-driven assurance goal, several approaches and features planned to be supported by the 
AMASS tool platform are presented. 

2.1 System Architecture Modelling for Assurance 

In this section, the information concerning system architecture, which is important for the assurance case, 
is elaborated. 

2.1.1 Extended modelling of system architecture with safety aspects  

In AMASS D3.1 [2] ƛǘ ƛǎ ǎǘŀǘŜŘ ǘƘŀǘΥ ά¢ƘŜ ǎȅǎǘŜƳ ŀǊŎƘƛǘŜŎǘǳǊŜ ƛǎ ƻƴŜ ƻŦ ǘƘŜ ŦƛǊǎǘ ŀǊǘŜfacts produced by the 
development process and includes many design choices that should be reflected in the assurance case. 
Therefore, we have to understand which elements of the system architecture are important for the 
ŀǎǎǳǊŀƴŎŜ ŎŀǎŜΦέ What modelling elements are available for expressing the architecture of a technical 
system and what relationships are allowed between them is defined by a meta-model.  

Within the AMASS consortium, different partners have different, but in many aspects similar meta-models, 
which need to be compared to get a common understanding, even if a full unification is not possible due to 
existing tools.  

In this section, we reflect upon the system modelling itself but also the assurance and safety analysis upon 
the system and the relations between the system and its safety analysis. In addition to the connections 
between system modelling and its safety aspects, which are merely the different kinds of safety analysis 
and the terms used therein (e.g. fault, failure, hazard), safety mechanisms that are introduced into the 
system architecture to prevent or mitigate these failures or their consequences are also considered. 

2.1.1.1 Product Meta-model 

In this section, we introduce a meta-model for system architecture (product) modelling and then integrate 
it into an assurance framework. This integrated meta-model bridges the gap between an assurance meta-
model (e.g. the assurance meta-model described in D2.2 [3]) and a system architecture modelling meta-
model, therefore enabling a detailed definition of the system and the analysis of its dependability. 
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Figure 1. Meta-model of System Architecture Modelling 

Figure 1 shows the meta-model for system architecture modelling. The artefacts are grouped into two 
groups, where the green-coloured group corresponds to the functional abstraction level, and the black-
coloured group corresponds to the technical abstraction level. On the abstraction level of the functional 
architecture, we model the functional blocks of the system, the nominal behaviour of which is described in 
detail by the requirements that should be satisfied. As a typical recommendation (e.g. from ISO 26262-9), 
requirements are hierarchically organized where a requirement may be refined by a set of lower level 
requirements. Accordingly, a function may be composed of several sub functional blocks in a hierarchical 
way, with each functional block fulfilling the corresponding requirements. 

When defining the technical architecture, the main modelling artefacts are components, which realize the 
functions (in other words: functions are allocated onto components). Components are also organized in a 
hierarchical way, and one component may contain several sub components. Each component may have 
some Ports, which define its interface, and Ports are connected via Connections. A Connection allows 
communications between components through the associated source and destination ports. 
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Figure 2. System Architecture Modelling integrated with Safety Analysis 

As shown in Figure 2, a set of Faults may be identified regarding each component as the result of safety 
analysis over the technical components, which may lead to Failures during the operation of the component. 
For example, a missing Connection between the controller component and the actuator component may 
lead to the failure that the actuator never executes the command issued by the controller. Therefore, a 
Failure is an Event, which occurs in real time during the operation of the component. Failures can be further 
categorized into different Failure Modes, which are different types of Failures that are observed at the 
Ports of the CƻƳǇƻƴŜƴǘ όŜΦƎΦ άƛƴǇǳǘ ǾŀƭǳŜ ƻŦ tƻǊǘ ! ƛǎ ƻǳǘ ƻŦ ǊŀƴƎŜέΣ ƻǊ άbƻ ƻǳǘǇǳǘ ŎƻƳƳŀƴŘ ƻƴ ƻǳǘǇǳǘ 
tƻǊǘ . ƛǎ ƛǎǎǳŜŘ ŘŜǎǇƛǘŜ ŎƻƳƳŀƴŘ ǊŜǉǳŜǎǘ ƛǎ ǊŜŎŜƛǾŜŘ ŀǘ ƛƴǇǳǘ tƻǊǘ !έύΦ  

Readers should be aware that throughout different communities and standards the terminology of fault 
and failure (and sometimes other terms like error or malfunction come additionally into play) may differ, so 
this meta-model should be regarded as a generic explanation of our intended proceeding and needs to be 
fine-tuned and mapped to the different existing standards and tools.  

Contracts and assertions are also represented in Figure 2, as green-coloured artefacts. In the context of 
contract based design, Contracts are formalized requirements that a system must fulfil with the given 
conditions. Contracts can be applied to both functional and technical levels. The conditions that are given 
by the environment of the system are assumptions and the expected behaviours are the guarantees. 
Therefore, both assumptions and guarantees can be seen as system properties (i.e. Assertions over 
systems) from different perspectives. In this perspective, Failure Modes can be interpreted as those system 
properties that violate the Contracts. 



              

         AMASS Design of the AMASS tools and methods for architecture-driven assurance (b)  D3.3 V1.0 

 

H2020-JTI-ECSEL-2015 # 692474 Page 12 of 120 
 

Meta-Modell 

(technical)

Component

Faults

Port

Failure Mode

Failure

Function

(Function Block)
Requirement

Connection

Safety Mechanism

realizes

describes

leads to

subfunction

0Χ*

subcomponent

0Χ* 1..*

1Χ*

is compromised by

1

1

1Χ*

0Χ*

1

0Χ*

destination
source

1
1

1

0Χ*

Argument

1

0Χ*

mitigate

is classified by

Safety Requirement

Activation 

Condition
Event Occurrence Event

allocate

Design 

Decision

Argument

Argument

refines

Argument

leads to

Propagation

Hypothesis

0Χ*

Safety Measure

Process Measure
Measure in other 

technology

1

1Χ*

realizes

describes

Design 

Decision

1Χ*

1

decomposes

Argument0Χ*

role:
guarantee

role:
assumption

Contract Assertion

is violation of

corresponds to

is attached to

is attached to

is

classified

by

Event Occurrence Event

Contract Assertion

Function

(Function Block)
Requirement

 

Figure 3. System Architecture Modelling integrated with Safety Analysis and Safety Aspect
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Figure 3 further integrates the Safety Mechanisms (the blue-coloured group) into the meta-model. 
Following the safety analysis, a safety concept (may be named differently in different industry domains) is 
written to define safety measures that prevent or mitigate potential failures or their hazardous 
consequences. They establish countermeasures against failures at runtime and thereby assure that finally 
the overall system satisfies the Safety Requirements.  

Safety measures can be divided into two different classes: process measures (e.g. development process 
maturity, depth of testing, operator training) and technical measures, which can be further subdivided into 
functional safety mechanisms (e.g. runtime failure diagnostics implemented in software, with the reaction 
of a transition to some safe state) and measures in other technologies (e.g. a mechanical protection against 
touching dangerous parts). For the technical architecture (considering electronic hardware and software), 
only the safety mechanisms are of interest.  

2.1.1.2 Work Products of Safety Aspects 

Work Product Meta Model

Safety Case

Architecture Failure Analysis Safety Concept
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mitigates all
findings of 
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assured by
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assured by

Functional
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Figure 4. Work Products of Safety Aspects 

The safety case is a compilation of the work products (usually in the form of documents) during the safety 
lifecycle. As a result of the safety analysis, the safety case records the identified hazards and risks of the 
system under development. It also describes how the safety measures are developed and deployed in 
order to ensure that the risks are controlled and failures can be detected or prevented. As shown in Figure 
4, the safety case consists of four parts: 

¶ The architecture describes the system modelling, which contains both the functional and technical 
architecture. 

¶ Failure Analysis describes the safety analysis procedures performed based on the system 
architecture in order to identify the risks and hazards and the corresponding results (for example 
FMEA and FTA).  

¶ The Safety Concept describes the safety measures that are required in order to mitigate the failures 
found in the phase of failure analysis. 

¶ The Specification Document describes the requirements of the system under development. In the 
iteration after performing the safety analysis and writing the safety concept, this also includes the 
safety requirements, which have been derived in the safety concept and which describe in detail 
how the safety mechanisms shall behave. 

 
The relationship between the work products of a safety case and the artefacts generated during the 
process of system development and safety analysis is shown in Figure 5. 

Note that, just as all parts of the meta model, the safety case part of the meta model (Figure 4 and upper 
part of Figure 5) is generic and to be understood as an example. Clearly, there are more types of safety 
analyses than just the two shown in the graphics (FMEA and FTA), and also the safety case consists of many 
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more ingredients than the ones that are shown (ISO 26262 knows as much as 122 work products, not 
ŎƻǳƴǘƛƴƎ ǘƘŜ ƻǳǘŎƻƳŜǎ ƻŦ ǘƘŜ άƴƻǊƳŀƭέ ŘŜǾŜƭƻǇƳŜƴt process that may also be part of the safety case ς but 
tailoring reduces and condenses the work products actually to be delivered). Which ingredients a Safety 
Case has, depends on the industry domain, the kind of project and the role of a company within the supply 
chain (e.g. car/airplane/plant OEM vs. Tier1 supplier vs. component supplier). Tailoring a safety process 
and, accordingly, the Safety Case is a large topic on its own and addressed in AMASS at other places (e.g. by 
using the tool OpenCert). The essential message of this meta model is that a link is necessary between the 
process activities and their output artefacts on the one hand and the product-defining model elements in 
the SysML world on the other hand: An architecture holds the system components, a requirement 
specification holds the system requirements, a failure analysis holds the system failures, the Safety Concept 
holds safety mechanisms, the test specification holds test cases and so on. This has to be extended and 
adapted to all model elements actually used in some user-specific process setting.  

The link made by the meta-model relations finally makes the argument of the safety case (or safety 
assurance case) complete: on process level, the Safety Case argues that the process activities have been 
carried out carefully (the HARA, the Safety Concept, etc.), and this, in turn, justifies that all hazards have 
been found, and if the Safety Concept contains measures against all failures contributing to the hazards and 
they have actually been implemented and verified in the product delivered, then the product can be 
claimed to be safe. 
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Figure 5. Overview of the meta-models 
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2.1.2 Tracing CACM with results from external safety analysis tools (*) 

As stated in AMASS D2.2 [3], CACM is the evolution of OPENCOSS CCL (Common Certification Language) 
[56] and SafeCer metamodels [11]. CACM is the union of the process-related meta-models (planned 
process with EPFComposer [58] and executed process with CCL, the assurance meta-model, the evidence 
meta-model and the component meta-model. 

CACM should allow to trace different information, like requirements with system components, results from 
safety analysis, verification reports, test cases, validation reports, and parts of the safety case; regarding 
the process, CACM should allow the links between the generated work products and the executed process, 
the links between the executed process and the planned  process, and the links between the generated 
work products and the planned process, when the executed process does not deviate from the plan. 

Doing so is desirable from the assurance perspective, as it explicitly defines dependencies between 
contents of different work products. It is also necessary in the context of a distributed development as 
defined in ISO 26262. Thereby CACM could support a consistent tracing of activities in the development 
interface agreement (DIA) as formalization of the responsibilities of customer and supplier.  

Consider the example of a system that is partitioned into components, some of which a supplier is 
developing. The failure modes of the components are tied directly to its functions/interfaces, meaning the 
type of partitioning greatly influences the failure mode model. That scenario demands traces between 
parts of different work products and possibly across company borders to preserve the logical structure of 
components, functions and failure modes. Document based exchange is time consuming and error prone. 
The associated costs are prohibitive to an iterative process with frequent exchange, review and testing, 
making document-based exchanges an undesirable option.  

For some work products, the AMASS CACM and tool infrastructure already allows to trace links to its 
sections, such as in most requirements management databases. A model-based approach makes sense for 
the system model but it is not feasible for many other artefacts. For example, results from safety analysis 
vary between different domains such as automotive and avionics as well as with respect to security and 
safety concern. It is not desirable to fit them all into a common metamodel (i.e. into the CACM); there is no 
added benefit from copying the safety analysis results into the AMASS prototype if instead all related safety 
analysis can be traced with each other and with CACM model elements. So, for instance, analysis results 
performed by using external tools to the AMASS platform can be kept according to the metamodel 
provided by the external tool and properly linked to the CACM (for instance to the executed or planned 
process). 

Tracing data within the AMASS prototype and to external data is part of WP5 which aims to greatly 
enhance the tool interoperability of OPENCOSS. While OPENCOSS was open source and therefore open to 
extension, its CDO-based approach for tool integration fell short in terms of integrating third-party tools in 
a seamless manner. The goal of AMASS is to employ state of the art live collaborative editing techniques 
across tool boundaries and provide methods to create traces to artefacts that are external to the platform. 
Such a link-based approach is the best way to put the single source of truth principle into practice while 
being flexible and driving down costs. 

In this section, we discuss what type of artefacts and work product content can already be provided by 
safety analysis tools such as Medini Analyze, which specializes on ISO 26262. It stores its data in well-
structured models that allow traces into every part of all models (Figure 6). Information from models 
created within Medini Analyze can enrich the CACM with regard to linking sections within work products 
for assurance purposes. 
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Figure 6. Safety Core model from Medini Analyze 

The type names from the safety core metamodel mostly reflect the terminology from ISO 26262 and are 
therefore easily understood by safety engineers working with the AMASS prototype. The main class is 
Failable, which is the abstract base class for all elements that can have failures (contained via the reference 
failures). A component model such as in the SysML modelling language or the one used in the context of 
AMASS can inherit from this class to receive all safety relevant properties. For example, Failable provides a 
failureRate as quantified rate of the amount of failures over time. 
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Figure 7. Fault Tree Analysis package from Medini Analyze 

Figure 7 presents the fault tree model, which consists of a tree structure with various node types, mainly 
events (metaclass EventNode) and gates (metaclasses LogicalGate, VotingGate, TransferGate). The 
connection between nodes is realized by the abstract metaclass Connection that links two Node instances.  

Each EventNode of the fault tree has a reference event to a single event, which holds all its properties. 
Hence, instances of metaclass EventNode describe where an event occurs in a fault tree, while metaclass 
Event defines the event itself in detail. In case of multiple occurring events, different EventNode instances 
can reference the same underlying Event object. How often an event is referenced from the fault tree is 
indicated by the occurrence attribute. 
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Figure 8. Diagnostic Coverage Worksheet metamodel from Medini Analyze 

The three main classes in the diagnostic coverage metamodel presented in Figure 8 are DCWorksheet, 
DCComponentEntry, and DCFailureModeEntry. These classes consistently refine the structural classes of the 
Failure Mode and Effect Analysis (FMEA) worksheet to add the attributes required for the Failure Mode and 
Effects Diagnostics Analysis (FMEDA) Single Point Fault Metric (SPF) and Latent Fault. In detail: 

¶ DCWorksheet inherits from FMEAWorksheet and adds all attributes relevant for the hardware 
architectural metrics. The safety goals under consideration are linked via safetyGoal reference. Target 
values from the set of goals are maintained in spfTargetValue and lmpfTargetValue. These attributes 
are not derived and can be changed as known from the tool UI. As defined in ISO 26262-5, the 
essential attributes for the computation of the SPF/LF metrics are available as 
totalSafetyRelatedFailureRate, totalNotSafetyRelatedFailureRate, totalSpfFailureRate, and 
totalLmpfFailureRate as well as the overall computed results spfMetric and lmpfMetric. 

¶ A DCWorksheet contains always DCComponentEntry via the components reference. 
DCComponentEntry specializes ComponentEntry from FMEA to add the attribute safetyRelated and 
the derived attributes totalSpfFailureRate, totalLmpfFailureRate, spfImportancy, and lmpfImportancy. 
The latter four attributes are computed based on the contained failureModes and their properties 
related to the SPF/LF metrics. 

¶ DCFailureModeEntry stores the main attributes required for the metric computations, i.e. spfViolation 
and spfCoverage (for SPF), and lmpfViolation and lmpfCoverage (for LF). In addition, the percentage of 
safe faults is accessible via safeFaultFraction. Beside these five attributes there are three derived 
attributes for the various failure rate fractions, namely remainingFailureRate (after subtraction of safe 
fault percentage), spfFailureRate (after incorporation of the spfCoverage), and lmpfFailureRate (after 
further incorporation of the lmpfCoverage). 
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Lastly, we present the tracing model from Medini Analyze (Figure 9). As many traces are generated in 3rd 
party tools such as requirements management databases or safety analysis tools, there will be many trace 
links generated inside these tools. Since it would be tedious to duplicate those traces manually, it is 
preferable to import them into the AMASS tool platform. 

For these needs, in the context of WP5 (see AMASS deliverable D5.5 [9], the Capra project [59] for generic 
traceability is used and adapted for the AMASS/WP3 needs. Capra comes with a dedicated metamodel for 
traceability which is quite close to the one presented in Figure 9 (it can also be customized). So, Capra can 
be used to support traceability links between CACM, in particular the component model, and other 
assurance-related information, like results from AMASS external analysis tools. 

  

Figure 9. Tracing metamodel from Medini Analyze 

2.1.3 Arguments, Architectures and Tools 

2.1.3.1 Argument Fragment Interrelationships 

Requirement WP3_APL_005 indicates: "The system should be able to generate argument fragments based 
on the usage of specific architectural patterns in the component model." Our objective concerns the ability 
to both represent complex argument relationships and achieve a component-oriented assurance 
architecture. We start with a simple example, to demonstrate the argument components and relationships 
needed, and then we generalize to metamodel concepts that would need to be included. 

As an example, consider a derived safety requirement that a system fails silent. This is a derived 
requirement that comes from safety analysis, to ensure that when a processing component fails, it does 
not produce any further output. The system designer might use an architectural pattern to meet this 
requirement. For example, the design might use an independent protection mechanism whereby a safety 
system can detect that a component has failed, and disconnect or override its output drive so that it cannot 
affect the rest of the system.  

In a safety argument, one would typically start by enumerating system hazards and showing that the list of 
hazards is complete, then deriving safety requirements to mitigate those hazards, followed by arguments 
to show that the system meets these safety requirements. In part, this is driven by the need to allocate 
requirements among software and hardware components, so this approach seems apt for architecture-
driven assurance. 

The argument has the following overall structure, starting from derived safety requirements: 

¶ A claim that all derived safety requirements are met, contextualized by a specific architecture and a 
specific set of derived safety requirements. 
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¶ A subordinate claim for each derived safety requirement and applicable component, showing that 
this requirement is met for this component. 

¶ For a component meeting a fail-silent requirement with an independent protection mechanism, a 
specific argument fragment can then be used: 

o A claim C1 that the architectural pattern meets the fail-silent requirement. 
o A claim C2 that the system correctly instantiates the architectural pattern. 

Under claim C1, we can appeal to evidence from model-checking, for example, demonstrating that the fail-
silent protection mechanism works correctly over mode changes, power cycles, system resets and so on. 

Under claim C2, we can appeal to design review for some instantiation rules. For this type of pattern, we 
could also appeal to specific tests of the implementation in scenarios achieving, for example, 1-switch 
coverage of transitions in the model used in claim C1. 

In claim C1, we use a model-checking tool to obtain evidence about the behaviour of a model. In claim C2, 
we use a test execution tool to obtain evidence about the behaviour of the software. In both cases, it is 
important to show that the evidence is trustworthy. This is an argument about the ability of that evidence 
to substantiate a higher-level claim, which sits alongside the main assurance argument. 

To claim that evidence is trustworthy, we appeal to the workflow used to generate the evidence. The 
model-checking workflow involves generation of an accurate abstract model, correct configuration of the 
model-checking tool to perform appropriate analysis and qualification evidence showing that the tool 
faithfully performs the analysis required. The workflow for testing the protection mechanism involves 
generation of a sufficiently representative verification environment, generation of appropriate traceable 
test cases, correct configuration of the test tool to perform appropriate tests and qualification evidence 
showing that the tool faithfully performs the analysis required. 

To benefit from architecture-driven assurance, we would like to link these fragments together: the overall 
safety argument, arguing over derived requirements, the specific treatment of the fail-silent protection 
mechanism, the model-checking evidence assurance case and the test execution evidence assurance case. 
bƻǘ ŀƭƭ ƻŦ ǘƘŜǎŜ ƭƛƴƪǎ ŀǊŜ άǎǳǇǇƻǊǘέ ƭƛƴƪǎΤ ǘƘŜ ƭŀǎǘ ǘǿƻ Řƻ ƴƻǘ ǘƘŜƳǎŜƭǾŜǎ ŀǊƎǳŜ ǘƻǿŀǊŘǎ ǎǳǇǇƻǊǘƛƴƎ ŀ 
particular claim, but instead argue about the ability of some other evidence to support that particular 
claim. It must be possible in the argument and architecture metamodels to represent these links. An 
illustration is given in Figure 10 to put these ideas in context. 

It is worth to highlight and clarify here that the envisaged AMASS approach regarding usage of architectural 
patterns and associated argument fragments is presented and discusses in more detail in Section 2.2. The 
elaborations presented here apply in general, not only in case of architectural patterns application; 
patterns are used here as example to elaborate about the needed argument relationships. 
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Figure 10. GSN illustration of assurance links 

We propose that a fragment may therefore need to describe its top-level relationship not only as a support, 
but also as an assure: 

¶ Some element supports some external element with a contractual description of its role. For 
ŜȄŀƳǇƭŜΣ ǘƘŜ ŦǊŀƎƳŜƴǘ ŦƻǊ άŜȄǘŜǊƴŀƭ ǇǊƻǘŜŎǘƛƻƴ ǇŀǘǘŜǊƴ ŀǊƎǳƳŜƴǘέ ŎƻǳƭŘ ƘŀǾŜ ŀ ǎǘǊŀǘŜƎȅ 
άŀǊƎǳƳŜƴǘ ōȅ ŘŜǎƛƎƴέ ǘƘŀǘ ƛǘŜǊŀǘŜǎ ƻǾŜǊ ǘƘŜ ŜƭŜƳŜƴǘǎ ƻŦ ǘƘŜ ŜȄǘŜǊƴŀƭ ǇǊƻǘŜŎǘƛƻƴ ŘŜǎign and 
ǎǳǇǇƻǊǘǎ ŀƴȅ ŎƭŀƛƳ ƻŦ ǘƘŜ ŦƻǊƳ άŜȄǘŜǊƴŀƭ ǇǊƻǘŜŎǘƛƻƴ ŘŜǎƛƎƴ ƳŜŜǘǎ ǘƘŜ Ŧŀƛƭ-ǎƛƭŜƴǘ ǊŜǉǳƛǊŜƳŜƴǘέΦ 

¶ Some element assures ǎƻƳŜ ŜȄǘŜǊƴŀƭ άǎǳǇǇƻǊǘέ ŀǎǎƻŎƛŀǘƛƻƴ ǿƛǘƘ ŀ ŎƻƴǘǊŀŎǘǳŀƭ ŘŜǎŎǊƛǇǘƛƻƴ ƻŦ ƛǘǎ 
ǊƻƭŜΦ CƻǊ ŜȄŀƳǇƭŜΣ ǘƘŜ ŦǊŀƎƳŜƴǘ ŦƻǊ άǘǊǳǎǘǿƻǊǘƘȅ ƳƻŘŜƭ-cheŎƪƛƴƎέ ŎƻǳƭŘ ƘŀǾŜ ŀ ǎǘǊŀǘŜƎȅ άŀǊƎǳƳŜƴǘ 
by model-ŎƘŜŎƪƛƴƎ ǿƻǊƪŦƭƻǿέ ǘƘŀǘ ŀǎǎǳǊŜǎ ŀƴȅ ǎǘǊǳŎǘǳǊŜ ǿƛǘƘ ŀ ŎƭŀƛƳ άϑǎǘŀǘŜƳŜƴǘϒ ƛƴ ŀƭƭ 
ŎƻƴŦƛƎǳǊŀǘƛƻƴǎέ ǎǳǇǇƻǊǘŜŘ ōȅ άϑƳƻŘŜƭ-ŎƘŜŎƪƛƴƎ ŜǾƛŘŜƴŎŜϒέΦ 

The situation is further complicated when considering evidence that includes testing of an embedded 
target. In this case, the off-the-shelf analysis tool includes custom components for that specific embedded 
target. Such tools can be arranged as follows: 






































































































































































































