
This deliverable is part of a project that has received funding from the ECSEL JU under grant agreement No 692474.
This Joint Undertaking receives support from the European Unionôs Horizon 2020 research and innovation programme
and from Spain, Czech Republic, Germany, Sweden, Italy, United Kingdom and France.

ECSEL Research and Innovation actions (RIA)

AMASS
Architecture-driven, Multi-concern and Seamless Assurance and

Certification of Cyber-Physical Systems

Design of the AMASS tools and methods for
architecture-driven assurance (b)

D3.3

Work Package: WP3 Architecture-Driven Assurance

Dissemination level: PU = Public

Status: Final

Date: 30 March 2018

Responsible partner: Stefano Puri (INT)

Contact information: {stefano.puri } AT intecs.it

Document reference: AMASS_D3.3_WP3_INT_V1.0

PROPRIETARY RIGHTS STATEMENT
This document contains information, which is proprietary to the AMASS Consortium. Permission to reproduce any
content for non-commercial purposes is granted, provided that this document and the AMASS project are credited as
source.

Contributors

Reviewers

Names Organisation

Stefano Puri Intecs (INT)

Ramiro Demasi, Stefano Tonetta, Alberto Debiasi Fondazione Bruno Kessler (FBK)

Jaroslav Bendik Masaryk University (UOM)

Petr Bauch Honeywell International (HON)

Michael Soden, Sascha Baumgart Ansys Medini Technologies (KMT)

Bernhard Winkler, Helmut Martin Virtual Vehicle (VIF)

Barbara Gallina, Irfan Sljivo Mälardalen University (MDH)

Bernhard Kaiser, Behrang Monajemi, Peter Kruse Assystem Germany (B&M)

Garazi Juez, Estibaliz Amparan Tecnalia Research & Innovation (TEC)

Eugenio Parra, Jose Luis de la Vara, Gonzalo Génova,
Valentín Moreno, Elena Gallego

Universidad Carlos III de Madrid (UC3)

Luis M. Alonso, Borja López, Julio Encinas The REUSE Company (TRC)

Names Organisation

Morayo Adedjouma (Peer review)
/ƻƳƳƛǎŀǊƛŀǘ ŀ ƭΩŜƴŜǊƎƛŜ ŀǘƻƳƛǉǳŜ Ŝǘ ŀǳȄ
Energies Alternatives (CEA)

Thierry Lecomte (Peer review) Clearsy (CLS)

Jose Luis de la Vara (TC review) Universidad Carlos III de Madrid (UC3)

Cristina Martinez (Quality Manager) Tecnalia Research & Innovation (TEC)

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 3 of 120

TABLE OF CONTENTS

Executive Summary .. 7

1. Introduction (*) .. 8

2. Conceptual level ... 9
2.1 System Architecture Modelling for Assurance .. 9

2.1.1 Extended modelling of system architecture with safety aspects ...9
2.1.2 Tracing CACM with results from external safety analysis tools (*) 15
2.1.3 Arguments, Architectures and Tools .. 19
2.1.4 System Modelling Importer ... 24

2.2 Architectural Patterns for Assurance (*) ... 24
2.2.1 Library of Architectural Patterns .. 25
2.2.2 Parametrized architectures for architectural patterns.. 33

2.3 Contract-Based Assurance Composition ... 33
2.3.1 Contracts Specification .. 33
2.3.2 Reuse of Components (*)... 34
2.3.3 Contract-Based Assurance Argument Generation (*) ... 34

2.4 Activities Supporting Assurance Case (*) .. 35
2.4.1 Requirements Formalization with Ontologies .. 35
2.4.2 Requirements Formalization with Temporal Logics .. 36
2.4.3 Semantic Requirements Analysis ... 40
2.4.4 Metrics .. 43
2.4.5 Verifying Requirements against System Design .. 54
2.4.6 Design Space Exploration (*) .. 56
2.4.7 Simulation-Based Fault Injection Framework (*) .. 57
2.4.8 Model-Based Safety Analysis ... 62

2.5 Assurance Patterns for Contract-Based Design (*) .. 62
2.5.1 Assurance of Architectural Patterns ... 62
2.5.2 Assuring requirements based on OCRA results ... 65

3. Design Level (*)... 67
3.1 Functional Architecture for Architecture Driven Assurance .. 67
3.2 System Component Metamodel for Architecture-driven Assurance ... 73

3.2.1 Elaborations .. 74
3.2.2 CMMA Metamodel specification.. 75

3.3 CHESS Modelling Language .. 84

4. Way forward for the implementation (*) ... 86
4.1 Feedback from Core/P1 prototype evaluation .. 90

5. Conclusions (*) ... 91

Abbreviations and Definitions.. 92

References ... 94

Appendix A: LTL/MTL ... 97

Appendix B: Architecture-driven Assurance logical architecture (*) .. 99

Appendix C: SafeConcert metamodel... 105

Appendix D: Design patterns for fault tolerance applied to technology according to ISO 26262 110

Appendix E: Massif Metamodel ... 117

Appendix F: Document changes respect to D3.2 (*) ... 119

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 4 of 120

List of Figures

Figure 1. Meta-model of System Architecture Modelling ... 10
Figure 2. System Architecture Modelling integrated with Safety Analysis ... 11
Figure 3. System Architecture Modelling integrated with Safety Analysis and Safety Aspect 12
Figure 4. Work Products of Safety Aspects ... 13
Figure 5. Overview of the meta-models ... 14
Figure 6. Safety Core model from Medini Analyze .. 16
Figure 7. Fault Tree Analysis package from Medini Analyze .. 17
Figure 8. Diagnostic Coverage Worksheet metamodel from Medini Analyze .. 18
Figure 9. Tracing metamodel from Medini Analyze .. 19
Figure 10. GSN illustration of assurance links ... 21
Figure 11. Relationship between architectural patterns, AMASS System Component and architecture

driven assurance objectives ... 25
Figure 12. The Acceptance Voting Pattern ... 26
Figure 13. Safety architecture pattern system from [46] .. 28
Figure 14. Protected Single Channel in SysML .. 28
Figure 15. Homogeneous Duplex redundancy Pattern in SysML ... 28
Figure 16. Homogeneous Triple Modular Pattern in SysML .. 29
Figure 17. M-out-of-N Pattern (MooN) in SysML .. 29
Figure 18. Monitor-Actuator Pattern in SysML ... 29
Figure 19. Safety Executive Pattern in SysML ... 30
Figure 20. Safety architectures in IEC 61508... 31
Figure 21. System overview E-Gas Monitoring Concept [33]... 32
Figure 22. Linear Temporal Logic (LTL) boundaries within Modal Logic (ML) ... 36
Figure 23. Process of formalization of structured requirements using ForReq tool 38
Figure 24. Automatic translation general diagram - From NL to LTL.. 39
Figure 25. Requirements Analysis Example .. 41
Figure 26. Example of quality evolution wrt time for a requirements specification 52
Figure 27. Saving snapshot with the quality of the project ... 53
Figure 28. Information of the snapshot .. 53
Figure 29. Model Checking Schema .. 55
Figure 30. Sabotage Framework for Simulation-Based Fault Injection .. 58
Figure 31. Failure Type System... 59
Figure 32. Sabotage Metamodel. ... 60
Figure 33. Integration workflow: from contract-based design to the generation of saboteurs and

monitors.. 61
Figure 34. High-level assurance argument-pattern for architectural pattern contract-based assurance 63
Figure 35. An argument example of the Acceptance Voting Pattern application ... 64
Figure 36. The Acceptance Voting Pattern assumptions argument-fragment ... 64
Figure 37. Contract-driven requirement satisfaction assurance argument pattern 65
Figure 38. Contract satisfaction assurance argument pattern ... 65
Figure 39. ARTA SystemComponentSpecification and ArchitectureDrivenAssurance components 68
Figure 40. ArchitectureDrivenAssurance components provided interfaces ... 69
Figure 41. ARTA ArchitectureDrivenAsurance components and external actors/tools 70
Figure 42. Logical Components Collaboration - part1 ... 71
Figure 43. Logical Components Collaboration - part2 ... 72
Figure 44. Logical Components Collaboration ς part3 .. 73
Figure 45. BlockType .. 75
Figure 46. Composite BlockType .. 76
Figure 47. Contract .. 78

file:///D:/Users/106369/Documents/1.%20Tecnalia/Proyectos/049968_AMASS_local/SVN_AMASS_collab/02_Final_Deliverables/D3.3_Final/D3.3_Design-of-the-AMASS-tools-and-methods-for-architecture-driven-assurance-(b)_AMASS_Final.docx%23_Toc510280535
file:///D:/Users/106369/Documents/1.%20Tecnalia/Proyectos/049968_AMASS_local/SVN_AMASS_collab/02_Final_Deliverables/D3.3_Final/D3.3_Design-of-the-AMASS-tools-and-methods-for-architecture-driven-assurance-(b)_AMASS_Final.docx%23_Toc510280536

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 5 of 120

Figure 48. Contract refinement .. 78
Figure 49. System .. 80
Figure 50. Failure Behaviour .. 81
Figure 51. Artefact and assurance-related entities connections ... 82
Figure 52. Links to the executed process .. 84
Figure 53. SystemComponentSpecification internal design .. 100
Figure 54. ArchitectureDrivenAssurance component internal structure - part1, with interface

required from SystemComponentSpecification components ... 101
Figure 55. ArchitectureDrivenAssurance component internal structure ς part2, with realized

interface and interfaces required from SystemComponentSpecification components and
from AMASS WP5 and WP6 technical work packages .. 102

Figure 56. ArchitectureDrivenAssurance component internal structure ς part3, with realized
interfaces .. 103

Figure 57. ArchitectureDrivenAssurance component internal structure ς part4, with interfaces
required from external tools.. 104

Figure 58. Failure Modes and Criticality ... 105
Figure 59. Failure Behaviours ... 106
Figure 60. Input and Output Events ... 107
Figure 61. Internal Events .. 108
Figure 62. Fault-tolerance events ... 109
Figure 63. Massif meta-model.. 118

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 6 of 120

List of Tables

Table 1. Design pattern template for the Acceptance Voting Pattern .. 26
Table 2. Result of fault-tree analysis of generic design patterns .. 30
Table 3. Mapping to RSHP models .. 46
Table 4. Correctness metrics for models ... 48
Table 5. WP3 requirements coverage ... 86

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 7 of 120

Executive Summary

This deliverable, output of Task 3.2 Conceptual Approach for Architecture-driven Assurance, focuses on the
design of the architecture-driven assurance approach by elaborating the way forward identified in D3.1 [2]
and by covering the requirements identified in D2.1 [1].

The conceptual approaches, logical architecture, and meta-model supporting architecture-driven assurance
are presented in this deliverable.

Concerning the conceptual approaches, elaborations about the following functionalities focusing the
support of system assurance definition are provided:

¶ modelling of the system architecture,

¶ definition and instantiation of architectural patterns,

¶ contract-based design approach,

¶ activities supporting assurance case.

The logical architecture in charge of realizing the architecture-driven assurance on top of the AMASS
platform is illustrated by refining the initial logical model presented in D2.2 [3] and then D2.3 [8]; in
particular logical components and interfaces that will be in charge of realizing the presented approaches
have been identified.

The metamodel for system component specification originally presented in D2.2 has been also reviewed
and extended to support what has been elaborated at the conceptual level.

A way forward for the implementation is also proposed, by tracing the sections elaborating the conceptual
approaches to the requirements currently assigned to WP3 and by providing some considerations about
the current feedback received from the evaluation of the Prototype Core and Prototype P1 of the AMASS
platform.

These results, presented in this deliverable, will guide the implementation of the architecture-driven
assurance features of the AMASS prototype (Task 3.3 Implementation for Architecture-driven Assurance).

Finally, Task 3.4 Methodological Guidance for Architecture-driven Assurance will build upon the results
identified here to provide methodological guidance to the AMASS end-users for the application of the
architecture-driven assurance approach.

This deliverable represents an update of the AMASS D3.2 [7] deliverable released at M15; the sections
modified with respect to D3.2 have been marked with (*), then the details about the differences and
modifications are provided in Appendix F: Document changes respect to D3.2 (*).

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 8 of 120

1. Introduction (*)

This deliverable is the output of Task 3.2. It reports the design of the architecture-driven assurance
prototype, including its conceptual aspects and tool infrastructure. We group the functionalities provided
by the prototype into four blocks.

System Architecture Modelling for Assurance. This block contains the functionalities that are focused on
the modelling of the system architecture to support the system assurance, which are:

¶ Supporting the modelling of additional aspects (not already included in the system component
specification), related to the system architecture, that are needed for system assurance.

¶ Tracing the elements of the system architecture model to the assurance case.

¶ Generating evidence for the assurance case from the system architecture model or from the
analysis thereof.

¶ Importing the system architecture model from other tools/languages.

Architectural Patterns for Assurance. This block contains the functionalities that are focused on
architectural patterns to support system assurance, which are:

¶ Management of a library of architectural patterns.

¶ Automated application of specific architectural patterns.

¶ Generation of assurance arguments from architectural patterns application.

Contract-Based Design for Assurance. This block introduces the functionalities that support the contract-
based design of the system architecture, which provides additional arguments and evidence for system
assurance. These functionalities, also include:

¶ /ƻƴǘǊŀŎǘǎ ǎǇŜŎƛŦƛŎŀǘƛƻƴΣ ƛΦŜΦΣ ǎǇŜŎƛŦƛŎŀǘƛƻƴ ƻŦ ŎƻƳǇƻƴŜƴǘǎΩ ŀǎǎǳƳǇǘƛƻƴǎ ŀƴŘ ƎǳŀǊŀƴǘŜes.

¶ Contract-based reuse of components, i.e., a component reuse that is supported by checks on the
contracts.

¶ Generation of assurance arguments from the contract specification and validation.

Activities Supporting Assurance Case. This block contains the functionalities that are focused on enriching
the assurance case with advanced analysis to support the evidence of the assurance case. These
functionalities include:

¶ Requirements formalization into temporal logics.

¶ !ƴŀƭȅǎƛǎ ƻŦ ǊŜǉǳƛǊŜƳŜƴǘǎΩ ǎŜƳŀƴǘƛŎǎ ōŀǎŜŘ ƻn their formalization into temporal logics.

¶ Analysis of requirements based on quality metrics.

¶ Contract-based verification and analysis, i.e. exploiting contracts to verify the architectural
decomposition, to perform compositional analysis, and to analyse the safety and reliability of the
system architecture.

¶ Formal verification (model checking) of requirements on the system design.

¶ Design space exploration to compare different architectural configurations.

¶ Model-based specification of fault-injection and analysis of faulty scenarios with simulation or
model checking (model-based safety analysis).

The deliverable is structured in the following way:

¶ Section 2 provides the conceptual vision supporting the aforementioned features.

¶ Section 3 provides a logical architecture supporting the conceptual vision.

¶ Section 4 provides information related to the WP3 requirements coverage.

¶ Section 5 provides the conclusions.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 9 of 120

2. Conceptual level

This chapter builds on the way forward discussed in AMASS D3.1 [2] Section 5 while covering the WP3
requirements identified in D2.1 [1]. For each of the main topics of interest for AMASS related to
architecture-driven assurance goal, several approaches and features planned to be supported by the
AMASS tool platform are presented.

2.1 System Architecture Modelling for Assurance

In this section, the information concerning system architecture, which is important for the assurance case,
is elaborated.

2.1.1 Extended modelling of system architecture with safety aspects

In AMASS D3.1 [2] ƛǘ ƛǎ ǎǘŀǘŜŘ ǘƘŀǘΥ ά¢ƘŜ ǎȅǎǘŜƳ ŀǊŎƘƛǘŜŎǘǳǊŜ ƛǎ ƻƴŜ ƻŦ ǘƘŜ ŦƛǊǎǘ ŀǊǘŜfacts produced by the
development process and includes many design choices that should be reflected in the assurance case.
Therefore, we have to understand which elements of the system architecture are important for the
ŀǎǎǳǊŀƴŎŜ ŎŀǎŜΦέ What modelling elements are available for expressing the architecture of a technical
system and what relationships are allowed between them is defined by a meta-model.

Within the AMASS consortium, different partners have different, but in many aspects similar meta-models,
which need to be compared to get a common understanding, even if a full unification is not possible due to
existing tools.

In this section, we reflect upon the system modelling itself but also the assurance and safety analysis upon
the system and the relations between the system and its safety analysis. In addition to the connections
between system modelling and its safety aspects, which are merely the different kinds of safety analysis
and the terms used therein (e.g. fault, failure, hazard), safety mechanisms that are introduced into the
system architecture to prevent or mitigate these failures or their consequences are also considered.

2.1.1.1 Product Meta-model

In this section, we introduce a meta-model for system architecture (product) modelling and then integrate
it into an assurance framework. This integrated meta-model bridges the gap between an assurance meta-
model (e.g. the assurance meta-model described in D2.2 [3]) and a system architecture modelling meta-
model, therefore enabling a detailed definition of the system and the analysis of its dependability.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 10 of 120

refines

Meta-Modell

(technical)

Component
Port Connection

realizes

describes

subfunction

0Χ*

subcomponent

0Χ* 1..*

1Χ*

1

1Χ*

destination
source

1
1

1

0Χ*

1

allocate

Design

Decision

Argument

Argument

Argument

0Χ*

1Χ*
Requirement

Function

(Function Block)

Figure 1. Meta-model of System Architecture Modelling

Figure 1 shows the meta-model for system architecture modelling. The artefacts are grouped into two
groups, where the green-coloured group corresponds to the functional abstraction level, and the black-
coloured group corresponds to the technical abstraction level. On the abstraction level of the functional
architecture, we model the functional blocks of the system, the nominal behaviour of which is described in
detail by the requirements that should be satisfied. As a typical recommendation (e.g. from ISO 26262-9),
requirements are hierarchically organized where a requirement may be refined by a set of lower level
requirements. Accordingly, a function may be composed of several sub functional blocks in a hierarchical
way, with each functional block fulfilling the corresponding requirements.

When defining the technical architecture, the main modelling artefacts are components, which realize the
functions (in other words: functions are allocated onto components). Components are also organized in a
hierarchical way, and one component may contain several sub components. Each component may have
some Ports, which define its interface, and Ports are connected via Connections. A Connection allows
communications between components through the associated source and destination ports.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 11 of 120

Meta-Modell

(technical)

Component

Faults

Port

Failure Mode

Failure

Function

(Function Block)
Requirement

Connection

realizes

describes

leads to

subfunction

0Χ*

subcomponent

0Χ* 1..*

1Χ*

is compromised by

1

1

1Χ*

0Χ*

1

0Χ*

destination
source

1
1

1

0Χ*

1

0Χ*

is classified by

Activation

Condition
Event Occurrence Event

allocate

Design

Decision

Argument

Argument

refines

Argument

leads to

Propagation

Hypothesis

0Χ*

1Χ*

Contract

is violation of

corresponds to

is attached to

is attached to

is

classified

by

Guarantee

Assumption

Assertion

Function

(Function Block)
Requirement

Contract

Guarantee

Assumption

Assertion

Figure 2. System Architecture Modelling integrated with Safety Analysis

As shown in Figure 2, a set of Faults may be identified regarding each component as the result of safety
analysis over the technical components, which may lead to Failures during the operation of the component.
For example, a missing Connection between the controller component and the actuator component may
lead to the failure that the actuator never executes the command issued by the controller. Therefore, a
Failure is an Event, which occurs in real time during the operation of the component. Failures can be further
categorized into different Failure Modes, which are different types of Failures that are observed at the
Ports of the CƻƳǇƻƴŜƴǘ όŜΦƎΦ άƛƴǇǳǘ ǾŀƭǳŜ ƻŦ tƻǊǘ ! ƛǎ ƻǳǘ ƻŦ ǊŀƴƎŜέΣ ƻǊ άbƻ ƻǳǘǇǳǘ ŎƻƳƳŀƴŘ ƻƴ ƻǳǘǇǳǘ
tƻǊǘ . ƛǎ ƛǎǎǳŜŘ ŘŜǎǇƛǘŜ ŎƻƳƳŀƴŘ ǊŜǉǳŜǎǘ ƛǎ ǊŜŎŜƛǾŜŘ ŀǘ ƛƴǇǳǘ tƻǊǘ !έύΦ

Readers should be aware that throughout different communities and standards the terminology of fault
and failure (and sometimes other terms like error or malfunction come additionally into play) may differ, so
this meta-model should be regarded as a generic explanation of our intended proceeding and needs to be
fine-tuned and mapped to the different existing standards and tools.

Contracts and assertions are also represented in Figure 2, as green-coloured artefacts. In the context of
contract based design, Contracts are formalized requirements that a system must fulfil with the given
conditions. Contracts can be applied to both functional and technical levels. The conditions that are given
by the environment of the system are assumptions and the expected behaviours are the guarantees.
Therefore, both assumptions and guarantees can be seen as system properties (i.e. Assertions over
systems) from different perspectives. In this perspective, Failure Modes can be interpreted as those system
properties that violate the Contracts.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 12 of 120

Meta-Modell

(technical)

Component

Faults

Port

Failure Mode

Failure

Function

(Function Block)
Requirement

Connection

Safety Mechanism

realizes

describes

leads to

subfunction

0Χ*

subcomponent

0Χ* 1..*

1Χ*

is compromised by

1

1

1Χ*

0Χ*

1

0Χ*

destination
source

1
1

1

0Χ*

Argument

1

0Χ*

mitigate

is classified by

Safety Requirement

Activation

Condition
Event Occurrence Event

allocate

Design

Decision

Argument

Argument

refines

Argument

leads to

Propagation

Hypothesis

0Χ*

Safety Measure

Process Measure
Measure in other

technology

1

1Χ*

realizes

describes

Design

Decision

1Χ*

1

decomposes

Argument0Χ*

role:
guarantee

role:
assumption

Contract Assertion

is violation of

corresponds to

is attached to

is attached to

is

classified

by

Event Occurrence Event

Contract Assertion

Function

(Function Block)
Requirement

Figure 3. System Architecture Modelling integrated with Safety Analysis and Safety Aspect

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 13 of 120

Figure 3 further integrates the Safety Mechanisms (the blue-coloured group) into the meta-model.
Following the safety analysis, a safety concept (may be named differently in different industry domains) is
written to define safety measures that prevent or mitigate potential failures or their hazardous
consequences. They establish countermeasures against failures at runtime and thereby assure that finally
the overall system satisfies the Safety Requirements.

Safety measures can be divided into two different classes: process measures (e.g. development process
maturity, depth of testing, operator training) and technical measures, which can be further subdivided into
functional safety mechanisms (e.g. runtime failure diagnostics implemented in software, with the reaction
of a transition to some safe state) and measures in other technologies (e.g. a mechanical protection against
touching dangerous parts). For the technical architecture (considering electronic hardware and software),
only the safety mechanisms are of interest.

2.1.1.2 Work Products of Safety Aspects

Work Product Meta Model

Safety Case

Architecture Failure Analysis Safety Concept

FMEA FTA

mitigates all
findings of

based upon

assured by

assured by

Specification

Document

assured by

Functional

Architecture

Technical

Architecture

assured by

Figure 4. Work Products of Safety Aspects

The safety case is a compilation of the work products (usually in the form of documents) during the safety
lifecycle. As a result of the safety analysis, the safety case records the identified hazards and risks of the
system under development. It also describes how the safety measures are developed and deployed in
order to ensure that the risks are controlled and failures can be detected or prevented. As shown in Figure
4, the safety case consists of four parts:

¶ The architecture describes the system modelling, which contains both the functional and technical
architecture.

¶ Failure Analysis describes the safety analysis procedures performed based on the system
architecture in order to identify the risks and hazards and the corresponding results (for example
FMEA and FTA).

¶ The Safety Concept describes the safety measures that are required in order to mitigate the failures
found in the phase of failure analysis.

¶ The Specification Document describes the requirements of the system under development. In the
iteration after performing the safety analysis and writing the safety concept, this also includes the
safety requirements, which have been derived in the safety concept and which describe in detail
how the safety mechanisms shall behave.

The relationship between the work products of a safety case and the artefacts generated during the
process of system development and safety analysis is shown in Figure 5.

Note that, just as all parts of the meta model, the safety case part of the meta model (Figure 4 and upper
part of Figure 5) is generic and to be understood as an example. Clearly, there are more types of safety
analyses than just the two shown in the graphics (FMEA and FTA), and also the safety case consists of many

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 14 of 120

more ingredients than the ones that are shown (ISO 26262 knows as much as 122 work products, not
ŎƻǳƴǘƛƴƎ ǘƘŜ ƻǳǘŎƻƳŜǎ ƻŦ ǘƘŜ άƴƻǊƳŀƭέ ŘŜǾŜƭƻǇƳŜƴt process that may also be part of the safety case ς but
tailoring reduces and condenses the work products actually to be delivered). Which ingredients a Safety
Case has, depends on the industry domain, the kind of project and the role of a company within the supply
chain (e.g. car/airplane/plant OEM vs. Tier1 supplier vs. component supplier). Tailoring a safety process
and, accordingly, the Safety Case is a large topic on its own and addressed in AMASS at other places (e.g. by
using the tool OpenCert). The essential message of this meta model is that a link is necessary between the
process activities and their output artefacts on the one hand and the product-defining model elements in
the SysML world on the other hand: An architecture holds the system components, a requirement
specification holds the system requirements, a failure analysis holds the system failures, the Safety Concept
holds safety mechanisms, the test specification holds test cases and so on. This has to be extended and
adapted to all model elements actually used in some user-specific process setting.

The link made by the meta-model relations finally makes the argument of the safety case (or safety
assurance case) complete: on process level, the Safety Case argues that the process activities have been
carried out carefully (the HARA, the Safety Concept, etc.), and this, in turn, justifies that all hazards have
been found, and if the Safety Concept contains measures against all failures contributing to the hazards and
they have actually been implemented and verified in the product delivered, then the product can be
claimed to be safe.

Product Meta Model

(technical)

Component

Faults

Port

Failure Mode

Failure

Function

(Function Block)
Requirement

Connection

Safety

Mechanism

realizes

describes

leads to

subfunction

0Χ*

subcomponent

0Χ* 1..*

1Χ*

is compromised
by

1

1

1Χ*

0Χ*

1

0Χ*

destination
source

1
1

1

0Χ*

Argument

1

0Χ*

mitigate

is classified by

Safety

Requirement

Activation

Condition Event Occurrence Event

allocate
Design

Decision

Argument

Argument

refines

Argument

leads to

Propagation

Hypothesis

0Χ*

Safety Measure

Process Measure
Measure in other

technology

1

1Χ*

realizes

describes
Design

Decision

1Χ*

1 dekomposes

Argument0Χ*

role:
guarantee

role:
assumption

Contract Assertion

is violation of

corresponds to

is attached to

is attached to

1
0Χ*

is

classified

by

Work Product Meta Model

Safety Case

Architecture Failure Analysis Safety Concept

FMEA FTA

mitigates all
findings of

based upon

assured by

assured by

Specification

Document

assured by

Functional

Architecture

Technical

Architecture

documented in

documented in

documented indocumented in

assured by

documented in

Function

(Function Block)
Requirement

Contract Assertion

Figure 5. Overview of the meta-models

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 15 of 120

2.1.2 Tracing CACM with results from external safety analysis tools (*)

As stated in AMASS D2.2 [3], CACM is the evolution of OPENCOSS CCL (Common Certification Language)
[56] and SafeCer metamodels [11]. CACM is the union of the process-related meta-models (planned
process with EPFComposer [58] and executed process with CCL, the assurance meta-model, the evidence
meta-model and the component meta-model.

CACM should allow to trace different information, like requirements with system components, results from
safety analysis, verification reports, test cases, validation reports, and parts of the safety case; regarding
the process, CACM should allow the links between the generated work products and the executed process,
the links between the executed process and the planned process, and the links between the generated
work products and the planned process, when the executed process does not deviate from the plan.

Doing so is desirable from the assurance perspective, as it explicitly defines dependencies between
contents of different work products. It is also necessary in the context of a distributed development as
defined in ISO 26262. Thereby CACM could support a consistent tracing of activities in the development
interface agreement (DIA) as formalization of the responsibilities of customer and supplier.

Consider the example of a system that is partitioned into components, some of which a supplier is
developing. The failure modes of the components are tied directly to its functions/interfaces, meaning the
type of partitioning greatly influences the failure mode model. That scenario demands traces between
parts of different work products and possibly across company borders to preserve the logical structure of
components, functions and failure modes. Document based exchange is time consuming and error prone.
The associated costs are prohibitive to an iterative process with frequent exchange, review and testing,
making document-based exchanges an undesirable option.

For some work products, the AMASS CACM and tool infrastructure already allows to trace links to its
sections, such as in most requirements management databases. A model-based approach makes sense for
the system model but it is not feasible for many other artefacts. For example, results from safety analysis
vary between different domains such as automotive and avionics as well as with respect to security and
safety concern. It is not desirable to fit them all into a common metamodel (i.e. into the CACM); there is no
added benefit from copying the safety analysis results into the AMASS prototype if instead all related safety
analysis can be traced with each other and with CACM model elements. So, for instance, analysis results
performed by using external tools to the AMASS platform can be kept according to the metamodel
provided by the external tool and properly linked to the CACM (for instance to the executed or planned
process).

Tracing data within the AMASS prototype and to external data is part of WP5 which aims to greatly
enhance the tool interoperability of OPENCOSS. While OPENCOSS was open source and therefore open to
extension, its CDO-based approach for tool integration fell short in terms of integrating third-party tools in
a seamless manner. The goal of AMASS is to employ state of the art live collaborative editing techniques
across tool boundaries and provide methods to create traces to artefacts that are external to the platform.
Such a link-based approach is the best way to put the single source of truth principle into practice while
being flexible and driving down costs.

In this section, we discuss what type of artefacts and work product content can already be provided by
safety analysis tools such as Medini Analyze, which specializes on ISO 26262. It stores its data in well-
structured models that allow traces into every part of all models (Figure 6). Information from models
created within Medini Analyze can enrich the CACM with regard to linking sections within work products
for assurance purposes.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 16 of 120

Figure 6. Safety Core model from Medini Analyze

The type names from the safety core metamodel mostly reflect the terminology from ISO 26262 and are
therefore easily understood by safety engineers working with the AMASS prototype. The main class is
Failable, which is the abstract base class for all elements that can have failures (contained via the reference
failures). A component model such as in the SysML modelling language or the one used in the context of
AMASS can inherit from this class to receive all safety relevant properties. For example, Failable provides a
failureRate as quantified rate of the amount of failures over time.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 17 of 120

Figure 7. Fault Tree Analysis package from Medini Analyze

Figure 7 presents the fault tree model, which consists of a tree structure with various node types, mainly
events (metaclass EventNode) and gates (metaclasses LogicalGate, VotingGate, TransferGate). The
connection between nodes is realized by the abstract metaclass Connection that links two Node instances.

Each EventNode of the fault tree has a reference event to a single event, which holds all its properties.
Hence, instances of metaclass EventNode describe where an event occurs in a fault tree, while metaclass
Event defines the event itself in detail. In case of multiple occurring events, different EventNode instances
can reference the same underlying Event object. How often an event is referenced from the fault tree is
indicated by the occurrence attribute.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 18 of 120

Figure 8. Diagnostic Coverage Worksheet metamodel from Medini Analyze

The three main classes in the diagnostic coverage metamodel presented in Figure 8 are DCWorksheet,
DCComponentEntry, and DCFailureModeEntry. These classes consistently refine the structural classes of the
Failure Mode and Effect Analysis (FMEA) worksheet to add the attributes required for the Failure Mode and
Effects Diagnostics Analysis (FMEDA) Single Point Fault Metric (SPF) and Latent Fault. In detail:

¶ DCWorksheet inherits from FMEAWorksheet and adds all attributes relevant for the hardware
architectural metrics. The safety goals under consideration are linked via safetyGoal reference. Target
values from the set of goals are maintained in spfTargetValue and lmpfTargetValue. These attributes
are not derived and can be changed as known from the tool UI. As defined in ISO 26262-5, the
essential attributes for the computation of the SPF/LF metrics are available as
totalSafetyRelatedFailureRate, totalNotSafetyRelatedFailureRate, totalSpfFailureRate, and
totalLmpfFailureRate as well as the overall computed results spfMetric and lmpfMetric.

¶ A DCWorksheet contains always DCComponentEntry via the components reference.
DCComponentEntry specializes ComponentEntry from FMEA to add the attribute safetyRelated and
the derived attributes totalSpfFailureRate, totalLmpfFailureRate, spfImportancy, and lmpfImportancy.
The latter four attributes are computed based on the contained failureModes and their properties
related to the SPF/LF metrics.

¶ DCFailureModeEntry stores the main attributes required for the metric computations, i.e. spfViolation
and spfCoverage (for SPF), and lmpfViolation and lmpfCoverage (for LF). In addition, the percentage of
safe faults is accessible via safeFaultFraction. Beside these five attributes there are three derived
attributes for the various failure rate fractions, namely remainingFailureRate (after subtraction of safe
fault percentage), spfFailureRate (after incorporation of the spfCoverage), and lmpfFailureRate (after
further incorporation of the lmpfCoverage).

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 19 of 120

Lastly, we present the tracing model from Medini Analyze (Figure 9). As many traces are generated in 3rd
party tools such as requirements management databases or safety analysis tools, there will be many trace
links generated inside these tools. Since it would be tedious to duplicate those traces manually, it is
preferable to import them into the AMASS tool platform.

For these needs, in the context of WP5 (see AMASS deliverable D5.5 [9], the Capra project [59] for generic
traceability is used and adapted for the AMASS/WP3 needs. Capra comes with a dedicated metamodel for
traceability which is quite close to the one presented in Figure 9 (it can also be customized). So, Capra can
be used to support traceability links between CACM, in particular the component model, and other
assurance-related information, like results from AMASS external analysis tools.

Figure 9. Tracing metamodel from Medini Analyze

2.1.3 Arguments, Architectures and Tools

2.1.3.1 Argument Fragment Interrelationships

Requirement WP3_APL_005 indicates: "The system should be able to generate argument fragments based
on the usage of specific architectural patterns in the component model." Our objective concerns the ability
to both represent complex argument relationships and achieve a component-oriented assurance
architecture. We start with a simple example, to demonstrate the argument components and relationships
needed, and then we generalize to metamodel concepts that would need to be included.

As an example, consider a derived safety requirement that a system fails silent. This is a derived
requirement that comes from safety analysis, to ensure that when a processing component fails, it does
not produce any further output. The system designer might use an architectural pattern to meet this
requirement. For example, the design might use an independent protection mechanism whereby a safety
system can detect that a component has failed, and disconnect or override its output drive so that it cannot
affect the rest of the system.

In a safety argument, one would typically start by enumerating system hazards and showing that the list of
hazards is complete, then deriving safety requirements to mitigate those hazards, followed by arguments
to show that the system meets these safety requirements. In part, this is driven by the need to allocate
requirements among software and hardware components, so this approach seems apt for architecture-
driven assurance.

The argument has the following overall structure, starting from derived safety requirements:

¶ A claim that all derived safety requirements are met, contextualized by a specific architecture and a
specific set of derived safety requirements.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 20 of 120

¶ A subordinate claim for each derived safety requirement and applicable component, showing that
this requirement is met for this component.

¶ For a component meeting a fail-silent requirement with an independent protection mechanism, a
specific argument fragment can then be used:

o A claim C1 that the architectural pattern meets the fail-silent requirement.
o A claim C2 that the system correctly instantiates the architectural pattern.

Under claim C1, we can appeal to evidence from model-checking, for example, demonstrating that the fail-
silent protection mechanism works correctly over mode changes, power cycles, system resets and so on.

Under claim C2, we can appeal to design review for some instantiation rules. For this type of pattern, we
could also appeal to specific tests of the implementation in scenarios achieving, for example, 1-switch
coverage of transitions in the model used in claim C1.

In claim C1, we use a model-checking tool to obtain evidence about the behaviour of a model. In claim C2,
we use a test execution tool to obtain evidence about the behaviour of the software. In both cases, it is
important to show that the evidence is trustworthy. This is an argument about the ability of that evidence
to substantiate a higher-level claim, which sits alongside the main assurance argument.

To claim that evidence is trustworthy, we appeal to the workflow used to generate the evidence. The
model-checking workflow involves generation of an accurate abstract model, correct configuration of the
model-checking tool to perform appropriate analysis and qualification evidence showing that the tool
faithfully performs the analysis required. The workflow for testing the protection mechanism involves
generation of a sufficiently representative verification environment, generation of appropriate traceable
test cases, correct configuration of the test tool to perform appropriate tests and qualification evidence
showing that the tool faithfully performs the analysis required.

To benefit from architecture-driven assurance, we would like to link these fragments together: the overall
safety argument, arguing over derived requirements, the specific treatment of the fail-silent protection
mechanism, the model-checking evidence assurance case and the test execution evidence assurance case.
bƻǘ ŀƭƭ ƻŦ ǘƘŜǎŜ ƭƛƴƪǎ ŀǊŜ άǎǳǇǇƻǊǘέ ƭƛƴƪǎΤ ǘƘŜ ƭŀǎǘ ǘǿƻ Řƻ ƴƻǘ ǘƘŜƳǎŜƭǾŜǎ ŀǊƎǳŜ ǘƻǿŀǊŘǎ ǎǳǇǇƻǊǘƛƴƎ ŀ
particular claim, but instead argue about the ability of some other evidence to support that particular
claim. It must be possible in the argument and architecture metamodels to represent these links. An
illustration is given in Figure 10 to put these ideas in context.

It is worth to highlight and clarify here that the envisaged AMASS approach regarding usage of architectural
patterns and associated argument fragments is presented and discusses in more detail in Section 2.2. The
elaborations presented here apply in general, not only in case of architectural patterns application;
patterns are used here as example to elaborate about the needed argument relationships.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 21 of 120

Figure 10. GSN illustration of assurance links

We propose that a fragment may therefore need to describe its top-level relationship not only as a support,
but also as an assure:

¶ Some element supports some external element with a contractual description of its role. For
ŜȄŀƳǇƭŜΣ ǘƘŜ ŦǊŀƎƳŜƴǘ ŦƻǊ άŜȄǘŜǊƴŀƭ ǇǊƻǘŜŎǘƛƻƴ ǇŀǘǘŜǊƴ ŀǊƎǳƳŜƴǘέ ŎƻǳƭŘ ƘŀǾŜ ŀ ǎǘǊŀǘŜƎȅ
άŀǊƎǳƳŜƴǘ ōȅ ŘŜǎƛƎƴέ ǘƘŀǘ ƛǘŜǊŀǘŜǎ ƻǾŜǊ ǘƘŜ ŜƭŜƳŜƴǘǎ ƻŦ ǘƘŜ ŜȄǘŜǊƴŀƭ ǇǊƻǘŜŎǘƛƻƴ ŘŜǎign and
ǎǳǇǇƻǊǘǎ ŀƴȅ ŎƭŀƛƳ ƻŦ ǘƘŜ ŦƻǊƳ άŜȄǘŜǊƴŀƭ ǇǊƻǘŜŎǘƛƻƴ ŘŜǎƛƎƴ ƳŜŜǘǎ ǘƘŜ Ŧŀƛƭ-ǎƛƭŜƴǘ ǊŜǉǳƛǊŜƳŜƴǘέΦ

¶ Some element assures ǎƻƳŜ ŜȄǘŜǊƴŀƭ άǎǳǇǇƻǊǘέ ŀǎǎƻŎƛŀǘƛƻƴ ǿƛǘƘ ŀ ŎƻƴǘǊŀŎǘǳŀƭ ŘŜǎŎǊƛǇǘƛƻƴ ƻŦ ƛǘǎ
ǊƻƭŜΦ CƻǊ ŜȄŀƳǇƭŜΣ ǘƘŜ ŦǊŀƎƳŜƴǘ ŦƻǊ άǘǊǳǎǘǿƻǊǘƘȅ ƳƻŘŜƭ-cheŎƪƛƴƎέ ŎƻǳƭŘ ƘŀǾŜ ŀ ǎǘǊŀǘŜƎȅ άŀǊƎǳƳŜƴǘ
by model-ŎƘŜŎƪƛƴƎ ǿƻǊƪŦƭƻǿέ ǘƘŀǘ ŀǎǎǳǊŜǎ ŀƴȅ ǎǘǊǳŎǘǳǊŜ ǿƛǘƘ ŀ ŎƭŀƛƳ άϑǎǘŀǘŜƳŜƴǘϒ ƛƴ ŀƭƭ
ŎƻƴŦƛƎǳǊŀǘƛƻƴǎέ ǎǳǇǇƻǊǘŜŘ ōȅ άϑƳƻŘŜƭ-ŎƘŜŎƪƛƴƎ ŜǾƛŘŜƴŎŜϒέΦ

The situation is further complicated when considering evidence that includes testing of an embedded
target. In this case, the off-the-shelf analysis tool includes custom components for that specific embedded
target. Such tools can be arranged as follows:

