
This deliverable is part of a project that has received funding from the ECSEL JU under grant agreement No 692474.
This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme
and from Spain, Czech Republic, Germany, Sweden, Italy, United Kingdom and France.

ECSEL Research and Innovation actions (RIA)

AMASS
Architecture-driven, Multi-concern and Seamless Assurance and

Certification of Cyber-Physical Systems

Design of the AMASS tools and methods for
architecture-driven assurance (b)

D3.3

Work Package: WP3 Architecture-Driven Assurance

Dissemination level: PU = Public

Status: Final

Date: 30 March 2018

Responsible partner: Stefano Puri (INT)

Contact information: {stefano.puri } AT intecs.it

Document reference: AMASS_D3.3_WP3_INT_V1.0

PROPRIETARY RIGHTS STATEMENT
This document contains information, which is proprietary to the AMASS Consortium. Permission to reproduce any
content for non-commercial purposes is granted, provided that this document and the AMASS project are credited as
source.

Contributors

Reviewers

Names Organisation

Stefano Puri Intecs (INT)

Ramiro Demasi, Stefano Tonetta, Alberto Debiasi Fondazione Bruno Kessler (FBK)

Jaroslav Bendik Masaryk University (UOM)

Petr Bauch Honeywell International (HON)

Michael Soden, Sascha Baumgart Ansys Medini Technologies (KMT)

Bernhard Winkler, Helmut Martin Virtual Vehicle (VIF)

Barbara Gallina, Irfan Sljivo Mälardalen University (MDH)

Bernhard Kaiser, Behrang Monajemi, Peter Kruse Assystem Germany (B&M)

Garazi Juez, Estibaliz Amparan Tecnalia Research & Innovation (TEC)

Eugenio Parra, Jose Luis de la Vara, Gonzalo Génova,
Valentín Moreno, Elena Gallego

Universidad Carlos III de Madrid (UC3)

Luis M. Alonso, Borja López, Julio Encinas The REUSE Company (TRC)

Names Organisation

Morayo Adedjouma (Peer review)
Commisariat a l’energie atomique et aux
Energies Alternatives (CEA)

Thierry Lecomte (Peer review) Clearsy (CLS)

Jose Luis de la Vara (TC review) Universidad Carlos III de Madrid (UC3)

Cristina Martinez (Quality Manager) Tecnalia Research & Innovation (TEC)

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 3 of 120

TABLE OF CONTENTS

Executive Summary .. 7

1. Introduction (*) .. 8

2. Conceptual level ... 9
2.1 System Architecture Modelling for Assurance .. 9

2.1.1 Extended modelling of system architecture with safety aspects ...9
2.1.2 Tracing CACM with results from external safety analysis tools (*) 15
2.1.3 Arguments, Architectures and Tools .. 19
2.1.4 System Modelling Importer ... 24

2.2 Architectural Patterns for Assurance (*) ... 24
2.2.1 Library of Architectural Patterns .. 25
2.2.2 Parametrized architectures for architectural patterns.. 33

2.3 Contract-Based Assurance Composition ... 33
2.3.1 Contracts Specification .. 33
2.3.2 Reuse of Components (*)... 34
2.3.3 Contract-Based Assurance Argument Generation (*) ... 34

2.4 Activities Supporting Assurance Case (*) .. 35
2.4.1 Requirements Formalization with Ontologies .. 35
2.4.2 Requirements Formalization with Temporal Logics .. 36
2.4.3 Semantic Requirements Analysis ... 40
2.4.4 Metrics .. 43
2.4.5 Verifying Requirements against System Design .. 54
2.4.6 Design Space Exploration (*) .. 56
2.4.7 Simulation-Based Fault Injection Framework (*) .. 57
2.4.8 Model-Based Safety Analysis ... 62

2.5 Assurance Patterns for Contract-Based Design (*) .. 62
2.5.1 Assurance of Architectural Patterns ... 62
2.5.2 Assuring requirements based on OCRA results ... 65

3. Design Level (*)... 67
3.1 Functional Architecture for Architecture Driven Assurance .. 67
3.2 System Component Metamodel for Architecture-driven Assurance ... 73

3.2.1 Elaborations .. 74
3.2.2 CMMA Metamodel specification.. 75

3.3 CHESS Modelling Language .. 84

4. Way forward for the implementation (*) ... 86
4.1 Feedback from Core/P1 prototype evaluation .. 90

5. Conclusions (*) ... 91

Abbreviations and Definitions.. 92

References ... 94

Appendix A: LTL/MTL ... 97

Appendix B: Architecture-driven Assurance logical architecture (*) .. 99

Appendix C: SafeConcert metamodel... 105

Appendix D: Design patterns for fault tolerance applied to technology according to ISO 26262 110

Appendix E: Massif Metamodel ... 117

Appendix F: Document changes respect to D3.2 (*) ... 119

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 4 of 120

List of Figures

Figure 1. Meta-model of System Architecture Modelling ... 10
Figure 2. System Architecture Modelling integrated with Safety Analysis ... 11
Figure 3. System Architecture Modelling integrated with Safety Analysis and Safety Aspect 12
Figure 4. Work Products of Safety Aspects ... 13
Figure 5. Overview of the meta-models ... 14
Figure 6. Safety Core model from Medini Analyze .. 16
Figure 7. Fault Tree Analysis package from Medini Analyze .. 17
Figure 8. Diagnostic Coverage Worksheet metamodel from Medini Analyze .. 18
Figure 9. Tracing metamodel from Medini Analyze .. 19
Figure 10. GSN illustration of assurance links ... 21
Figure 11. Relationship between architectural patterns, AMASS System Component and architecture

driven assurance objectives ... 25
Figure 12. The Acceptance Voting Pattern ... 26
Figure 13. Safety architecture pattern system from [46] .. 28
Figure 14. Protected Single Channel in SysML .. 28
Figure 15. Homogeneous Duplex redundancy Pattern in SysML ... 28
Figure 16. Homogeneous Triple Modular Pattern in SysML .. 29
Figure 17. M-out-of-N Pattern (MooN) in SysML .. 29
Figure 18. Monitor-Actuator Pattern in SysML ... 29
Figure 19. Safety Executive Pattern in SysML ... 30
Figure 20. Safety architectures in IEC 61508... 31
Figure 21. System overview E-Gas Monitoring Concept [33]... 32
Figure 22. Linear Temporal Logic (LTL) boundaries within Modal Logic (ML) ... 36
Figure 23. Process of formalization of structured requirements using ForReq tool 38
Figure 24. Automatic translation general diagram - From NL to LTL.. 39
Figure 25. Requirements Analysis Example .. 41
Figure 26. Example of quality evolution wrt time for a requirements specification 52
Figure 27. Saving snapshot with the quality of the project ... 53
Figure 28. Information of the snapshot .. 53
Figure 29. Model Checking Schema .. 55
Figure 30. Sabotage Framework for Simulation-Based Fault Injection .. 58
Figure 31. Failure Type System... 59
Figure 32. Sabotage Metamodel. ... 60
Figure 33. Integration workflow: from contract-based design to the generation of saboteurs and

monitors.. 61
Figure 34. High-level assurance argument-pattern for architectural pattern contract-based assurance 63
Figure 35. An argument example of the Acceptance Voting Pattern application ... 64
Figure 36. The Acceptance Voting Pattern assumptions argument-fragment ... 64
Figure 37. Contract-driven requirement satisfaction assurance argument pattern 65
Figure 38. Contract satisfaction assurance argument pattern ... 65
Figure 39. ARTA SystemComponentSpecification and ArchitectureDrivenAssurance components 68
Figure 40. ArchitectureDrivenAssurance components provided interfaces ... 69
Figure 41. ARTA ArchitectureDrivenAsurance components and external actors/tools 70
Figure 42. Logical Components Collaboration - part1 ... 71
Figure 43. Logical Components Collaboration - part2 ... 72
Figure 44. Logical Components Collaboration – part3 .. 73
Figure 45. BlockType .. 75
Figure 46. Composite BlockType .. 76
Figure 47. Contract .. 78

file:///D:/Users/106369/Documents/1.%20Tecnalia/Proyectos/049968_AMASS_local/SVN_AMASS_collab/02_Final_Deliverables/D3.3_Final/D3.3_Design-of-the-AMASS-tools-and-methods-for-architecture-driven-assurance-(b)_AMASS_Final.docx%23_Toc510280535
file:///D:/Users/106369/Documents/1.%20Tecnalia/Proyectos/049968_AMASS_local/SVN_AMASS_collab/02_Final_Deliverables/D3.3_Final/D3.3_Design-of-the-AMASS-tools-and-methods-for-architecture-driven-assurance-(b)_AMASS_Final.docx%23_Toc510280536

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 5 of 120

Figure 48. Contract refinement .. 78
Figure 49. System .. 80
Figure 50. Failure Behaviour .. 81
Figure 51. Artefact and assurance-related entities connections ... 82
Figure 52. Links to the executed process .. 84
Figure 53. SystemComponentSpecification internal design .. 100
Figure 54. ArchitectureDrivenAssurance component internal structure - part1, with interface

required from SystemComponentSpecification components ... 101
Figure 55. ArchitectureDrivenAssurance component internal structure – part2, with realized

interface and interfaces required from SystemComponentSpecification components and
from AMASS WP5 and WP6 technical work packages .. 102

Figure 56. ArchitectureDrivenAssurance component internal structure – part3, with realized
interfaces .. 103

Figure 57. ArchitectureDrivenAssurance component internal structure – part4, with interfaces
required from external tools.. 104

Figure 58. Failure Modes and Criticality ... 105
Figure 59. Failure Behaviours ... 106
Figure 60. Input and Output Events ... 107
Figure 61. Internal Events .. 108
Figure 62. Fault-tolerance events ... 109
Figure 63. Massif meta-model.. 118

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 6 of 120

List of Tables

Table 1. Design pattern template for the Acceptance Voting Pattern .. 26
Table 2. Result of fault-tree analysis of generic design patterns .. 30
Table 3. Mapping to RSHP models .. 46
Table 4. Correctness metrics for models ... 48
Table 5. WP3 requirements coverage ... 86

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 7 of 120

Executive Summary

This deliverable, output of Task 3.2 Conceptual Approach for Architecture-driven Assurance, focuses on the
design of the architecture-driven assurance approach by elaborating the way forward identified in D3.1 [2]
and by covering the requirements identified in D2.1 [1].

The conceptual approaches, logical architecture, and meta-model supporting architecture-driven assurance
are presented in this deliverable.

Concerning the conceptual approaches, elaborations about the following functionalities focusing the
support of system assurance definition are provided:

• modelling of the system architecture,

• definition and instantiation of architectural patterns,

• contract-based design approach,

• activities supporting assurance case.

The logical architecture in charge of realizing the architecture-driven assurance on top of the AMASS
platform is illustrated by refining the initial logical model presented in D2.2 [3] and then D2.3 [8]; in
particular logical components and interfaces that will be in charge of realizing the presented approaches
have been identified.

The metamodel for system component specification originally presented in D2.2 has been also reviewed
and extended to support what has been elaborated at the conceptual level.

A way forward for the implementation is also proposed, by tracing the sections elaborating the conceptual
approaches to the requirements currently assigned to WP3 and by providing some considerations about
the current feedback received from the evaluation of the Prototype Core and Prototype P1 of the AMASS
platform.

These results, presented in this deliverable, will guide the implementation of the architecture-driven
assurance features of the AMASS prototype (Task 3.3 Implementation for Architecture-driven Assurance).

Finally, Task 3.4 Methodological Guidance for Architecture-driven Assurance will build upon the results
identified here to provide methodological guidance to the AMASS end-users for the application of the
architecture-driven assurance approach.

This deliverable represents an update of the AMASS D3.2 [7] deliverable released at M15; the sections
modified with respect to D3.2 have been marked with (*), then the details about the differences and
modifications are provided in Appendix F: Document changes respect to D3.2 (*).

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 8 of 120

1. Introduction (*)

This deliverable is the output of Task 3.2. It reports the design of the architecture-driven assurance
prototype, including its conceptual aspects and tool infrastructure. We group the functionalities provided
by the prototype into four blocks.

System Architecture Modelling for Assurance. This block contains the functionalities that are focused on
the modelling of the system architecture to support the system assurance, which are:

• Supporting the modelling of additional aspects (not already included in the system component
specification), related to the system architecture, that are needed for system assurance.

• Tracing the elements of the system architecture model to the assurance case.

• Generating evidence for the assurance case from the system architecture model or from the
analysis thereof.

• Importing the system architecture model from other tools/languages.

Architectural Patterns for Assurance. This block contains the functionalities that are focused on
architectural patterns to support system assurance, which are:

• Management of a library of architectural patterns.

• Automated application of specific architectural patterns.

• Generation of assurance arguments from architectural patterns application.

Contract-Based Design for Assurance. This block introduces the functionalities that support the contract-
based design of the system architecture, which provides additional arguments and evidence for system
assurance. These functionalities, also include:

• Contracts specification, i.e., specification of components’ assumptions and guarantees.

• Contract-based reuse of components, i.e., a component reuse that is supported by checks on the
contracts.

• Generation of assurance arguments from the contract specification and validation.

Activities Supporting Assurance Case. This block contains the functionalities that are focused on enriching
the assurance case with advanced analysis to support the evidence of the assurance case. These
functionalities include:

• Requirements formalization into temporal logics.

• Analysis of requirements’ semantics based on their formalization into temporal logics.

• Analysis of requirements based on quality metrics.

• Contract-based verification and analysis, i.e. exploiting contracts to verify the architectural
decomposition, to perform compositional analysis, and to analyse the safety and reliability of the
system architecture.

• Formal verification (model checking) of requirements on the system design.

• Design space exploration to compare different architectural configurations.

• Model-based specification of fault-injection and analysis of faulty scenarios with simulation or
model checking (model-based safety analysis).

The deliverable is structured in the following way:

• Section 2 provides the conceptual vision supporting the aforementioned features.

• Section 3 provides a logical architecture supporting the conceptual vision.

• Section 4 provides information related to the WP3 requirements coverage.

• Section 5 provides the conclusions.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 9 of 120

2. Conceptual level

This chapter builds on the way forward discussed in AMASS D3.1 [2] Section 5 while covering the WP3
requirements identified in D2.1 [1]. For each of the main topics of interest for AMASS related to
architecture-driven assurance goal, several approaches and features planned to be supported by the
AMASS tool platform are presented.

2.1 System Architecture Modelling for Assurance

In this section, the information concerning system architecture, which is important for the assurance case,
is elaborated.

2.1.1 Extended modelling of system architecture with safety aspects

In AMASS D3.1 [2] it is stated that: “The system architecture is one of the first artefacts produced by the
development process and includes many design choices that should be reflected in the assurance case.
Therefore, we have to understand which elements of the system architecture are important for the
assurance case.” What modelling elements are available for expressing the architecture of a technical
system and what relationships are allowed between them is defined by a meta-model.

Within the AMASS consortium, different partners have different, but in many aspects similar meta-models,
which need to be compared to get a common understanding, even if a full unification is not possible due to
existing tools.

In this section, we reflect upon the system modelling itself but also the assurance and safety analysis upon
the system and the relations between the system and its safety analysis. In addition to the connections
between system modelling and its safety aspects, which are merely the different kinds of safety analysis
and the terms used therein (e.g. fault, failure, hazard), safety mechanisms that are introduced into the
system architecture to prevent or mitigate these failures or their consequences are also considered.

2.1.1.1 Product Meta-model

In this section, we introduce a meta-model for system architecture (product) modelling and then integrate
it into an assurance framework. This integrated meta-model bridges the gap between an assurance meta-
model (e.g. the assurance meta-model described in D2.2 [3]) and a system architecture modelling meta-
model, therefore enabling a detailed definition of the system and the analysis of its dependability.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 10 of 120

refines

Meta-Modell

(technical)

Component
Port Connection

realizes

describes

subfunction

0…*

subcomponent

0…* 1..*

1…*

1

1…*

destination
source

1
1

1

0…*

1

allocate

Design

Decision

Argument

Argument

Argument

0…*

1…*
Requirement

Function

(Function Block)

Figure 1. Meta-model of System Architecture Modelling

Figure 1 shows the meta-model for system architecture modelling. The artefacts are grouped into two
groups, where the green-coloured group corresponds to the functional abstraction level, and the black-
coloured group corresponds to the technical abstraction level. On the abstraction level of the functional
architecture, we model the functional blocks of the system, the nominal behaviour of which is described in
detail by the requirements that should be satisfied. As a typical recommendation (e.g. from ISO 26262-9),
requirements are hierarchically organized where a requirement may be refined by a set of lower level
requirements. Accordingly, a function may be composed of several sub functional blocks in a hierarchical
way, with each functional block fulfilling the corresponding requirements.

When defining the technical architecture, the main modelling artefacts are components, which realize the
functions (in other words: functions are allocated onto components). Components are also organized in a
hierarchical way, and one component may contain several sub components. Each component may have
some Ports, which define its interface, and Ports are connected via Connections. A Connection allows
communications between components through the associated source and destination ports.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 11 of 120

Meta-Modell

(technical)

Component

Faults

Port

Failure Mode

Failure

Function

(Function Block)
Requirement

Connection

realizes

describes

leads to

subfunction

0…*

subcomponent

0…* 1..*

1…*

is compromised by

1

1

1…*

0…*

1

0…*

destination
source

1
1

1

0…*

1

0…*

is classified by

Activation

Condition
Event Occurrence Event

allocate

Design

Decision

Argument

Argument

refines

Argument

leads to

Propagation

Hypothesis

0…*

1…*

Contract

is violation of

corresponds to

is attached to

is attached to

is

classified

by

Guarantee

Assumption

Assertion

Function

(Function Block)
Requirement

Contract

Guarantee

Assumption

Assertion

Figure 2. System Architecture Modelling integrated with Safety Analysis

As shown in Figure 2, a set of Faults may be identified regarding each component as the result of safety
analysis over the technical components, which may lead to Failures during the operation of the component.
For example, a missing Connection between the controller component and the actuator component may
lead to the failure that the actuator never executes the command issued by the controller. Therefore, a
Failure is an Event, which occurs in real time during the operation of the component. Failures can be further
categorized into different Failure Modes, which are different types of Failures that are observed at the
Ports of the Component (e.g. “input value of Port A is out of range”, or “No output command on output
Port B is issued despite command request is received at input Port A”).

Readers should be aware that throughout different communities and standards the terminology of fault
and failure (and sometimes other terms like error or malfunction come additionally into play) may differ, so
this meta-model should be regarded as a generic explanation of our intended proceeding and needs to be
fine-tuned and mapped to the different existing standards and tools.

Contracts and assertions are also represented in Figure 2, as green-coloured artefacts. In the context of
contract based design, Contracts are formalized requirements that a system must fulfil with the given
conditions. Contracts can be applied to both functional and technical levels. The conditions that are given
by the environment of the system are assumptions and the expected behaviours are the guarantees.
Therefore, both assumptions and guarantees can be seen as system properties (i.e. Assertions over
systems) from different perspectives. In this perspective, Failure Modes can be interpreted as those system
properties that violate the Contracts.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 12 of 120

Meta-Modell

(technical)

Component

Faults

Port

Failure Mode

Failure

Function

(Function Block)
Requirement

Connection

Safety Mechanism

realizes

describes

leads to

subfunction

0…*

subcomponent

0…* 1..*

1…*

is compromised by

1

1

1…*

0…*

1

0…*

destination
source

1
1

1

0…*

Argument

1

0…*

mitigate

is classified by

Safety Requirement

Activation

Condition
Event Occurrence Event

allocate

Design

Decision

Argument

Argument

refines

Argument

leads to

Propagation

Hypothesis

0…*

Safety Measure

Process Measure
Measure in other

technology

1

1…*

realizes

describes

Design

Decision

1…*

1

decomposes

Argument0…*

role:
guarantee

role:
assumption

Contract Assertion

is violation of

corresponds to

is attached to

is attached to

is

classified

by

Event Occurrence Event

Contract Assertion

Function

(Function Block)
Requirement

Figure 3. System Architecture Modelling integrated with Safety Analysis and Safety Aspect

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 13 of 120

Figure 3 further integrates the Safety Mechanisms (the blue-coloured group) into the meta-model.
Following the safety analysis, a safety concept (may be named differently in different industry domains) is
written to define safety measures that prevent or mitigate potential failures or their hazardous
consequences. They establish countermeasures against failures at runtime and thereby assure that finally
the overall system satisfies the Safety Requirements.

Safety measures can be divided into two different classes: process measures (e.g. development process
maturity, depth of testing, operator training) and technical measures, which can be further subdivided into
functional safety mechanisms (e.g. runtime failure diagnostics implemented in software, with the reaction
of a transition to some safe state) and measures in other technologies (e.g. a mechanical protection against
touching dangerous parts). For the technical architecture (considering electronic hardware and software),
only the safety mechanisms are of interest.

2.1.1.2 Work Products of Safety Aspects

Work Product Meta Model

Safety Case

Architecture Failure Analysis Safety Concept

FMEA FTA

mitigates all
findings of

based upon

assured by

assured by

Specification

Document

assured by

Functional

Architecture

Technical

Architecture

assured by

Figure 4. Work Products of Safety Aspects

The safety case is a compilation of the work products (usually in the form of documents) during the safety
lifecycle. As a result of the safety analysis, the safety case records the identified hazards and risks of the
system under development. It also describes how the safety measures are developed and deployed in
order to ensure that the risks are controlled and failures can be detected or prevented. As shown in Figure
4, the safety case consists of four parts:

• The architecture describes the system modelling, which contains both the functional and technical
architecture.

• Failure Analysis describes the safety analysis procedures performed based on the system
architecture in order to identify the risks and hazards and the corresponding results (for example
FMEA and FTA).

• The Safety Concept describes the safety measures that are required in order to mitigate the failures
found in the phase of failure analysis.

• The Specification Document describes the requirements of the system under development. In the
iteration after performing the safety analysis and writing the safety concept, this also includes the
safety requirements, which have been derived in the safety concept and which describe in detail
how the safety mechanisms shall behave.

The relationship between the work products of a safety case and the artefacts generated during the
process of system development and safety analysis is shown in Figure 5.

Note that, just as all parts of the meta model, the safety case part of the meta model (Figure 4 and upper
part of Figure 5) is generic and to be understood as an example. Clearly, there are more types of safety
analyses than just the two shown in the graphics (FMEA and FTA), and also the safety case consists of many

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 14 of 120

more ingredients than the ones that are shown (ISO 26262 knows as much as 122 work products, not
counting the outcomes of the “normal” development process that may also be part of the safety case – but
tailoring reduces and condenses the work products actually to be delivered). Which ingredients a Safety
Case has, depends on the industry domain, the kind of project and the role of a company within the supply
chain (e.g. car/airplane/plant OEM vs. Tier1 supplier vs. component supplier). Tailoring a safety process
and, accordingly, the Safety Case is a large topic on its own and addressed in AMASS at other places (e.g. by
using the tool OpenCert). The essential message of this meta model is that a link is necessary between the
process activities and their output artefacts on the one hand and the product-defining model elements in
the SysML world on the other hand: An architecture holds the system components, a requirement
specification holds the system requirements, a failure analysis holds the system failures, the Safety Concept
holds safety mechanisms, the test specification holds test cases and so on. This has to be extended and
adapted to all model elements actually used in some user-specific process setting.

The link made by the meta-model relations finally makes the argument of the safety case (or safety
assurance case) complete: on process level, the Safety Case argues that the process activities have been
carried out carefully (the HARA, the Safety Concept, etc.), and this, in turn, justifies that all hazards have
been found, and if the Safety Concept contains measures against all failures contributing to the hazards and
they have actually been implemented and verified in the product delivered, then the product can be
claimed to be safe.

Product Meta Model

(technical)

Component

Faults

Port

Failure Mode

Failure

Function

(Function Block)
Requirement

Connection

Safety

Mechanism

realizes

describes

leads to

subfunction

0…*

subcomponent

0…* 1..*

1…*

is compromised
by

1

1

1…*

0…*

1

0…*

destination
source

1
1

1

0…*

Argument

1

0…*

mitigate

is classified by

Safety

Requirement

Activation

Condition Event Occurrence Event

allocate
Design

Decision

Argument

Argument

refines

Argument

leads to

Propagation

Hypothesis

0…*

Safety Measure

Process Measure
Measure in other

technology

1

1…*

realizes

describes
Design

Decision

1…*

1 dekomposes

Argument0…*

role:
guarantee

role:
assumption

Contract Assertion

is violation of

corresponds to

is attached to

is attached to

1
0…*

is

classified

by

Work Product Meta Model

Safety Case

Architecture Failure Analysis Safety Concept

FMEA FTA

mitigates all
findings of

based upon

assured by

assured by

Specification

Document

assured by

Functional

Architecture

Technical

Architecture

documented in

documented in

documented indocumented in

assured by

documented in

Function

(Function Block)
Requirement

Contract Assertion

Figure 5. Overview of the meta-models

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 15 of 120

2.1.2 Tracing CACM with results from external safety analysis tools (*)

As stated in AMASS D2.2 [3], CACM is the evolution of OPENCOSS CCL (Common Certification Language)
[56] and SafeCer metamodels [11]. CACM is the union of the process-related meta-models (planned
process with EPFComposer [58] and executed process with CCL, the assurance meta-model, the evidence
meta-model and the component meta-model.

CACM should allow to trace different information, like requirements with system components, results from
safety analysis, verification reports, test cases, validation reports, and parts of the safety case; regarding
the process, CACM should allow the links between the generated work products and the executed process,
the links between the executed process and the planned process, and the links between the generated
work products and the planned process, when the executed process does not deviate from the plan.

Doing so is desirable from the assurance perspective, as it explicitly defines dependencies between
contents of different work products. It is also necessary in the context of a distributed development as
defined in ISO 26262. Thereby CACM could support a consistent tracing of activities in the development
interface agreement (DIA) as formalization of the responsibilities of customer and supplier.

Consider the example of a system that is partitioned into components, some of which a supplier is
developing. The failure modes of the components are tied directly to its functions/interfaces, meaning the
type of partitioning greatly influences the failure mode model. That scenario demands traces between
parts of different work products and possibly across company borders to preserve the logical structure of
components, functions and failure modes. Document based exchange is time consuming and error prone.
The associated costs are prohibitive to an iterative process with frequent exchange, review and testing,
making document-based exchanges an undesirable option.

For some work products, the AMASS CACM and tool infrastructure already allows to trace links to its
sections, such as in most requirements management databases. A model-based approach makes sense for
the system model but it is not feasible for many other artefacts. For example, results from safety analysis
vary between different domains such as automotive and avionics as well as with respect to security and
safety concern. It is not desirable to fit them all into a common metamodel (i.e. into the CACM); there is no
added benefit from copying the safety analysis results into the AMASS prototype if instead all related safety
analysis can be traced with each other and with CACM model elements. So, for instance, analysis results
performed by using external tools to the AMASS platform can be kept according to the metamodel
provided by the external tool and properly linked to the CACM (for instance to the executed or planned
process).

Tracing data within the AMASS prototype and to external data is part of WP5 which aims to greatly
enhance the tool interoperability of OPENCOSS. While OPENCOSS was open source and therefore open to
extension, its CDO-based approach for tool integration fell short in terms of integrating third-party tools in
a seamless manner. The goal of AMASS is to employ state of the art live collaborative editing techniques
across tool boundaries and provide methods to create traces to artefacts that are external to the platform.
Such a link-based approach is the best way to put the single source of truth principle into practice while
being flexible and driving down costs.

In this section, we discuss what type of artefacts and work product content can already be provided by
safety analysis tools such as Medini Analyze, which specializes on ISO 26262. It stores its data in well-
structured models that allow traces into every part of all models (Figure 6). Information from models
created within Medini Analyze can enrich the CACM with regard to linking sections within work products
for assurance purposes.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 16 of 120

Figure 6. Safety Core model from Medini Analyze

The type names from the safety core metamodel mostly reflect the terminology from ISO 26262 and are
therefore easily understood by safety engineers working with the AMASS prototype. The main class is
Failable, which is the abstract base class for all elements that can have failures (contained via the reference
failures). A component model such as in the SysML modelling language or the one used in the context of
AMASS can inherit from this class to receive all safety relevant properties. For example, Failable provides a
failureRate as quantified rate of the amount of failures over time.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 17 of 120

Figure 7. Fault Tree Analysis package from Medini Analyze

Figure 7 presents the fault tree model, which consists of a tree structure with various node types, mainly
events (metaclass EventNode) and gates (metaclasses LogicalGate, VotingGate, TransferGate). The
connection between nodes is realized by the abstract metaclass Connection that links two Node instances.

Each EventNode of the fault tree has a reference event to a single event, which holds all its properties.
Hence, instances of metaclass EventNode describe where an event occurs in a fault tree, while metaclass
Event defines the event itself in detail. In case of multiple occurring events, different EventNode instances
can reference the same underlying Event object. How often an event is referenced from the fault tree is
indicated by the occurrence attribute.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 18 of 120

Figure 8. Diagnostic Coverage Worksheet metamodel from Medini Analyze

The three main classes in the diagnostic coverage metamodel presented in Figure 8 are DCWorksheet,
DCComponentEntry, and DCFailureModeEntry. These classes consistently refine the structural classes of the
Failure Mode and Effect Analysis (FMEA) worksheet to add the attributes required for the Failure Mode and
Effects Diagnostics Analysis (FMEDA) Single Point Fault Metric (SPF) and Latent Fault. In detail:

• DCWorksheet inherits from FMEAWorksheet and adds all attributes relevant for the hardware
architectural metrics. The safety goals under consideration are linked via safetyGoal reference. Target
values from the set of goals are maintained in spfTargetValue and lmpfTargetValue. These attributes
are not derived and can be changed as known from the tool UI. As defined in ISO 26262-5, the
essential attributes for the computation of the SPF/LF metrics are available as
totalSafetyRelatedFailureRate, totalNotSafetyRelatedFailureRate, totalSpfFailureRate, and
totalLmpfFailureRate as well as the overall computed results spfMetric and lmpfMetric.

• A DCWorksheet contains always DCComponentEntry via the components reference.
DCComponentEntry specializes ComponentEntry from FMEA to add the attribute safetyRelated and
the derived attributes totalSpfFailureRate, totalLmpfFailureRate, spfImportancy, and lmpfImportancy.
The latter four attributes are computed based on the contained failureModes and their properties
related to the SPF/LF metrics.

• DCFailureModeEntry stores the main attributes required for the metric computations, i.e. spfViolation
and spfCoverage (for SPF), and lmpfViolation and lmpfCoverage (for LF). In addition, the percentage of
safe faults is accessible via safeFaultFraction. Beside these five attributes there are three derived
attributes for the various failure rate fractions, namely remainingFailureRate (after subtraction of safe
fault percentage), spfFailureRate (after incorporation of the spfCoverage), and lmpfFailureRate (after
further incorporation of the lmpfCoverage).

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 19 of 120

Lastly, we present the tracing model from Medini Analyze (Figure 9). As many traces are generated in 3rd
party tools such as requirements management databases or safety analysis tools, there will be many trace
links generated inside these tools. Since it would be tedious to duplicate those traces manually, it is
preferable to import them into the AMASS tool platform.

For these needs, in the context of WP5 (see AMASS deliverable D5.5 [9], the Capra project [59] for generic
traceability is used and adapted for the AMASS/WP3 needs. Capra comes with a dedicated metamodel for
traceability which is quite close to the one presented in Figure 9 (it can also be customized). So, Capra can
be used to support traceability links between CACM, in particular the component model, and other
assurance-related information, like results from AMASS external analysis tools.

Figure 9. Tracing metamodel from Medini Analyze

2.1.3 Arguments, Architectures and Tools

2.1.3.1 Argument Fragment Interrelationships

Requirement WP3_APL_005 indicates: "The system should be able to generate argument fragments based
on the usage of specific architectural patterns in the component model." Our objective concerns the ability
to both represent complex argument relationships and achieve a component-oriented assurance
architecture. We start with a simple example, to demonstrate the argument components and relationships
needed, and then we generalize to metamodel concepts that would need to be included.

As an example, consider a derived safety requirement that a system fails silent. This is a derived
requirement that comes from safety analysis, to ensure that when a processing component fails, it does
not produce any further output. The system designer might use an architectural pattern to meet this
requirement. For example, the design might use an independent protection mechanism whereby a safety
system can detect that a component has failed, and disconnect or override its output drive so that it cannot
affect the rest of the system.

In a safety argument, one would typically start by enumerating system hazards and showing that the list of
hazards is complete, then deriving safety requirements to mitigate those hazards, followed by arguments
to show that the system meets these safety requirements. In part, this is driven by the need to allocate
requirements among software and hardware components, so this approach seems apt for architecture-
driven assurance.

The argument has the following overall structure, starting from derived safety requirements:

• A claim that all derived safety requirements are met, contextualized by a specific architecture and a
specific set of derived safety requirements.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 20 of 120

• A subordinate claim for each derived safety requirement and applicable component, showing that
this requirement is met for this component.

• For a component meeting a fail-silent requirement with an independent protection mechanism, a
specific argument fragment can then be used:

o A claim C1 that the architectural pattern meets the fail-silent requirement.
o A claim C2 that the system correctly instantiates the architectural pattern.

Under claim C1, we can appeal to evidence from model-checking, for example, demonstrating that the fail-
silent protection mechanism works correctly over mode changes, power cycles, system resets and so on.

Under claim C2, we can appeal to design review for some instantiation rules. For this type of pattern, we
could also appeal to specific tests of the implementation in scenarios achieving, for example, 1-switch
coverage of transitions in the model used in claim C1.

In claim C1, we use a model-checking tool to obtain evidence about the behaviour of a model. In claim C2,
we use a test execution tool to obtain evidence about the behaviour of the software. In both cases, it is
important to show that the evidence is trustworthy. This is an argument about the ability of that evidence
to substantiate a higher-level claim, which sits alongside the main assurance argument.

To claim that evidence is trustworthy, we appeal to the workflow used to generate the evidence. The
model-checking workflow involves generation of an accurate abstract model, correct configuration of the
model-checking tool to perform appropriate analysis and qualification evidence showing that the tool
faithfully performs the analysis required. The workflow for testing the protection mechanism involves
generation of a sufficiently representative verification environment, generation of appropriate traceable
test cases, correct configuration of the test tool to perform appropriate tests and qualification evidence
showing that the tool faithfully performs the analysis required.

To benefit from architecture-driven assurance, we would like to link these fragments together: the overall
safety argument, arguing over derived requirements, the specific treatment of the fail-silent protection
mechanism, the model-checking evidence assurance case and the test execution evidence assurance case.
Not all of these links are “support” links; the last two do not themselves argue towards supporting a
particular claim, but instead argue about the ability of some other evidence to support that particular
claim. It must be possible in the argument and architecture metamodels to represent these links. An
illustration is given in Figure 10 to put these ideas in context.

It is worth to highlight and clarify here that the envisaged AMASS approach regarding usage of architectural
patterns and associated argument fragments is presented and discusses in more detail in Section 2.2. The
elaborations presented here apply in general, not only in case of architectural patterns application;
patterns are used here as example to elaborate about the needed argument relationships.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 21 of 120

Figure 10. GSN illustration of assurance links

We propose that a fragment may therefore need to describe its top-level relationship not only as a support,
but also as an assure:

• Some element supports some external element with a contractual description of its role. For
example, the fragment for “external protection pattern argument” could have a strategy
“argument by design” that iterates over the elements of the external protection design and
supports any claim of the form “external protection design meets the fail-silent requirement”.

• Some element assures some external “support” association with a contractual description of its
role. For example, the fragment for “trustworthy model-checking” could have a strategy “argument
by model-checking workflow” that assures any structure with a claim “{statement} in all
configurations” supported by “{model-checking evidence}”.

The situation is further complicated when considering evidence that includes testing of an embedded
target. In this case, the off-the-shelf analysis tool includes custom components for that specific embedded
target. Such tools can be arranged as follows:

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 22 of 120

• An off-the-shelf part, containing facilities for source code analysis, build system interception, data
collection and data processing;

• A custom part, known as an integration, containing specific configuration settings, scripts and build
system and test system modifications to coordinate the off-the-shelf tools.

By using the RapiCover tool1, a coverage analysis for critical software from Rapita Systems, a tool
qualification kit is offered, which is itself made of two parts:

• The off-the-shelf kit, giving evidence that the off-the-shelf facilities operate correctly in a specific
range of configurations called the qualification scope.

• The custom kit, known as an integration qualification, containing review results, a specific test
program and expected results from that program. The user must follow the instructions in the
integration qualification report to obtain actual results from executing that test program on his
own target, and then compare those with the expected results. Additionally, the off-the-shelf kit
and the integration qualification report both contain conditions of use that limit the user's use of
the tool or require that the user performs some additional manual process steps.

These two elements, the associated qualification test configuration, the test evidence, the conditions of use
and the user’s own process steps must plug in under tool qualification using appropriate links, to provide
the required level of assurance that the evidence really supports the claim. If there are specific
development assurance levels involved, then this relationship should also be checked, perhaps by providing
assurance levels and qualification levels as attributes of the various elements in the argument.

2.1.3.2 Evidence Reuse

We expect that, among the user's safety materials there will be some consideration of tool qualification, in
DO-178C for example, there are specific entries in the Plan for Software Aspect of Certification (PSAC)
relating to such considerations (objective 11.1g). This gives rise to a potentially reusable body of evidence
with associated argument, comprising the coverage run configuration, the coverage results, the
justification review status for coverage holes, the generic qualification kit documentation, the integration-
specific qualification documentation, the tool configuration used during the integration test, the
integration test result and the comparison between the integration test result and the expected result.

Hence, for the tool user, we must consider:

• how does the AMASS user relate the generic kit documentation pack to the safety argument?

• how does the AMASS user control and perhaps automate execution of the integration qualification
test?

• how does the AMASS user provide evidence links between the tool qualification part of the safety
argument, the development process and the conditions of use in the generic qualification kit and
the integration qualification report?

• how does the AMASS user use the comparison of the expected and actual results in the integration
qualification kit to the tool qualification part of the safety argument?

At Rapita Systems, we have applied some of the above considerations to the design of the input and output
interfaces for the RapiCover coverage tool. For each of the above scenarios, the interaction with AMASS
imposes some constraint on that interface that must be addressed in the design.

1 https://www.rapitasystems.com/products/rapicover

https://www.rapitasystems.com/products/rapicover

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 23 of 120

2.1.3.3 Testing context

The user must be able to characterize the test run in terms of what components are being tested and what
verification environment is being used. For example, the user may end up with four pieces of structural
coverage evidence:

• structural coverage of the operating system and drivers from unit testing on the target with test
applications;

• structural coverage of the application on a host simulation environment from a system test suite;

• structural coverage of selected parts of the application running dedicated unit tests designed to hit
error-handling code that cannot normally be triggered;

• justifications and analyses for each coverage hole that was not exercised during the testing.

The user will need to refer to these items to argue that structural coverage objectives have been satisfied
(DO-178C, table A-4). The argument should also substantiate several related claims about the evidence:

1. that the configuration of the software and hardware used in the tests matches the configuration
being submitted for certification;

2. that the unit testing of the operating system and drivers complies with reusable software
component criteria (e.g. AC20-148);

3. that the justifications and analyses are complete per their process;
4. that the qualification test was completed for the test environment(s) used;
5. that the integration was reviewed per defined integration review processes.

Depending on the user's argumentation strategy, there may be associated claims here about the
traceability between the test evidence and the requirements, or that type of claim may be presented in a
different argument.

For RapiCover, an additional concern is how exactly the user will provide the overall configuration
information to the tool so that it can be embedded within the generated structural coverage evidence. We
already have a system of tagging build identifiers throughout the process, so the investigation here would
start with trying to extend that facility. This does raise two design issues, which we have started to address:

• To supply external configuration information at the start of the build to attach to the results, we

hook into ongoing work to provide a central configuration file for a Rapita Verification Suite2 (RVS)
integration. We have designed this system to be extensible at run-time by wrapping the static
integration configuration with additional runtime information. We will create appropriate
configuration options for additional configuration information or references.

• We are also experimenting with ways of tracking corresponding data throughout the integration,
especially in cases of incremental rebuilds of the software under test. We will need to take this into
account in the design, so that we can track advanced configuration information without making the
on-target tracking excessively complex.

2.1.3.4 Model-based tagging

The user's tools or processes may insert traceability tags into the source code to identify where they come
from in higher-level artefacts such as models or requirements. The coverage tool should include facilities to
extract these tags to associate the tested code and the structural coverage results with those artefacts.
These tags could take the form of a convention for identifiers in the code, use of attributes, use of pragmas,
formatted comments in the code, or some external information associating identifiers with parts of source
files.

For RapiCover, the aim at this stage is to provide flexible scripting to allow the user to handle a specific
scheme, rather than trying to match RapiCover directly to a particular model-based tool environment. Such

2 RVS (Rapita Verification Suite) is a tool suite to verify the timing performance and test effectiveness of critical real-
time embedded systems (https://www.rapitasystems.com/products/rvs)

https://www.rapitasystems.com/products/rvs

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 24 of 120

scripting should be able to access the source code structures and surrounding comments as well as reading
structured file data such as JSON or XML. The extracted identifiers can then be attached to the
corresponding coverage data and exported or queried by other tools when extracting the coverage
information.

2.1.3.5 Qualification kit

We expect that the AMASS CACM ManagedArtifact::CitableElement (see Chapter 3.2.2.5) follows the
OPENCOSS Evidence metamodel's use of the Resource class, providing the ability to link to a specific file as
a document containing supporting evidence for a claim made in an argument. (Note: it may also be useful
to provide some facility to automatically check that the document is the declared document, by querying
its content for metadata per the declared format and checking against the content of the Artefact instance
in the model, but this might not be within the scope of the project).

If the AMASS toolset can control the deployment and execution of software with associated tests, it could
also provide for execution of the integration qualification test. We typically ship a custom procedure that
the user should follow to obtain the result and check that it conforms to the expected result of the
integration qualification test. We envisage creating an off-the-shelf procedure to fit within AMASS evidence
management that comes with the corresponding scripting and argument structures to show that the
integration is in a valid configuration. However, there will still be some need for user interaction. For
example, the user typically needs to rerun this check after moving lab equipment involved in the on-target
testing; this is not a situation that we expect the AMASS infrastructure will be able to detect.

2.1.4 System Modelling Importer

The system architecture can play a fundamental role in the assurance of the system. Therefore, the AMASS
platform must be able to define the system architecture with built-in functionalities and to import the
system architecture from other modelling tools. The System Component Specification is a core component
of the AMASS platform, which allows to specify the system architecture in SysML. The Architecture-Driven
Assurance component of the AMASS platform will have a System Modelling Importer subcomponent that
will take care of importing existing models from other languages/tools. For example, it will import models

from OCRA3 and will automatically create the CHESS diagrams for the model. The importer will make sure
that the import will preserve the semantics of the original model. In particular, it will configure the time
model and the type of composition (synchronous vs. asynchronous) based on the semantics of the original
model. It will restrict the functionalities when the import is not possible due to non-supported features
(e.g., non-supported data types).

2.2 Architectural Patterns for Assurance (*)

Design patterns were proposed in [36] by the architect Christopher Alexander in order to establish a
common solution to recurring design problems. This approach helps designer and system architect when
choosing suitable solutions for commonly recurring design problems. Furthermore, design patterns lead to
remarkable benefits and they can be applied for different purposes (c.f. Figure 11). Through applying this
solution, component reuse is more easily achieved. Moreover, it facilitates design space exploration
process to trade-off between different properties, creates automatic system configurations from system
models and generates automatic code avoiding the introduction of systematic faults. In brief, this concept
might be very useful to support the design of safety-critical systems.

3 http://ocra.fbk.eu/

http://ocra.fbk.eu/

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 25 of 120

Figure 11. Relationship between architectural patterns, AMASS System Component and architecture driven assurance
objectives

Designing the architecture of a safety-critical system implies analysing different safety tactics in order to
decide the most suitable safety concept based on dependability, certification and cost requirements.

As previously mentioned, a design pattern presents the solution to a recurring design problem in a
consistent and coherent manner. Taking into account that several functions and sub-systems are common
to different vehicle or aircraft models, the interest of applying component and safety artefacts reuse is
considerably increasing. The use of design patterns emerges as a viable solution to address the
aforementioned issue. By doing so, the safety of a system such as AUTOSAR or IMA can be achieved in a
modular manner. Those patterns might be developed by means of different architecture modelling
languages such as OMG SysML at the system level.

2.2.1 Library of Architectural Patterns

2.2.1.1 Design Patterns: general structure

In this section, the proposed design pattern template is introduced which includes the following parts:

• Pattern Name: define a name which describes the pattern in a univocal way.

• Other well-known names: this item refers to other names with which the design pattern can be
known in different domains of application or standards.

• Intent/Context: define in which context the pattern is used. For example, define if the pattern is
recommended for a specific safety-critical domain.

• Problem: description of the problem addressed by the design pattern.

• Solution/Pattern Structure: the solution to the problem under consideration. Main elements of the
patterns are described.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 26 of 120

• Consequences: define the implication or consequences of using this pattern. This section explains
both the positive and negative implications of using the design pattern.

• Implementation: set of points that should be taken under consideration when implementing the
pattern. Language dependent.

• PatternAssumptions: the contract assumptions related to the design pattern.

• PatternGuarantees the contract guarantees associated to the design pattern.

A remarkable feature is how contracts can be associated to architectural patterns. Having a contract
associated to a specific architectural pattern allows deriving some argumentation fragment automatically.
Furthermore, the information regarding the implication of using this pattern is collected in a form of
assumption/guarantee (i.e. PatternAssumption and PatternGuarantee). Even if the field of design pattern is
large, AMASS focuses on applying its usage on safety-critical systems. Hence, the development of fault
tolerance design patterns and its usage for different technologies (also known as technological patterns)
are some of the addressed AMASS objectives.

To understand how the design patterns are constituted, the following lines introduce the so-called
Acceptance Voting Pattern [35] (cf. Figure 12 and Table 1) example. This design pattern is a hybrid software
fault tolerance method aiming at increasing the reliability of the standard N-version programming
approach.

Figure 12. The Acceptance Voting Pattern

Table 1. Design pattern template for the Acceptance Voting Pattern

Pattern Name Acceptance Voting Pattern

Other well-known
names

Intent/Context This pattern is suitable to be applied when:

1. Due to safety reasons, tolerance of software faults is required (i.e. acceptance
test).

2. High reliability of the system’s output is required (several software versions)

3. The correctness of the results delivered by the diverse software versions can
be checked by an acceptance test.

4. The development of diverse software versions is possible regardless
additional development costs.

Problem Software faults shall be tolerated to achieve safety and reliability requirements.

Solution/Pattern
Structure

The Acceptance Voting Pattern (AV) is a hybrid pattern representing an extension
of the N-version programming approach by combining this approach with the
acceptance test used in the recovery block approach. (cf. Figure 12).

Consequences 1. A high dependency on the initial specification which may propagate faults to
all versions and effort of developing N diverse software versions.

2. The problem of dependent faults in all N software versions is less critical than

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 27 of 120

in the original N-version programming approach.

Implementation Hybrid patter combining the idea of N-version programming and fault detection
using an acceptance test.

1. The acceptance test should be carefully designed to assure the quality of the
acceptance test and to able to detect most of the possible software faults.

2. The success of the pattern depends on the level of the quality of the diversity
between the N versions to avoid common failures between different versions.

3. The voting technique must be implemented by:
- Majority voting
- Plurality voting
- Consensus voting
- Maximum Likelihood Voting
- Adaptive Voting

PatternAssumptions 1. The majority voting technique is used in the voter software component.
2. The failures in the different versions are statically independent.
3. The different versions have the same probability of failure (f) and the same

reliability (Ri = R).
4. The diverse software versions in this pattern are executed in parallel, ideally

on N independent hardware devices. Execution time of the acceptance test
and the voter is negligible.

5. The independent versions followed by the acceptance test and voting
algorithm are executed sequentially on a single hardware.

PatternGuarantees 1. The probability that an output passes the test is equal to: P{T} = RPTP + (1− R)
PFP

2. The execution time of this pattern is "slightly" equal to single version
software.

3. The time of execution will increase by N times of a single version.

As previously mentioned, among different design patterns, the ones addressing fault tolerance require a
special attention in the safety-critical domain. Here, architectural patterns are considered safety measures
such as fault detection or redundancy. Such an architectural pattern will be associated with a mechanism to
apply it to existing system architecture. For example, a redundancy pattern will be applied to a component
by duplicating the component and adding a voter; a communication protection pattern will be applied to a
pair of communicating components by adding encoding and decoding subcomponents for the sender and
receiver.

2.2.1.2 Fault Tolerance Patterns

Some of the most remarkable design patterns are the ones adopted in the design of safety-critical systems.
Figure 13 tackles the most common architectural patterns for fault tolerance which will be part of a library
in AMASS. This catalogue includes a set of hardware and software design patterns which cover common
design problems such as handling of random and systematic faults, safety monitoring, and sequence
control [46]. For instance, this library will be composed of the following patterns: Protected Single Channel
(see Figure 14), Homogeneous Duplex Redundancy (see Figure 15), Homogeneous Triple Modular (see
Figure 16), M-out-of-N (see Figure 17), Monitor-Actuator (see Figure 18) and Safety Executive (Figure 19).

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 28 of 120

Figure 13. Safety architecture pattern system from [46]

Figure 14. Protected Single Channel in SysML

Figure 15. Homogeneous Duplex redundancy Pattern in SysML

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 29 of 120

Figure 16. Homogeneous Triple Modular Pattern in SysML

Figure 17. M-out-of-N Pattern (MooN) in SysML

Figure 18. Monitor-Actuator Pattern in SysML

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 30 of 120

Figure 19. Safety Executive Pattern in SysML

Matos et. Al [45] performed a fault tree analysis of each of the generic design patterns resulting in the
following results (cf. Table 2):

Table 2. Result of fault-tree analysis of generic design patterns

Design Pattern Availability Integrity

Protected Single Channel 3.10E-4 3.00E-5

Homogeneous Duplex Redundancy
without fail safe state

9.61E-8 6.00E-5

Homogeneous Duplex Redundancy
with defined fail safe state

9.61E-8 9.00E-10

Heterogeneous Duplex Redundancy Same values that Homogeneous duplex redundancy applies

Triple Modular Redundancy Pattern
(TMR)

2.98E-11 2.70E-9

Monitor-Actuator Pattern (ma) 3.40E-4 6.00E-9

Safety Executive 1.58E-7 3.00E-5

That information can be stored as part of PatternGuarantees which has been previously defined within the
proposed design pattern template.

The designer is expected to combine the generic design patterns in order to successfully reach the required
dependability/safety level.

2.2.1.3 Relation to standards

Fault-tolerant patterns are recommended by different safety standards. When choosing a pattern, it would
be important to know which standards recommend such pattern. This information can be stored within the
design pattern template and added to the assurance argument. It is therefore important to collect it in the
library of patterns.

For example, the IEC 61508 functional standard also recommends different safety architectures. Figure 20
depicts some of the most remarkable safety architecture or architectural patterns to reach the required
level of safety and availability. Furthermore, it illustrates how metrics such as average probability of
dangerous failure on demand (PFDavg) are calculated depending on the selected architecture.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 31 of 120

Figure 20. Safety architectures in IEC 61508

Regarding the automotive domain, ISO 26262 [34] is the relevant functional safety standard. The Appendix
D: Design patterns for fault tolerance applied to technology according to ISO 26262 of this document
collects the information of ISO 26262 Part 5 - “Product development at the hardware level”. In Annex D
“Evaluation of the diagnostic coverage”, chapter D.2 “Overview of techniques for embedded diagnostic
self-tests” a safety mechanism is described which is related to the fault tolerance patterns introduced in
chapter 2.2.1.2.

The Standardized E-Gas Monitoring Concept or 3-Level Safety Monitoring Pattern (3-LSM) (cf. Figure 21) for
Gasoline and Diesel Engine Control Unit [33] is in the automotive domain a well-established safety
architecture for drive by wire systems. The E-Gas Monitoring Concept is based on a 3-Level Monitoring
Pattern. The system overview is presented in Figure 21.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 32 of 120

Figure 21. System overview E-Gas Monitoring Concept [33]

The first level is called function level, which contains the control functions. It also includes component
monitoring and input-/output-variable diagnostics. If a fault is detected, the level 1 controls the system
fault reaction.

The second level monitors the function level and is called function monitoring level. It detects the defective
process of level 1, e.g. by diverse calculation or estimation of the output-values and applying range checks
to level 1 values. In case of detected faults, level 2 is either able to apply referring reactions by itself or it
initiates a reaction carried out by level 1.

The third level, the controller monitoring level, monitors the controller for its integrity. The monitoring
module can be seen as an independent part, e.g. an application-specific integrated circuit (ASIC), a
watchdog, or another controller are frequently requesting specific answers to questions, which guarantee a
proper functioning of the controller.

Safety-concepts for common-purpose applications in the automotive domain are derived from the E-Gas
monitoring concept for gasoline and diesel engine control unit.

At the same time, the aforementioned design patterns can be applied w.r.t. different technologies like
analogue and digital I/O, processing units or non-volatile memory. When doing so, these patterns are
known as technological patterns.

Standards can be used to complete the information contained in a form of PatternAssumption and
PatternGuarantee. For instance, the specific safety mechanisms described in ISO 26262-5 Annex D
(evaluation of the diagnostic coverage) can be considered as technological patterns to obtain a certain
degree of diagnostic coverage (PatternGuarantee) where the described notes are a certain number of
assumptions (PatternAssumption). The table in Appendix D: Design patterns for fault tolerance applied to
technology according to ISO 26262, depicts how the relationship between general design patterns for fault
tolerance (architectural patterns) are related to technology and a specific functional safety standard. For
example, by applying HW redundancy by means of a lock step (1oo2D architectural pattern applied to
processor technology), a high diagnostic coverage is guaranteed assuming that it depends on the quality of
redundancy and that common mode failures can reduce diagnostic coverage. For more information,
patterns for fault tolerance applied to technology according to ISO 26262 can be found in Appendix D.
AMASS will develop a meta-model defining a new formalism for describing patterns which will consider

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 33 of 120

generic architectural or fault tolerance patterns together with its relation to technology and functional
safety standards.

2.2.2 Parametrized architectures for architectural patterns

Architectural patterns can be implemented by supporting the definition and instantiation of a parametrized
architecture. Here we propose to use the notion defined by FBK within the project CITADEL (see deliverable

D3.1 of CITADEL4). A parametrized architecture is an architecture in which the set of components, ports,
connections, and attributes depends on the values of some parameters. For example, a system in a
parametrized architecture has static attribute n, an array p of n Boolean attributes, an array a of n
subcomponents of type A and an array b of n subcomponents of type B; each component of type A has an
integer attribute m and an array q of m output ports and each component of type B has an integer attribute
m and an array q of m input ports; the system has a connection from a[i].q to b[i].q if p[i] is true for every i
between 0 and n-1.

A configuration of a parametrized architecture is given by assignment to all parameters. For example, a
configuration for the above-mentioned parametrized architecture can be n=2, p[0]=true, p[1]=false,
a[0].m=1, b[0].m=1, a[1].m=1, b[1].m=1. Given a configuration, one can instantiate the parametrized
architecture with the given parameter values obtaining a standard architecture.

A configuration constraint is a constraint over the parameters that restrict the valid configurations to those
parameter values that satisfy the constraint. For example, in the above parametrized architecture, we can
consider the constraint for all i, 0<=i<n, a[i]=b[i].m. Note that this constraint is satisfied by the configuration
example described above.

Parametrized architecture can be used as model for an architectural pattern. It can be also used to
formalize specific architectures prescribed by some standards. For example, in the railways, the ETCS define
the structure that is at the basis of the interoperability between on-board and trackside systems; in the
space, the PUS defines the telemetry/telecommands that are exchanged between on-board and ground
systems. An architectural pattern in this case can be predefined and instantiated by setting the values of
specific parameters according to the application needs.

2.2.2.1 Employment in AMASS

CHESS will be extended to support the specification and instantiation of parametrized architectures. SysML
part associations with multiplicity different from 1 will represent arrays of subcomponents and multiplicity
* will represent a symbolic number of components. Parameters will be declared as attributes of block.
Constraint blocks will be used to define parametrized connections and to constrain further the value of
parameters. OCRA and the translation from CHESS to OCRA will be extended as well to support
parametrized architectures so that it will be possible to analyse the architecture in different configurations.

2.3 Contract-Based Assurance Composition

2.3.1 Contracts Specification

A contract specifies the assumption and guarantee of a component. Its specification takes as input the
component interface and generates two formal properties, which are respectively the assumption and the
guarantee. Therefore, the contract specification is intrinsically connected to the property specification (see
Section 2.4.2).

The component interfaces define the elements (component ports) that can be used to form the
assumptions and guarantees. The Architecture-Driven Assurance component of the AMASS platform will

4 http://www.citadel-project.org

http://www.citadel-project.org/

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 34 of 120

have a Contract-Based Design subcomponent to provide standard advanced editing features such as syntax
highlighting, auto-completion for contracts.

The Contract-Based Design subcomponent will interact with external tools such as OCRA to produce
evidence of the correctness of the system architecture based on the contract specification (including
contracts validation, contracts refinement, compositional model checking, and contract-based fault-tree
generation); see also Chapter 2.4.3.2.

2.3.2 Reuse of Components (*)

The ultimate goal of contract-based design is to allow for compositional reasoning, stepwise refinement,
and a principled reuse of components that are already pre-designed, or designed independently. This

approach has been adopted also in the SafeCer ARTEMIS project5 to exploit contracts to enable a
compositional certification and reuse of pre-qualified components.

In this context, the behavioural model of a component is verified to satisfy the contract associated to that
component. In order to be reused, the behavioural model must also be compatible with the environment
of the component provided by the system design. We propose to exploit the contract specification to
ensure that the component implementation is compatible with any environment satisfying the assumption
of the contract.

2.3.3 Contract-Based Assurance Argument Generation (*)

The bases of assurance cases are requirements. The goal of an assurance case argument is to explain how
the supporting evidence satisfies the requirements. Component contracts are tightly coupled with the
requirements allocated to those components and the evidence supporting such contracts. Reuse of safety-
relevant components is incomplete without reuse of the accompanying evidence and arguments. We have
defined during SafeCer and SYNOPSIS [53] projects a component meta-model to capture the relation of the
contracts, evidence and the requirements such that assurance argument-fragments can be generated by
automatically instantiating the pre-established argument patterns from the system models compliant with
the component meta-model [52]. The meta-model uses strong and weak contracts to support reuse by
allowing for more fine-grained association of assurance information with the contract specification.
Contract checking using OCRA does not support distinction on strong and weak contracts. Hence such
contracts need to be first translated into appropriate format for the contract checking. Since the contract
refinement and validation checks on such translated contracts do not offer all the information needed
about the weak contracts for the argument-generation, additional checks need to be performed on the
weak contract specifications.

MDH plans to contribute to developing the user interface for capturing the strong and weak contracts and
the associated information on the user level as described in the component meta-model. Then we plan to
define the translation of the captured information to the OCRA format such that it is possible to get from
OCRA all the necessary information to perform the argument-pattern instantiation from the contracts and
the associated information. Besides the refinement and validation checks on the translated contracts,
OCRA results should also include validation checks of the weak contract specification such that it is possible
to identify which weak contracts are satisfied (i.e., their assumptions are fulfilled) in the context of the
current system.

Further details about assurance patterns for contract-based design are provided in Chapter 2.5.

5 https://artemis-ia.eu/project/40-nsafecer.html

https://artemis-ia.eu/project/40-nsafecer.html

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 35 of 120

2.4 Activities Supporting Assurance Case (*)

2.4.1 Requirements Formalization with Ontologies

2.4.1.1 Ontology as Specification Language

The system engineers need to have considerable knowledge and experience in the domain in order to
define the system requirements and design the system architecture. They also need to have clear vision
about the ultimate result of the development effort that will raise from the implementation of their system
architecture and requirements. This section provides yet another example, how the system architecture
and requirement authoring activities can be based on an ontology and what benefits that brings (e.g. the
ontology can be used as a unified consistent language).

The ontology is perceived as a kind of specification language, which offers the user:

• A list of textual expressions (names of types/sorts/classes of things, names of individual
things/values/parameters/constants, names of processes, names of relations, possibly
supplemented with corresponding definitions of these concepts and bound to examples of contexts
in which they occur) tightly related to (stemming from) the application domain. Such list of symbols
is sometimes called the signature. The signature helps to suppress the ambiguity of the text, e.g. by
limiting the usage of several synonyms for the same thing, which is okay when stylistic issues are
important, but which is undesirable from an engineering point of view. The symbols of the
signature together with the symbols of the logical operations like conjunction, negation, etc. of the
chosen logic represent the constituent blocks of formal system specifications.

• The possible compositions of the lower-level expressions into higher-level expressions and even
into the whole sentences. These potential compositions are inscribed in the diagrammatic structure
of the underlying ontology captured in the UML. When the sentences are created, the user
traverses appropriate continuous paths in the UML diagrams from one concept (class) to another
concept via the existing connections (associations, generalizations, aggregations) and composes the
names of classes and relations encountered along the way into a sentence.

2.4.1.2 Employment in AMASS

The basic structure of the process to apply ontology in the system architecture creation and requirement
authoring and formalization can be summarized in the following steps:

1. Create the (UML) ontology.

2. Write a (tentative, sketchy) informal system architecture and requirement.

3. For the most important notions of the informal system architecture and requirement, find the
corresponding terms in the ontology.

4. Select the most appropriate paths in the ontology graph, which connect/include the important
notions found in the previous step.

5. Compose meaningful sentences by concatenating the names of the elements (classes, objects,
relations) traversed along the selected paths.

6. Repeat the steps 2 – 5 for all informal artefacts.

This approach is also applicable when the goal is to improve the quality of the current system architecture
or requirements and rewrite them in a more clear and consistent form. In that case, the step 2 does not
involve writing of new parts of system architecture or requirements, but taking the existing artefacts from
their last iteration.

If we consider an extreme but desirable case that a new system’s architecture is just a composition of
reused components that have been developed separately around different ontologies, it is obvious that the
ontology of the new and more complex system should be some composition of the simpler ontologies of its

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 36 of 120

subsystems. Therefore, for the development of Cyber-Physical Systems it is highly desirable to have
appropriate means of gluing ontologies together to obtain ontologies that are more complex.

2.4.2 Requirements Formalization with Temporal Logics

Both requirement authoring supported with domain ontology and requirements formalization increases
the quality of requirements and improves the capacity later to verify compliance to these requirements. In
the case of requirements formalization, the benefits that this process brings are automatic formal
verification, guaranteed verifiability, and the removal of ambiguity among requirements.

2.4.2.1 Temporal Logics as Specification Language

Linear Temporal Logic (LTL) first introduced by Pnueli [14] is more and more used in the Requirements
Engineering to validate and verify requirements. LTL is a Modal Temporal logic, within the boundaries of
Model Logic (ML) (see Figure 22), with operators or words that refer to time, which is represented linear
and discrete, allowing, thus, formality, accuracy and unambiguity. With LTL it is possible to represent
several modes, such as:

• Safety: to make sure that something bad will never happen.

• Liveness: to make sure that something good will happen.

• Fairness or correct equity in the distribution of resources.

• Reachability or proper access to certain state or resource.

• Deadlock freedom or no blockings.

Figure 22. Linear Temporal Logic (LTL) boundaries within Modal Logic (ML)

More formally, linear temporal logics (or LTLs for short) is an extension of classical logic including the
following temporal operators: X φ (in the next moment in time φ is true), F φ (eventually φ is true), G φ
(always in the future φ is true), φ U ψ (ψ is true at some moment in the future, and until ψ becomes true,
φ is true). From these temporal modalities, various other operators can be derived such as a weak version
of φ U ψ, denoted W.

The satisfiability problem for LTL is to decide, given an LTL formula φ, if there exists a model for which φ
holds. Several techniques for determining satisfiability of LTL have been developed: tableau-based methods
(e.g., [16], [17]), temporal resolution (e.g., [19][20]), and reduction to model checking (e.g., [18]).

In general, one of the tasks of the Requirements Analysis is to check the consistency of a given set of
requirements. Such check can be usually automated by employing some consistency checking tool.

For example, if we assume that the requirements are expressed using LTL formulas, then the problem of
checking consistency can be reduced to a model checking problem and one of several existing model
checking tools can be employed.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 37 of 120

An important extension of LTL is the version in which every future temporal operator has a dual past
operator. So, “Y p” means in the previous time point “p” holds (and the current one is not the initial
timepoint), “O p” means once in the past “p” held, “H p” means historically (always in the past) “p” held, “p
S q” means “q” was true in the past and since then “p” remained true.

Metric Temporal Logic (MTL) is an extension of LTL where temporal operators can constrain the distance
between two time points. So, for example “F [a,b] p” means that “p” will be true in the future in a time
point which is between “a” and “b” time units from now. There are many variants of MTL. For example,
Event-Clock Temporal Logic is a variant in which only the next occurrence of a state satisfying a property
can be constrained. For example, “► [a,b] p” means that the next time point in the future where “p” holds
is between “a” and “b” time units from now.

An important aspect of the formal semantics of models and temporal logics is the model of time. For
discrete-events systems, the time is seen as a discrete sequence of time points. In real-time and hybrid
systems, the domain of time is given by the real numbers and may be strictly or weakly monotonic (also
called super-dense): time always increases or it does not decrease but instantaneous changes/events are
also considered.

OCRA provides an English expressions as alternative to express future and past temporal operators and
event-clock operators: so “F p” can be written also as “in the future p”, “p S q” can be written as “p since
q”, “► [a,b] p” can be written as “time_until(p)>=a and time_until(p)<=b”.

2.4.2.2 Formalization with ForReq

In some aerospace domains, e.g. Flight Controls, Flight Management Systems, Display and Graphics, the
Honeywell requirements are written in a structured and restricted way to improve their quality. Yet these
restrictions are not sufficient to guarantee machine readability and the subsequent automatic verification.
The requirements language needs to be further restricted to be unambiguous and to have clear semantics,
before a machine could read such.

Honeywell internal tool ForReq [22] allows requirement authoring based on a grammar for structured
English requirements that serves two separate purposes. For the requirements already written that
conform to this grammar, ForReq allows automatic translation into Linear Temporal Logic (LTL) and thus
automatic verification. Yet, more importantly, the machine readability can be enforced for new
requirements by the use of auto-completion. This new functionality suggests the requirements engineer
the set of possible words to continue the requirements definition process. Thus, the requirements
engineers save effort that would be needed for writing twice each of the requirements, i.e. the human
readable version for stakeholders and the machine-readable version for verification.

In the case requirements do not use exact artefacts (variables or states) from the system (for example
some system requirement are prohibited to contain such link), the ForReq tool now guides the user to
create mapping from artefacts in requirements to the corresponding artefacts in the system. Moreover,
requirements defining mapping between variable names and its textual descriptions used in requirements
are supported to automate fully the process. These requirements are also verified and any inconsistency is
reported to be fixed by the user.

However, the user has to specify the exact timing of each requirement, i.e. whether the effects shall
happen immediately or in the next time step or after specified number of time steps or seconds. Honeywell
ForReq tool supports this requirement formalization process as depicted in Figure 23 in order to enable
automatic semantic requirement analysis as described in Section 2.4.3 and automated formal verification
against system design as described in Section 2.4.5.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 38 of 120

Figure 23. Process of formalization of structured requirements using ForReq tool

The requirements formalization is not a straightforward process and a considerable number of steps is
required for incorporating formalization into real-world development of embedded systems. The goal of
the ForReq development is to guarantee that the authored requirements are unambiguous, automatically
verifiable (machine-readable) and conforming to the requirements reference (template, pattern,
boilerplate, standard). Auto-completion, requirement standard grammar and requirement guidelines were
implemented in ForReq to cover this need and to proceed further towards fully incorporating requirements
formalization into the development process.

2.4.2.3 Formalization with System Quality Analyzer (SQA)

This functionality is aimed at presenting and proving the applicability of a proposal of a model that,
automatically, analyses the quality of a requirements specification regarding to its temporal consistency.

The System Engineering (SE), interdisciplinary field focused on developing successful systems, defines as
necessity the assessment of requirements specifications that define a system or system of systems. For that
purpose, within the SE responsibilities, the Requirement Engineering (RE) has the objective of ensuring the
quality of the requirements, aside of defining a writing guide.

Measuring requirements quality consists of guarantying that they contain certain textual, syntactical and
structural characteristics. This approach, better known as Correctness, is applied to the requirements
individually, looking for defects in the text. On the other hand, there are two other approaches regarding
analysing requirements quality, both applied globally in specification-level: first, Completeness, aimed to
find omitted elements which will be involved in the specification, and Consistency, to ensure that there is
no incoherence between requirements.

Using the scientific foundations of Natural Language Processing (NTL) together with the bases of the
industry dedicated to Systems Engineering and Requirements Engineering, it has been defined a model that
can solve the actual need: knowing and analysing the temporal elements found in the requirements in
order to make a requirement temporal validation and verification as well as an early detection of temporal
inconsistencies.

The assessment of the temporality used in the language has been done with Linear Temporal Logic (LTL).
The proposal consists of a NLP software mechanism applied to textual requirements in order to make a
quality assessment, in terms of temporal consistency.

The quality assessment is an automatic translation from requirements written in Natural Language to LTL,
which is not a simple task. In this case, the mechanism used for that purpose is the RSHP Model [23] [24]
applied to textual requirements. This model allowed an easier translation to LTL, and it has been the mayor
point.

To summarize, this functionality looks for elements representing time in the requirements and then checks
that they do not present temporal conflicts. This process starts by formalizing requirements using certain

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 39 of 120

writing patterns, with the objectives of extracting relevant information from them (concepts, relationships
and properties), store and reuse them thanks to RSHP.

Figure 24. Automatic translation general diagram - From NL to LTL

According to the defined and presented proposal, it is performed an experiment consisting in the analysis
of a requirement specification, detecting its temporal elements and then determining their temporal
reachability.

The System Quality Analyzer tool, through its available API, allows users to implement and incorporate
externally developed applications in order to get different or non-covered by the tool goals. Because of this
extensibility, a showcase has been done to demonstrate the proposed model.

This showcase is based on the Shared Resource Arbiter problem, consisting on the evaluation of a resource
that is shared by several components at the same time, and guarantying its correct distribution among
them. Furthermore, it has been checked that a requirements specification containing simultaneously-
accessed elements guarantees its reachability and accessibility to them, as well as avoiding deadlocks.

The final result for this showcase has been successful, obtaining an application implemented and integrated
in SQA [27], so that a user can create and configure it as a temporal consistency metric. This way, it is
feasible to analyse requirements specification, whose results will be helpful to the Quality Assurance
department of the company to early-detect temporal inconsistency defects, and continue with the rest of
layers in the system lifecycle.

2.4.2.4 Employment in AMASS

In AMASS, we will use LTL and MTL as formal properties to formalize requirements. These properties have a
formal semantics that is parameterized by the time model: if the model of time is discrete, the properties
are interpreted over discrete-time execution traces; if the model of time is continuous, the properties are
interpreted over continuous-time execution traces. A property is attached to a component, which defines
the set of variables (events, data ports, etc.) that can be used in the property.

The AMASS platform will provide editing support to formalize the requirements into temporal logic and to
import the properties from external tools such as ForReq used for the formalization.

The different editors can use different syntactic sugar or patterns or constrained natural language, but the
properties will be internally mapped to LTL/MTL as defined in Appendix A: LTL/MTL.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 40 of 120

2.4.3 Semantic Requirements Analysis

2.4.3.1 Tools for Semantic Requirement Analysis

Formalisation of software requirements, i.e. translation from human language into a mathematical
formalism, can simplify the delivery of high quality requirements. Such requirements have properties that
greatly reduce the cost of the following development process. Ideally, requirements should be accurate,
atomic, attainable, cohesive, complete, consistent, etc. Some of these properties can be presently achieved
using automatic tools for semantic requirements analysis. More details on which properties are provided
by the AMASS tools can be found in the deliverable D3.1 [2], Section 3.7.1.

2.4.3.2 Contract-Based Analysis

Besides the validation checks mentioned above based on consistency, possibility and assertion problems,
the contract-based specification enables further analysis:

• Refinement checks: for each requirement derivation, it is possible to check the completeness of the
requirements in order to ensure the guarantees of the upper level and the assumptions of the
lower level.

• Safety analysis: taking into account the possibility of failures, a fault-tree analysis is performed to
identify single-point of failures and to analyse in general the system reliability. This is possible also
without a behavioural model of the components as described in [13], but with a fault injection of
the behavioural model the analysis can be more precise.

The verification of contracts refinement adapts existing formal methods developed for checking the
satisfiability of properties. In fact, as described in [54], the problem of checking the refinement of contracts
is reduced to a series of validity/satisfiability problems for the underlying logic that is reduced to model
checking.

In order to prove the validity of the proof obligations deriving from contract refinement, OCRA interacts
with nuXmv in case of LTL contracts and with HyCOMP in case of HRELTL contracts.

2.4.3.3 Exploring the Inconsistency of Requirements

One of the tasks of Requirements Analysis is to check a given set of requirements for consistency. Such
check can be usually automated by employing some consistency checking tool. For example, if we assume
that the requirements are expressed using LTL formulas, then the problem of checking consistency can be
reduced to a model checking problem and one of several existing model checking tools can be employed.

In the favourable case, the given set of requirements is consistent. In the other case, it is desirable to find
out the reason for the inconsistency.

Nowadays, there is an active research on analysing the inconsistency in the area of constraints processing.
However, a slightly different terminology is used. Instead of using “consistent” the set of
requirements/formulas is said to be satisfiable or unsatisfiable, respectively. There are three concepts that
are used to explain the unsatisfiability:

• Maximal Satisfiable Subset (MSS): for a given unsatisfiable set of requirements U and its subset N, we
say that N is a maximal satisfiable subset of U if N is satisfiable and none of its (proper) supersets is
satisfiable.

• Minimal Unsatisfiable Subset (MUS): for a given unsatisfiable set of requirements U and its subset N,
we say that N is a minimal unsatisfiable subset of U if N is unsatisfiable and none of its (proper) subsets
is unsatisfiable.

• Minimal Correction Set (MCS): for a given unsatisfiable set of requirements U and its subset N, we say
that N is a correction subset of U if U-N is satisfiable (i.e, U becomes satisfiable by removing elements
of N from it). Moreover, N is said to be a minimal correction subset of U if none N’s (proper) subsets is
a correction subset of U.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 41 of 120

Intuitively, MSSes are the maximum which can be simultaneously satisfied, MUSes are the core sources of
the unsatisfiability, and MCSes are the minima that must be removed from an unsatisfiable set of
requirements in order to make is satisfiable. Note that the maximum/minimum is meant with respect to
the subset inclusion rather than cardinality of the sets.

Figure 25. Requirements Analysis Example

Figure 25 illustrates these concepts on a simple example; for clarity only basic propositional formulas with
two variables are used. Each variable corresponds to some property of the system, for example the first
formula states that the system shall have the property a and the last formula states that the system shall
not have the property a or shall not have the property b.

The identification of MUSes, MCSes and MSSes of an unsatisfiable set of requirements can help one to
properly understand the reasons of the unsatisfiability and it provides suggestions about how to fix the
requirements.

There are existing tools that for a given set of unsatisfiable LTL formulas enumerate its MUSes, MSSes and
MCSes. We propose to define an interface which calls these tools in order to support the refinement of
unsatisfiable (inconsistent) sets of requirements.

2.4.3.4 Requirements Sanity Checking

Specifying functional system requirements formally, e.g. in Linear Temporal Logic, allows for clear and
unambiguous description of the system under development. In order to further improve the assurance that
the architecture build using these requirements is correct, we suggest checking sanity of those
requirements. In our setting, sanity consists of three components: consistency checking, redundancy
checking, and checking the completeness of requirements. These notions and the methods for their
automation are described in more detail in the deliverable D3.1 [2], Section 3.7.2.

2.4.3.5 Checking Realisability of Requirements (*)

Consistency of requirements demonstrates the existence of a model that satisfies all those requirements. In
the case of LTL requirements, the model is a labelled transition system, where each state label represents
the set of atomic propositions that hold in that state. These atomic propositions in turn represent the
validity of relations between variables (in the case of software) or signals (in the case of reactive systems).
Consequently, the fact that a set of requirements is consistent merely states that, if we were able to
prescribe the validity of relations between signals in individual states of the system, we would be able to
build such system. Yet in the case of input signals or variables, we often cannot arbitrarily predetermine
their values.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 42 of 120

Realisability of requirements acknowledges the distinction between input and output signals in that output
can be controlled but input cannot. For reactive systems in particular, realisability is more relevant than
consistency, because consistency does not guarantee that a system can be built that would satisfy the
requirements. We can exemplify the difference between consistency and realisability on the development
of a system with one input signal in1 and one output signal out1. Let us further assume two simple
requirements: 1) that whenever the input in1 is observed, the output out1 is produced within 2 seconds,
and 2) output out1 must never be produced. These two requirements are consistent because there is a
sequence of signal evaluations that satisfies both of them, i.e. input in1 is never observed and output
out1 is never produced. On the other hand, the requirements are not realisable because the input in1 can
be observed and then the system has to choose between producing out1, thus violating requirement 2; or
not producing out2, thus violating requirement 1.

Checking realisability, however, is more difficult that checking consistency [48] and is effectively equivalent
to synthesising the appropriate system. This introduces additional challenges in terms of limited scalability
as well as the potential to utilise the synthesised system. The output of realisability checking (synthesis) is a
transition system labelled with a combination of input and output signals. If realisable, each transition
(labelled i,o) prescribes how the system needs to react (produce output o) to a particular input i. If
unrealisable, each transition (labelled i,o) prescribes how what input i does the environment have to
produce to eventually force the system to violate the requirements. Thus, in order to check realisability the
tool has to calculate the strategy for either the system or the environment, i.e. effectively to construct the
correct-by-construction system or to prove that none exists.

There are two possible approaches of tackling the computational complexity of realisability checking. First,
there is a number of approaches and tools that implement realisability checking. These tools use different
algorithms and thus they have different efficiency when solving particular problems. Hence, we intend to
compare relevant tools on a selected benchmark of requirements to determine which tool is most suitable
for our domain. In particular, Acacia+ improves on the classical automata-based approach and Party-Elli
employs bounded synthesis to decide realisability.

The second approach is based on the fact that the high complexity relates to the full LTL language. There
are, however, interesting fragments of LTL for which the problem of realisability is easier. In this regard, we
will investigate the smallest fragment of LTL sufficient for our requirements and then assess whether
algorithms that are more efficient could be used. In particular, the GXW fragment can be checked for
realisability by the Autocode tool.

The third approach is to translate the requirements realisability problem to a software verification
problem. Specifically, we intend to generate a valid C code fragment for each requirement. When this C
code is symbolically executed by a static analyser one of two possibilities can occur. Either the value of
input variables was restricted during each execution or there is at least one execution in which the inputs
are unrestricted. In the first case the requirements are not realisable, while in the second they are
realisable.

The ability of the realisability checking tools to synthesise the proof of realisability in terms of a valid
system provides a number of potential applications. In the case the requirements are not realisable, the
system represents the behaviour of the environment (user input) that leads to the violation of the
requirements. This system thus represents the counter-example that the developer can use to identify the
cause of requirements violation. In the case the requirements are realisable, the system represents one of
the possible valid implementations of the requirements. We intend to investigate this case further as well,
to detect requirements which are trivially realisable and to assess the completeness of the requirements.
The completeness of requirements will be measured in terms of the complexity of the input-output
behaviour. Requirements will be called trivially realisable when they are satisfied by a system with simple
input-output behaviour.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 43 of 120

2.4.3.6 Employment in AMASS (*)

The Architecture-Driven Assurance of AMASS will have a Requirements Validation component which will
interact with different tools to provide evidence that the requirements specification is correct. The
provided functionalities will include consistency checking, possibility checking, assertion checking, contract-
based refinement checking, contract-based safety analysis, and possibly also redundancy checking and
realisability checking. This sanity checking package will be maintained separately from the AMASS interface
thus ensuring that the latest and the most comprehensive analysis is executed. The verification results will
include execution traces, MUSs, and possibly also MSSs and MCSs. The results of the analysis will be traced
to be used in the assurance case.

2.4.4 Metrics

2.4.4.1 Metrics for requirements

While assessing the quality of the requirements there are different approaches (points of view, or simply,
views):

• Correctness summarizes the set of desirable individual characteristics of a correct requirement:

o Understandability: requirements are clearly written and can be properly understood
without difficulty.

o Unambiguity: there is one and only interpretation for each requirement (unambiguity and
understandability are interrelated; they could be even the same characteristic).

o Traceability: there is an explicit relationship of each requirement with design,
implementation and testing artefacts.

o Abstraction: requirements tell what the system must do without telling how it must be
done, i.e. excess of technical details about the implementation must be avoided in the
specification of the requirements.

o Precision: all used terms are concrete and well defined.

o Atomicity: each requirement is clearly determined and identified, without mixing it with
other requirements.

• Completeness means there are no omissions that compromise the integrity of the specification: all
needed requirements, with all needed details. Completeness is easily defined, but not that easily
ascertained, because we do not have a source specification with which to compare (it is obvious:
we are creating the source specification). Besides, a specification is not usually a static set of
requirements.

• Consistency means there are no contradictions among requirements. Like completeness,
consistency is not easily achieved, since contradictions may be very subtle, especially in the
presence of ambiguous requirements. A good organization of requirements is essential to achieve
consistency. A classical method is the use of a cross-reference consistency matrix, where each pair
of requirements is labelled as: Conflicting (x), Redundant (=), Overlapping (+), Independent.

For each point of view, several metrics are provided to measure its quality.

As result of the participation of TRC and UC3 in the CRYSTAL project [50], TRC tools were improved with
new correctness, completeness and consistency metrics. Now in AMASS this set of metrics has been
extended and improved.

In this section, these changes will be revised.

Correctness Metrics
There are different metrics based on Requirement Management Systems, on simple textual content and
structure, on System Knowledge Base and on Special Sentences to measure correctness point of view.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 44 of 120

Moreover, users are able to implement and integrate their own metrics according to their own needs
through the Custom-coded metrics.

While analysing text in natural language with the help of a knowledge base, there are different aspects to
focus in:

• The terminology, the actual word or phrase in the text

• The term tag or syntactic category: such as nouns, verbs, prepositions, adverbs, etc.

• The semantic clusters: subjective grouping of the items in the terminology for different purposes.

For further information about this use of knowledge-bases to process text written in natural language use
reference [24][51].

For this deliverable, there are new metrics based on the System Knowledge Base:

• In-System Conceptual Model Nouns (SCM Nouns): This metric evaluates all words in the
requirement that are classified as SCM Nouns. In other words, it checks that each term either
belongs to one or more SCM Views or to one or more semantic clusters.

The rationale of this metric is to indicate that the use of too many nouns belonging to the SCM can
denote more than one need in a single requirement. Its quality function is:

▪ [0, 1) Bad quality
▪ [1, 2) Good quality
▪ [2, 3) Medium quality
▪ [3, + ∞) Bad quality

• Out-of-System Conceptual Model Nouns (Out-of-SCM Nouns): This metric evaluates all words in
the requirement that are classified as out-of-SCM Nouns. In other words, it checks that each term
does not belong to any SCM View and it does not belong to any semantic cluster.

The rationale of this metric is to indicate that the use of any noun not belonging to the SCM must
be avoided. Its quality function is:

▪ [0, 1) Good quality
▪ [1, + ∞) Bad quality

• In-Semantic Clusters Nouns (SCC Nouns): This metric evaluates all words in the requirement that
are classified as SCC Nouns. In other words, it checks that that each term belongs to one or more
semantic clusters.

The rationale of this metric is to indicate that the use of too many nouns belonging to the SCC can
denote more than one need in a unique requirement. Its quality function is:

▪ [0, 1) Bad quality
▪ [1, 2) Good quality
▪ [2, 3) Medium quality
▪ [3, + ∞) Bad quality

• Out-of-Semantic Clusters Nouns (Out-of-SCC Nouns): This metric evaluates all words in the
requirement that are classified as out-of-SCC Nouns. In other words, it checks that each term does
not belong to any semantic cluster.

The rationale of this metric is to indicate that the use of any noun not belonging to the SCC must be
avoided. Its quality function is:

▪ [0, 1) Good quality
▪ [1, + ∞) Bad quality

• In-Hierarchical Views Nouns (SCV Nouns): This metric evaluates all words in the requirement that
are classified as SCV Nouns. In other words, it checks that each term belongs to one or more SCM
views.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 45 of 120

The rationale of this metric is to indicate that the use of too many nouns belonging to the SCV can
denote more than one need in a unique requirement. Its quality function is:

▪ [0, 1) Bad quality
▪ [1, 2) Good quality
▪ [2, 3) Medium quality
▪ [3, + ∞) Bad quality

• Out-of-Hierarchical Views Nouns (Out-of-SCV Nouns): This metric evaluates all words in the
requirement that are classified as out-of-SCV Nouns. In other words, it checks that each term does
not belong to any SCM view.

The rationale of this metric is to indicate that the use any noun not belonging to the SCV must be
avoided. Its quality function is:

▪ [0, 1) Good quality
▪ [1, + ∞) Bad quality

The very same technique of distinguishing which nouns belong to these elements in the ontology has been
applied to verbs. The new metrics are:

• In-System Conceptual Model Verbs (SCM Verbs)

• Out-of-System Conceptual Model Verbs (Out-of-SCM Verbs)

• In-Semantic Clusters Verbs (SCC Verbs)

• Out-of-Semantic Clusters Verbs (Out-of-SCC Verbs)

• In-Hierarchical Views Verbs (SCV Verbs)

• Out-of-Hierarchical Views Verbs (Out-of-SCV Verbs)

Their quality functions are the same that the ones used for nouns.

Users can manage how many nouns or verbs the metrics should contain and to assign different quality
values for each one.

2.4.4.2 Applying machine learning to improve the quality of requirements

The objective is to emulate the experts’ judgment of the quality of new requirements that are entered in
the system. In order to achieve this goal, the experts must contribute with an initial set of requirements
that they have previously classified according to their quality, and that they have chosen as appropriate for
establishing the demanded standard quality (this implies that the initial set must include requirements
classified in all quality levels; in other words, including only good requirements is not enough) [26].

For each requirement in the given set, metrics that quantify the various dimensions of quality presented in
the works [25], where they are explained in detail, are extracted.

Then Machine Learning techniques (namely Rule Inference) to emulate the implicit expert’s quality function
are used, i.e. the value ranges for the metrics, as well as the way the metrics are combined to yield the
interpretation of requirements quality by the domain expert. The result will be a computable formula made
of simple arithmetic and logical operations.

This method has the advantage of being easily customizable to different situations, different domains,
different styles to write requirements, and different demands in quality. All we need is a tool that
computes quality metrics on textual requirements, and the initial set of requirements previously classified
by the expert, in order to feed the learning algorithms. The main contribution of the work, then, is a
methodology to build a classifier that learns from the information provided by the expert, and adapts itself
to best emulate the expert’s judgment. Besides, we can provide automatic suggestions to improve the
requirements, by computing the quality rule that could be satisfied with the least effort.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 46 of 120

2.4.4.3 Metrics for models (*)

The approach to use the already existing metrics in System Quality Analyzer (SQA), [27] (previously known
Requirements Quality Analyzer (RQA)) designed for Requirement Specifications, for models have required
work in several dimensions:

• Improving SQA [27] to manage models as well as requirements.

• Mapping the content of a model into a RSHP model [23] [24].

• Improving SQA [27] to avoid assess correctness requirement-specific metrics into model elements.

• Adapting the completeness and consistency assess requirement-specific metrics to assess models
from their transformation in RSHP models [23] [24].

o In Table 3, for each completeness or consistency metrics, the method to map elements
from models to RSHP models [23] [24] and the adaptations performed on the metric
evaluation are described.

Table 3. Mapping to RSHP models

View Metric Apply Comment

C
o

m
p

le
te

n
es

s

Terminology
coverage

YES Mapping:

• Each element of the models has been identified with a term
in RSHP model.

Analysis:

• Thus, the terminology analysis is focused on the set of terms
identified within the original model.

Relationships YES Mapping:

• Each element of the models has been identified as a term in
RHSP model.

• Each relationship in the model has been transformed in a
relationship between those mapped terms in the RSHP
model.

• The relationship type of each relationship in the RSHP model
is got from the typology of the relationship in the original
model.

Analysis:

• The relationship analysis is focused on the relationships from
the RSHP model, which behave equal than the ones got by
transforming text in natural language to a RSHP model.

Relationship types
coverage

YES Mapping:

• The same mapping as in the “Relationships from SCM View
Coverage” metric has been used.

Analysis:

• The analysis is focused on the existence of the selected
relationship types with the types of the relationships mapped
in the RSHP model.

Model-content
coverage

YES Compares the content of a model from the ontology with
another model got from the connection source.

Mapping:

• The same mapping as in the “Relationships from SCM View
Coverage” metric has been used.

Analysis:

• The analysis is focused on the existence of the same number
of instances of relationships between the same terms as,

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 47 of 120

from the ontology-model and from the specification model.

Properties coverage YES Checks that a set of properties selected from the ontology have
value in the model got from the connection source.

Mapping:

• Each property from the model has been identified as a
property in the RSHP model.

• Properties of the entities such as visualization id, comments,
descriptions, etc. as properties in the RSHP model associated
with each term mapped.

Analysis:

• The analysis is focused on the existence of the selected
properties in the model and their value is not empty.

Patterns coverage NO This metric is not applicable in this stage of development
because, in the ontology definition there is no matching between
what is a pattern in the model world and in the RSHP model. This
topic will be subject of further discussion and development in
future works.

Link coverage NO This metric is not applicable in this stage of development
because it has to be investigated where to find the links among
the models from the source.
Each tool model management tool manages the model and does
not provide mechanisms to link models. An external source of
links shall be found and used.

C
o

n
si

st
e

n
cy

Property values YES Mapping:

• The same mapping as in the “Properties coverage”
completeness metric has been used.

Analysis:

• The analysis is focused on the existence of the selected
properties in the model and checking that their values do not
imply contradictions.

Properties allocation YES Technically, it can be applied but we don’t expect companies to
use it because the source information it needs to perform its
assessment won’t be included in the models.

Mapping:

• Based on the term identification in “terminology”
completeness metrics.

• Based on the mapping from “Model-content coverage”.
Analysis:

• It’s focused on finding the suitable value for a set property for
each element of the ontology selected in the configuration.

• Then with all the values available checks that the operation
holds the property in each higher level of abstraction of the
SCM view of the ontology.

Overlapping
requirements

YES It shall be renamed for models as overlapping models.

Mapping:

• Based on the term identification in “terminology”
completeness metrics.

• Based on the mapping from “Model-content coverage”.
Analysis:

• Checks the similarity of the models by checking the similarity

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 48 of 120

of the RSHP models got from them.

Measurement units NO It is not applicable because a relevant mapping from the models
to the terms shall be found to be implemented.

Measurement units
for specific property

YES Technically, as in the “Arithmetic operation compliance with
SCM”, it can be applied but we do not expect companies to use it
because the source information it needs to perform its
assessment will not be included in the models.

Mapping:

• Based on the term identification in “terminology”
completeness metrics.

• Based on the mapping from “Model-content coverage”.
Analysis:

• Checks that a property allocated to an element of the
selected SCM view is always expressed in the same
measurement unit.

• Creating set of correctness metrics to assess models.

o In Table 4, the new correctness metrics to assess quality models are described.

Table 4. Correctness metrics for models

Type Metric Comment

C
la

ss
 m

o
d

el

Weighted methods per class
(WMC)

Description:

• It is the summation of the complexity of all the methods in the
class. A simpler case for WMC is when the complexity of each
method is evaluated to unity. In that case, WMC is considered
as the number of methods in the class.

Evaluation:

• Function defined by intervals scale.

Depth of inheritance tree
(DIT)

Description:

• This metric represents the length of the inheritance tree from a
class to its root class.

Evaluation:

• Incremental complexity function.

Number of Children (NOC) Description:

• This metric represents the number of immediate subclasses
subordinated to a class in the class hierarchy. NOC relates to
the notion of scope of properties. It is a measure of how many
subclasses are going to inherit the methods of the parent class.

Evaluation:

• Function defined by intervals scale

Coupling between object
classes (CBO)

Description:

• This metric measures the level of coupling among classes. CBO
relates to the notion that an object is coupled to another object
if one of them acts on the other, i.e., methods of one use
methods or instance variables of another. Excessive coupling
between object classes is detrimental to modular design and
prevents reuse. The more independent a class is, the easier it is
to reuse it in another application.

Evaluation:

• Function defined by intervals scale.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 49 of 120

Response for a Class (UFC) Description:

• The response set of a class is a set of methods that can
potentially be executed in response to a message received by
an object of that class. The cardinality of this set is a measure
of the attributes of objects in the class.

Evaluation:

• Incremental complexity function.

Method hiding factor (MHF) Description:

• This metric is a measure of the encapsulation in the class. It is
the ratio of the sum of hidden methods (private and protected)
to the total number of methods defined in each class (public,
private, and protected).

Evaluation:

• Function defined by intervals scale

Attribute Hiding Factor
(AHF)

Description:

• This metric represents the average of the invisibility of
attributes in the class diagram. It is the ratio of the sum of
hidden attributes (private and protected) for all the classes to
the sum of all defined attributes (public, private, and
protected).

Evaluation:

• Decremental complexity function.

Public methods (PM) Description:

• This metric calculates the public methods in a class.
Evaluation:

• Incremental complexity function.

Number of methods (NM) Description:
• This metric counts all methods (public, protected, and private)

in a class.
Evaluation:

• Incremental complexity function.

Design Size in Classes (DSC) Description:

• This metric is a count of the total number of classes in the
design.

Evaluation:

• Incremental complexity function.

Data Access Metric (DAM) Description:

• This metric is the ratio of the number of private (protected)
attributes to the total number of attributes declared in the
class.

Evaluation:

• Decremental complexity function.

Direct Class Coupling (DCC) Description:
• This metric is the ratio of the number of private (protected)

attributes to the total number of attributes declared in the
class.

Evaluation:

• Function defined by intervals scale.

Class Interface Size (CIS) Description:
• This metric is a count of the number of public methods in a

class.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 50 of 120

Evaluation:

• Incremental complexity function.

Number of Methods (NOM) Description:
• This metric is a count of all the methods defined in a class.

Evaluation:

• Function defined by intervals scale.

Class Category Relational
Cohesion (CCRC)

Description:
• The CCRC metric measures how cohesive the classes are in a

class diagram design. Relational cohesion is the number of
relationships among classes divided by the total number of
classes in the diagram.

Evaluation:

• Function defined by intervals scale.

P
ac

ka
ge

 m
o

d
e

l

Abstractness (ABST) Description:
• The abstractness metric measures the package abstraction

rate. A package abstraction level depends on its stability level.
Calculations are performed on classes defined directly in the
package and those defined in sub-packages. In UML models,
this metric is calculated on all the model classes.

Evaluation:

• Decremental complexity function.

Instability (I) Description:
• The instability metric measures the level of instability in a

package. A package is unstable if its level of dependency is
higher than that of those depending. The instability of a
package is the ratio of its afferent coupling to the sum of its
efferent and afferent coupling.

Evaluation:

• Incremental complexity function.

Distance from Main
Sequence (DMS)

Description:
• The DMS metric measures the balance between the abstraction

and instability of a package.
Evaluation:

• Decremental complexity function.

Se
q

u
en

ce
 D

ia
gr

am

NonAnonymObjRatio
(SDm1)

Description:

• Measures the ratio of objects with name to the total number of

objects in a sequence diagram.
Evaluation:

• Function defined by intervals scale.

NonDummyObjRatio
(SDm2)

Description:
• Measures the ratio of non-dummy objects (objects that

correspond to classes) to the total number of objects in a
sequence diagram.

Evaluation:

• Function defined by intervals scale.

MsgWithLabelRatio (SDm3) Description:

• Measures the ratio of messages with label (any text attached to
the messages) to the total number of messages in a sequence
diagram.

Evaluation:

• Function defined by intervals scale.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 51 of 120

NonDummyMsgRatio
(SDm4)

Description:

• Measures the ratio of non-dummy messages (messages that
correspond to class methods) to the total number of messages
in a sequence diagram.

Evaluation:

• Function defined by intervals scale.

ReturnMsgWithLabelRatio
(SDm5)

Description:
• Measures the ratio of return messages with label (any text

attached to the return messages) to the total number of return
messages in a sequence diagram.

Evaluation:

• Function defined by intervals scale.

MsgWithGuardRatio (SDm6)

Description:
• Measures the ratio of guarded messages (messages with

conditional checking) to the total number of messages in a
sequence diagram.

Evaluation:

• Function defined by intervals scale.

MsgWithParamRatio
(SDm7)

Description:

• Measures the ratio of messages with parameters to the total
number of messages in a sequence diagram.

Evaluation:

• Function defined by intervals scale.

Sequence Diagram (SeqLoD)
score (LoDsd)

Description:
• The sequence diagram metrics cover two aspects of

detailedness, namely object detailedness and message
detailedness, the first two metrics belong to the former and the
rest belongs to the latter.

Evaluation:

• Function defined by intervals scale.

U
se

s
ca

se

Number of actor action
steps of the use case (NOAS)

Description:
• Number of actor action steps of the use case.

Evaluation:

• Function defined by intervals scale.

Number of system action
steps of the use case (NOSS)

Description:
• Number of system action steps of the use case.

Evaluation:

• Function defined by intervals scale.

Number of use case action
steps of the use case
(NOUS)

Description:
• Number of use case action steps of the use case (inclusions or

extensions).
Evaluation:

• Incremental complexity function

Number of steps of the use
case (NOS)

Description:
• Number of steps of the use case.

Evaluation:

• Function defined by intervals scale.

Number of exceptions of
the use case (NOAS_RATE)

Description:
• Rate of actor action steps of the use case.

Evaluation:

• Function defined by intervals scale.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 52 of 120

Rate of system action steps
of the use case
(NOSS_RATE)

Description:
• Rate of system action steps of the use case.

Evaluation:

• Function defined by intervals scale.

Rate of use case action
steps of the use case
(NOUS_RATE)

Description:
• Rate of use case action steps of the use case.

Evaluation:

• Function defined by intervals scale.

2.4.4.4 Metric checklists (*)

For this deliverable, there are metrics based on completeness of checklists. A checklist is a test with a series
of questions that the user must answer. Depend on the answers, it is possible to weigh the result to
provide a quality measure using quality ranges defined.

System Quality Analyzer (SQA) [27], previously known Requirements Quality Analyzer (RQA), will provide a
framework to create the checklists, provide the platform to answer the questions and send the results. The
tool will import the results and give a quality measure based on quality ranges.

2.4.4.5 Quality evolution

One of the fundamental tasks in the quality management is to know its evolution over the time. For this
reason, a quality evolution manager has been developed. The objective is to facilitate access to information
related to the quality of the specification that has been carried out over time (Figure 26).

Figure 26. Example of quality evolution wrt time for a requirements specification

With this manager, the user can save a snapshot of the current quality of the specification in order to give
the possibility to review it later (Figure 27). It is composed of every different type of quality reports
available in the application.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 53 of 120

Figure 27. Saving snapshot with the quality of the project

Each snapshot is composed by:

• Each requirement assessment belonging to correctness, completeness and consistency point of
views.

• Every involved metric configuration and their quality functions.

For each snapshot is possible to show the quality information of the project saved at some point, Figure 28.
The snapshot contains all the information of the quality of the metrics and requirements that were
included when the snapshot was saved.

Figure 28. Information of the snapshot

2.4.4.6 Employment in AMASS

The Architecture-Driven Assurance of AMASS will have a Quality Assessment interface so that the AMASS
tool platform interacts with Quality Management Tools. These tools will provide AMASS with

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 54 of 120

measurements of quality metrics for different work products. Such information could be used, for example,
as:

• Evidence Artefact evaluations

• V&V evidence artefacts

• Information associated to the elements of System Models

Finally, the input to the Quality Management Tools could correspond to data from the AMASS Tool
platform (e.g. a CHESS model) or any other external tool (e.g. a Rhapsody model).

2.4.5 Verifying Requirements against System Design

Once the requirements are formalized and free of any defects, they can be automatically verified against
the corresponding system design by using model checking technique. The model checking verification
consumes a model of the system under verification and a specification the model should meet. For those
two inputs it performs an algorithmic decision about the validity of the system with respect to the
specification. If the system meets the specification, the model checking procedure simply returns a
message informing the user about the fact. In the other case a counterexample is provided, i.e. behaviour
of the system witnessing the violation of the specification. The basic schema of the model checking process
is shown in Figure 29.

2.4.5.1 Automated Formal Verification

There are several model checking tools, e.g. DIVINE, NuSMV or nuXmv that can be used to verify the
requirements against corresponding system design. The choice of a suitable model checker depends on
several factors. Mainly, we are limited by the language that is used to model the system and also by the
language in which we specify the requirements, because different tools support different languages. Linear
Temporal Logic (LTL) is one of the most widely supported languages for requirements specification. As for
the model of the system, Simulink, C and C++ are representatives of commonly used languages to specify
the behaviour of the system or components.

Besides the modelling languages, the right choice of a model checking tool depends on many other factors
and different tools are suitable in different situations. A verification expert should decide which model
checking tool is the most convenient in a particular situation. Therefore, in AMASS we propose to define a
universal interface that calls a model checking tool (chosen by the user), in order to support formal
verification of requirements against corresponding system design.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 55 of 120

Figure 29. Model Checking Schema

2.4.5.2 Toolchain for Automated Formal Verification

Development of embedded systems in the avionics domain is strictly guided by certification standards, such
as RTCA DO-178. These standards predefine a comprehensive set of processes and assurance artefacts that
need to be provided before the product is ready to flight. The standard, however, does not provide
guidance as to how these artefacts should be obtained, what tools should be used during each
development phase or how best to check that the artefacts are correct. There are tools for individual
stages, for writing and tracing requirements, for modelling the system architecture, for simulating
performance properties, etc. but they often come with their own specification languages, mostly
incompatible with the tools supporting the next development stage.

The AMASS approach to systems assurance is compliant with the development process allowed by avionics
standards. An architecture-driven (or model-based) development is preferred since a model of the final
system is more amenable to the verification of requirements than the source code. Therefore, the AMASS
tools will be readily applicable to the development of avionics systems and will remedy the lack of
supporting tools available to avionics engineers. Most importantly, one of the AMASS products will be a
platform unifying the tools to a single toolchain, thus eliminating the need to perform each development
stage in separation using mutually incompatible tools.

At the centre of this toolchain will be the AMASS platform linking together unmodified tools provided by
various partners. The common communication language will be provided by the OSLC that will wrap around
each input-output artefact for each tool. This approach has two advantages: first, the partners do not need
to modify their tools, only the OSLC for artefacts is required; second, new tools can be easily incorporated
since both the platform and the OSLC layer will be open. Having the platform as a central point will allow to
maintain the state-of-the-art standards, assuming the new version of incorporated tools will remain
compliant with the OSLC layer.

The prerequisite for these tools to be used by the platform will be publicly available, for example by a
remote call via HTTP. Since not every tool vendor provides this functionality, we further intend to establish
an automation server that will allow access to even these tools. The automation server will use the OSLC
automation standard to communicate the input and output of selected tools which will be executed locally
on the automation server.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 56 of 120

2.4.5.3 Employment in AMASS

The AMASS Architecture-Driven Assurance will include a Requirements Verification component that will
interact with external tools to prove properties on the system design and/or implementation. The
verification report and possibly the related proofs will be used as evidence in the assurance case.

The platform will maintain the assurance case specification and provide evidence and compliance
management so that the system developers could rely on a single toolchain throughout the whole process,
from stakeholder requirements elicitation to product certification. In particular, the platform prototype
delivered within AMASS will allow to capture and formalize requirements in Papyrus, modelling the system
architecture in CHESS (using UML/SysML), and then verifying the requirement contracts in OCRA. Another
possible use case will be to formalize requirements – thus obtaining their LTL version – and then checking
their sanity (consistency, non-redundancy, and completeness) by looney or Acacia+, after which they can
be checked against the system architecture by a model checker (NuSMV, DIVINE, etc.); as specified by a
particular assurance case. Furthermore, the evidence – formal requirements, proof of compliance, or a
violating counter-example – gather during each application of the platform will be stored and maintained,
later to be used for certification of the product (or reused in another development).

2.4.6 Design Space Exploration (*)

In order to argue about the assurance of a system it is sometimes necessary to support the design choices
with evidence to say that one choice was better than another. The same support can be used at design
time for design space exploration. The basic concepts of design space exploration are parameters (and thus
a parameterized architecture) and configurations, which can be defined as assignments to the parameters.

We focus here on parameters that define the structure of the architecture as described in section 2.2.2.
They define for example the number of components, ports, connections or if a subcomponent is
enabled/disabled. Therefore, a parameterized architecture represents in a concise way a potentially infinite

number of architectures, one for each configuration. In a parallel project, called CITADEL6, these notions

have being formally defined on top of AADL and its variant SLIM supported by the COMPASS7 toolset.

Once we have defined a set of configurations (with a parameterized architecture or with a set of
architectural models), we can compare them with respect to a number of properties based on formal
verification and analysis, as done in [32]. In particular, we can formalize a set of soft requirements into
qualitative formal properties (e.g. in LTL) and compare the different configurations based on which soft
properties are satisfied and which are not. Moreover, we can compare the results of safety analysis (for
example in terms of the number of cut sets related to the same top-level event) in the different
configurations.

2.4.6.1 Employment in AMASS

OCRA will be extended to analyse a set of configurations. The interaction between CHESS and OCRA will be
extended to compare the different configurations based on verification, validation, and safety properties.

Moreover, tools for specification and processing of design space exploration (different architectural
configurations) based on dependability parameters (e.g., criticality level, etc.) will be investigated.

6 http://www.citadel-project.org/
7 http://www.compass-toolset.org/

http://www.citadel-project.org/
http://www.compass-toolset.org/

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 57 of 120

2.4.7 Simulation-Based Fault Injection Framework (*)

As Ziade surveyed in [28] and Benso tackled in [29] fault injection has been deeply investigated by both
industry and academia as a dependability validation technique. However, the use of simulation-based fault
injection during early design phases has not been the object of attention so far.

Among the different fault injection techniques, simulation-based fault injection contains remarkable
benefits. For instance, it allows high observability and controllability of the experiments without corrupting
the original design. Through those models, which can be implemented at different levels (e.g. system,
hardware), the dependability can be already evaluated during early design phases. In other words, the
system is simulated on the basis of simplified assumptions to:

1) Forecast or predict its behaviour in the presence of faults.

2) Estimate the coverage and latencies of fault tolerant mechanisms.

3) Explore the effects of different workloads (different activation profiles).

Model-based design combined with a simulation-based fault injection technique and a virtual vehicle poses
as a promising solution for an early safety assessment of automotive systems. Initially, a fault forecasting
process takes place. The design with no safety consideration is stimulated with a set of fault injection
simulations. The main goal of this first set of fault injection simulations is to evaluate different safety
strategies during early development phases estimating the relationship of an individual failure to the
degree of misbehaviour on vehicle level. Once the most appropriate safety mechanisms are included, a
second set of fault injection experiments is performed in order to early validate the safety concept. All this
avoids late redesigns, leading to significant cost and time savings.

In this section, Sabotage prototype tool framework that is provided by Tecnalia will be introduced.
Sabotage is a simulation-based fault injection tool framework based on the well-known FARM model [30].
This model stands for (a) Fault (F): identifying the set of faults to be injected, (b) Activation (A): activating
the set of faults exercised during the experiments, (c) Readouts (R): setting the readouts which constitute
the observers of the experiments, (d) Measures (M): compute the obtained measures to evaluate
dependability properties. Figure 30 illustrates the main building blocks of the Sabotage tool framework to
perform an early safety assessment of automotive systems. Especially, this approach allows setting up,
configuring, running and analysing fault injection experiments.

In order to evaluate the effect considering the Dynamic of the system, an environment simulator is
integrated in the fault injection tool. For the automotive domain, Dynacar [31] offers a library of different
vehicles and driving circuit scenarios together with a 3D driving environment. The dynamics of the selected
vehicle is modelled as part of an S-function in the Matlab/Simulink environment. An S-function is a
computer language description of a Simulink block written in Matlab, C, C++, or FORTRAN. Moreover,
Dynacar already provides the designer with a set of sensor and actuator models contained in a library. The
whole system model under test (SMUT) is completed by including simulation models representing the
controller. All these models are developed, for instance, using Matlab/Simulink.

The Dynamics of the system will be not applicable in the AMASS project.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 58 of 120

Figure 30. Sabotage Framework for Simulation-Based Fault Injection

The Sabotage framework is the responsible to automatically inject faults into the SMUT and compute the
results. First, the Workload Generator creates the functional inputs to be applied to the SMUT. More
specifically, it is the responsible of the following subtasks:

• selecting the system model under test;

• choosing the operational scenario from an and environment scenario library;

• configuring the fault injection experiments. This includes creating the fault list and deciding the read-
out or observation points (signal monitors).

Once the Workload is conceived, the Fault Injector block utilises the fault list and a fault model library to
create the saboteurs (Matlab/Simulink S- functions). For now, the Fault Injector script is implemented as a
Matlab code and the library of fault models as C code templates. However, AMASS will investigate on
further improving the proposed approach in order to provide non-language dependent solutions. The
saboteurs or fault injection blocks are included as part of the faulty SMUT. After saboteurs are injected, the
faulty SMUT is completed and ready to be simulated. At this point, the designer can generate as many
faulty SMUTs as needed. The simulation process starts from a run of a fault free version of the SMUT
(Golden). The simulation environment is invoked through the Monitor (the Oracle implemented in Java).
The Monitor is the responsible of running the fault injection experiments under the pre-configured vehicle
scenario. After running the Golden simulation, the same applies to the Faulty SMUT. To finish with, it
compares and analyses the collected data by comparing golden and faulty results.

❖ Workload Generator: This block selects the SMUT, chooses the most appropriate environment
scenario, which represents the operational situation, and configures fault injection experiments. The
basis for specifying the operational situations are driven by safety analysis. These operational situations

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 59 of 120

include the specification of environment conditions and so on. The following list defined for an
automotive domain, provides a more detailed list of which kind of variables need a configuration:

• Location: highway, urban

• Road conditions: uphill, on a curve

• Environment conditions: good conditions, heavy rain

• Traffic situations: fluent

• Vehicle speed (Km/h)

• Manoeuvres: parking, overtaking, lane keeping

• People at risk: driver, passenger, pedestrians.

Then, the designer selects the environment scenario that best symbolises those operational situations
to be simulated. Together with that selection, the system (e.g. vehicle or robot) to be simulated is
chosen. For example, to emulate that vehicle and the driving circuit scenarios, Dynacar manages a
scenario catalogue that includes up to 150 configurable parameters. After performing this step, the
fault injection experiments configurator block in Sabotage gives the designer the possibility of creating
the fault list and selecting where to monitor fault injection experiments by including signal monitors or
readout blocks. The main strategy is to identify a representative and optimal failure type subset, e.g.
omission, commission, timing or value, to reproduce target system malfunctions.

❖ Fault Injector: The fault list is used to produce a Faulty SMUT only in terms of reproducible and
prearranged fault models by including saboteur blocks (S-functions). Fault models are characterised by
a type (e.g. frozen, stuckat0, delay, invert, oscillation or random), target location, injection triggering
(e.g. scenario position or time driven), and duration. In order to create a Faulty SMUT, the Fault Injector
injects an additional saboteur model block per fault entry from the Fault List. Moreover, the injected
block is fulfilled with information coming from a fault model template library. Saboteurs are extra
components added as part of the model-based design for the sole purpose of FI experiments.
Algorithm 1 depicts a generic fault model such as stuck-at last value can lead to an omission failure
mode.

Require: input, pos,simutime,faultdur;

1

2

3

4

5

If pos== triggerpos then

 Freeze=input;

 enable=1;

While enable==1 && simutime<=faultdur do return freeze;

return input;

Algorithm 1. Stuck-at last value

It is very important to stabilize a semantic of failure modes. Some European projects such a
MOGENTES [41] evolved different types of failures which affect to the system. D. Domis [42] and B.
Kaiser [43] have identified a semantic of failure modes based on the concept of HAZOP guidewords
adapted for software, this method is called SHARD but it has been adapted to the system domain.
Figure 31 is an example of a Failure Type System.

Figure 31. Failure Type System.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 60 of 120

❖ Monitor: After performing the configuration of the fault injection scenarios and creating the required

amount of Faulty SMUT, the Monitor invokes the simulator. It tracks the execution flow of the Golden
and Faulty simulations. The Monitor compares Golden and Faulty SMUT results by the data analysis
activity. The pass/fail criterion of the tests, which was established by the designer as part of Step III (cf.
Figure 30, is used to compute and finalise the results. This criterion includes different properties like
the maximum acceptable distance from optimal path considering the vehicle behaviour is acceptable in
terms of vehicle dynamics. In other words, acceptable maximum system reaction times are obtained.

In brief, this approach aims at finding acceptable safety properties for model-based design of automotive
systems. For instance, failure effects and system maximum tolerable response times are obtained. Through
these remarkable outcomes, safety concepts and mechanisms can be more accurately dimensioned.

2.4.7.1 Sabotage architecture

The Sabotage architecture is defined by the connection of Massif and Sabotage metamodels. Massif [44] is
a feature to support the transformation from a system defined on Simulink behavioural model to store its
information at Eclipse Modelling Framework and vice versa.

Figure 32 illustrates the Sabotage and Massif concept metamodel joint. Massif (see Appendix E: Massif
Metamodel) provides the information of system and, on the other hand, Sabotage metamodel holds all the
necessary information about the Scenario Configurator (optional in AMASS) and the Fault Injection
Experiments configurator. On the first point, it is not necessary in order to carry out the fault injection
experiments. However, the main benefit of this is that effect on system (e.g. vehicle or robot) dynamics
level could be evaluated. This includes establishing the operational situation and the vehicle. On the other
hand, the fault injection experiment configurator (fault list and readouts generation) collects the
information such as failure mode or the injection timings. Compared to other approaches, determining the
timing is essential due to the simulation nature. As specified in Figure 30 a semantics formalisation for
failure modes is established. This list consists of: Omission, Commission, True when False, False when True,
Too Low, Too High, etc.

Figure 32. Sabotage Metamodel.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 61 of 120

Based on certain information such as failure modes and component type, the Simulink saboteurs can be
generated. Since a direct transformation between Papyrus/CHESS and Simulink is out of scope, an
intermediary solution will be analysed.

2.4.7.2 Employment in AMASS

In AMASS we plan to span the spectrum from relaxing the fault simulation constraints to instrumenting the
automated assessment work. Sabotage framework will be developed and it will be examined the possibility
of the integration with other AMASS approaches listed below:

• Integrate Sabotage framework with contract-based approach (to automate contract-based safety
engineering process): combining the fault injection coming from the Sabotage framework, together
with the contract-based approach and the insertion of monitors, is one of the goals in AMASS. This
approach supports the automation of the safety concept creation process and an early validation of a
safety concept. Besides, it allows dimensioning the safety concept and achieving its early safety
validation.

Figure 33. Integration workflow: from contract-based design to the generation of saboteurs and monitors.

• Connect to other system modelling environments such as Papyrus/CHESS/SysML: Different
information contained in the fault list such as the fault models could be derived from the faulty
behaviour of the system component model. Furthermore, different approaches will be investigated and
evaluated in order to establish a possible connection between Papyrus/CHESS and Matlab/Simulink.
This would allow generating the saboteurs (Matlab/Simulink S-functions) from the information
specified in the system model (Papyrus/CHESS/SysML).

• Linking to model-based safety analysis tools: Due to the fact that modelling the fault as representative
as possible is a crucial factor, the fault models are mainly based on techniques such as Failure Modes

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 62 of 120

and Effects Analysis or Fault Tree Analysis. The proposed solution will use that information as starting
point and complete it. For example, it will help constructing the failure logic of model-based fault trees
or providing feedback to safety analysis techniques for non-known failure effects and verification of the
safety analysis. Hence, this allows proving all the concerns are adequately addressed in the body of the
safety analysis.

• Compare Fault Injection simulation results with the results of performing fault injection in a real
system (e.g. vehicle or robot): A relevant factor is how accurate the simulation results are compared to
the faulty behaviour of the actual system. With the aim of increasing the level of trust on the simulation
approach, a set of fault injection experiments can be performed in a real system.

Once the safety mechanisms are included in the SysML/UML design, the nominal model is extended one
more time, with the same fault effects added in the last extended system, but this time, including the
contract-based monitoring technique which checks if the contracts are violated or not. If not, the
architecture would need to be redefined and checked it again.

2.4.8 Model-Based Safety Analysis

Fault injection extends a nominal behavioural model with faulty behaviours. This extended model can be
used to conduct Model-Based Safety Analysis on the system interacting with external tools such as xSAP.
More precisely, xSAP can generate fault trees based on this extended model. Such fault tree is a set of
Minimal Cut Sets (MCS), which are the minimal configurations of faults leading to a Top Level Event (TLE).
The TLEs of the fault trees can be the violations of the LTL properties. A probability can be attached to each
failure mode by the user, which will allow xSAP to compute the probability for the TLE to happen.

2.4.8.1 Employment in AMASS (*)

In AMASS, xSAP will be used to automatically derive fault-trees from the system extended model
specification, i.e. the system nominal behavioural model extended with faulty behaviour. The obtained
fault tree will be used to derive safety requirements and will be stored as an artefact to support the
assurance case.

An initial integration about CHESS and xSAP was performed in the SafeCer project, to allow the automatic
invocation of xSAP from CHESS by using the information about the system nominal and faulty behaviour
provided in the CHESS model. Thus, in AMASS we will improve in term of functionalities what was done in
SafeCer.

2.5 Assurance Patterns for Contract-Based Design (*)

2.5.1 Assurance of Architectural Patterns

As mentioned earlier, capturing information about patterns in assumption-guarantee contracts style
through the design pattern template can serve as the basis for assuring that the application of the
architectural pattern adequately addresses the problem that is trying to solve. Using contracts for
architectural patterns [40] offers a way of capturing under which conditions instantiating a pattern offers
the desired specification. The guarantee of such a contract (referred to as PatternGuarantee) represents
the instantiated pattern behaviour, while the assumptions (referred to as PatternAssumptions) represent
the requirements that need to be met by the environment for the pattern to be considered correctly
instantiated, i.e., for the guarantees to be offered.

Each architectural pattern offers a solution to a particular problem. The list of the known problems the
patterns is addressing is captured in the design pattern template. After choosing to use a particular
architectural pattern for a specific problem, we need to assure that the pattern is suitable to address this
problem as well as that the pattern has been correctly applied, according to the information from the
design pattern template. For assuring the application of an architectural pattern, we first need to assure

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 63 of 120

that the specific pattern is suitable to address the problem at hand. We can assure that, either by looking at
the problem statement in the design pattern template and whether our problem matches any of the
known problems the pattern is used for, or if our problem is not in that list, then we need to assure why
this pattern is suitable to address that particular problem. Furthermore, the consequences of using the
pattern should be acceptable in the context of the system. Once the pattern is deemed suitable, we then
assure that the PatternAssumptions are met, and that the PatternGuarantees satisfy the relevant
requirements. For example, introduction of the acceptance voting pattern influences timing behaviour of
the system, hence we should assure that the PatternGuarantees do not impair the relevant timing
requirements.

Finally, we need to assure that the implementation of the pattern is performed correctly, i.e., that it
conforms to the contracts and the conditions specified in the design pattern template. An argument
pattern depicting the assurance of the application of an architectural pattern is presented in Figure 34. The
structure of the argument pattern complies with the ISO/IEC 15026 standard, which specifies the minimum
requirements for the structure and contents of an assurance case. According to ISO/IEC 15026, the
essential conclusions of an assurance case are the uncertainties regarding truth or falsehood of the claims
we assure. Led by the same thought, the purpose of the argument pattern for assurance of the application
of an architectural pattern is to highlight all the uncertainties involved in the application of the architectural
pattern. An example of the instantiated argument-pattern for the fault-tolerant Acceptance Voting Pattern
is shown in Figure 35 and Figure 36.

Figure 34. High-level assurance argument-pattern for architectural pattern contract-based assurance

To automate the instantiation of the argument pattern for a specific architectural pattern, it should be

possible in CHESS8 to describe the architectural pattern (or its instantiation) with contracts and associate
them with requirements addressing the targeted system problems. It should be possible to clarify the
contract and its relation to the specific architectural pattern, as well as to associate evidence to support
confidence in the architectural pattern and the related contract. The instantiation of the argument pattern

8 https://www.polarsys.org/chess/

https://www.polarsys.org/chess/

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 64 of 120

should be initiated either in CHESS or in OpenCert9, and the result should be stored in the assurance case
module related to the specific architectural element.

Figure 35. An argument example of the Acceptance Voting Pattern application

Figure 36. The Acceptance Voting Pattern assumptions argument-fragment

As stated in D3.1 [2], argumentation patterns can be related not only to fault tolerance but also to specific
technologies such as safe access to shared resources related to multicore. The same approach described as
part of automatic generation of product-based arguments can be applicable here.

However, mainly of the work has been done in relation with safety case patterns so far. Thus, assurance
case patterns addressing technology specific solutions and considering some other concerns such as
security will be possibly investigated in AMASS by considering the needs coming from the AMASS use cases
implementation.

9 https://www.polarsys.org/proposals/opencert

Reliability
High reliability requirements are adequately addressed
by applying Acceptance Voting Pattern

Assumptions
Acceptance Voting
Pattern
assumptions
satisfied

Guarantees
Acceptance Voting Pattern
guarantees meet the
relevant requirements

Rationale
Acceptance Voting Pattern
is adequate to increase the
system output reliability

Guarantee1
"The probability that an
output passes the test is
equal to: P{T} = RPTP +
(1− R)PFP" guarantee
meets the reliability
requirements

Guarantee2
"The execution time
ofac this pattern is
'slightly' equal to
single version
software" meets the
timing requirements

Guarantee3
"The time of
execution will
increase by N times
of a single version"
meets the timing
requirements

Consequences
Acceptance Voting Pattern
consequences are acceptable
in the context of this system

Consequence1
"A high dependency on the initial
specification which may propagate faults
to all versions and effort of developing N
diverse software versions" is acceptable
in the context of this system

Consequence2
"The problem of dependent faults in all
N software versions is less critical than
in the original N-version programming
approach" is acceptable in the context
of this system

Intent1
"Software faults shall be
tolerated to achieve safety and
reliability requirements"
matches the system high
reliability requirements

Strat2
Argument over each guarantee

Strat3
Argument over each

consequence

Strat4
Argument over

suitability of the intent/
context of the pattern

Implementation
Acceptance Voting Pattern is
correctly implemented

Assumptions
Acceptance Voting Pattern assumptions satisfied

Assumption1
"The majority voting
technique is used in
the voter software
component"
satisfied

Assumption1
"The failures in the
different versions
are statically
independent"
satisfied

Assumption3
"The different versions
have the same
probability of failure (f)
and the same reliability
(Ri = R)" satisfied

Assumption4
"The diverse software versions in
this pattern are executed in
parallel, ideally on N independent
hardware devices. Execution time
of the acceptance test and the
voter is negligible" satisfied

Assumption5
"The independent versions
followed by the acceptance
test and voting algorithm
are executed sequentially
on a single hardware"
satisfied

Strat1
Argument over each assumption

https://www.polarsys.org/proposals/opencert

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 65 of 120

2.5.2 Assuring requirements based on OCRA results

Safety assurance is driven by safety requirements that are allocated to different components of the system.
The corresponding contracts of those components are envisaged to formalize the allocated requirements.
In that scenario each requirement is formalized or realized by a set of contracts. Establishing the validity of
such requirements then boils down to checking the consistency and refinement of the contracts. But
something more is needed to assure that the requirement is met by the system. To assure that a system
satisfies a given safety requirement based on the related contract, we need to provide evidence that the
contract correctly realizes the requirement (often said that its guarantees formalize the requirement) and
evidence that the contract is satisfied with sufficient confidence in the given system context. We refer to
this argument strategy as the contract-based requirements satisfaction pattern (Figure 37).

While compositional verification of a system using contracts establishes validity of a particular requirement
on the system model in terms of contracts, confidence that the system implementation actually behaves
according to the contracts should also be assured. Hence, to drive the system assurance using contracts we
have associated assurance assets with each contract. Those assets can be different kinds of evidence that
increase confidence that the component (i.e., the implementation of the contracts) behaves according to

the contract, i.e., that the component deployed in any environment that satisfies the contract assumptions
exhibits the behaviours specified in the corresponding contract guarantees. To argue that a contract is
satisfied with sufficient confidence we need to assure that the component actually behaves according to
the contract, and that the environment in which the component is deployed satisfies the contract
assumptions [57]. But when we deal with hierarchical systems where contracts are defined on each
hierarchical level with well-defined decomposition conditions, then to argue that the composite
component behaves according to the contract, we should explicitly argue over the component
decomposition (Figure 38). We build on the contract-driven assurance argument patterns proposed as a
part of SafeCer and SYNOPSIS [53] projects and adapt them to the compositional systems whose modelling
and verification is facilitated in AMASS.

Just as the argument pattern for assurance of the application of an architectural pattern, these patterns
share the same goal promoted through ISO/IEC 15026, to identify the uncertainties involved in assurance of
the top-level claims. In this case, the component contracts are used to gather the evidence that a particular

Figure 37. Contract-driven requirement satisfaction assurance argument pattern

contracts
The list of {component} contracts

formalizing {requirement}:
{contractList}

reqConf
{requirement} is satisfied with sufficient confidence

reqImplementation
{requirement} is correctly formalized
by the related {component} contracts

contConf
The set of {component} contracts
formalizing {requirement} are satisfied
with sufficient confidence

Figure 38. Contract satisfaction assurance argument pattern

contractDesc
{informal description of contract}

contractConfidence
{contract} is satisfied with sufficient confidence

contractDec
The list of contracts refining

{contract}: {contractRefinedBy}

contractDecomp
{contract} decomposition
is correct

contractReq
The contract formalizes {requirement}

Contract N of
sub-component N

DC-Str
Argument over all sub-component

contracts refining {contract}

contractComplete
{contract} is sufficiently complete

contractAssume
{contract} assumptions are
satisfied with sufficient confidence

Away Goal
The contractN is satisfied
with sufficient confidence

ComponentN Module

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 66 of 120

requirement allocated to a component is satisfied. The presented patterns try to capture the uncertainties
that need to be addressed to increase the confidence demonstrated through contracts that a particular
requirement is satisfied by the component.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 67 of 120

3. Design Level (*)

In this chapter the design of the AMASS logical tool architecture and the metamodel supporting the
concepts presented in the previous chapter are presented.

3.1 Functional Architecture for Architecture Driven Assurance

This section illustrates the functional architecture in charge to support the approaches for architecture-
driven assurance presented in the previous chapter. In particular, logical components supporting the
features discussed at conceptual level have been identified. Standard UML notation is used to represent
components with provided and required interfaces.

One of the main goals of the logical architecture regards the definition of the interfaces that will be
provided/required by each logical component, so to clarify the responsibilities and collaboration between
the components themselves, and possibly between the components here defined and the ones defined in
the others technical WPs. The logical components here identified, together with their provided and
required interfaces, will guide the implementation steps and the design of the overall AMASS logical
architecture to be defined in WP2. Indeed, it is expected that a subset of the components and interfaces
here presented will be referred in WP2 for the definition of the overall logical architecture of the AMASS
reference tool architecture.

Figure 39 shows the SystemComponentSpecification basic building block, responsible for the management
of the components and contracts modelling (a first implementation of this component based on
Papyrus+CHESS has been provided in the context of the AMASS Core prototype release).
ArchitectureDrivenAssurance represents the component that it is in charge to implement the services of the
ARTA; these services are represented in Figure 40 as a set of provided interfaces; the services listed in the
interfaces basically reflect the features presented in chapter 2, like the possibility to apply architectural
patterns, V&V activities and contract based approach facilities.

ArchitectureDrivenAssurance component provides its features by using services provided by the
SystemComponentSpecification (see Figure 39) and by using services provided by components external to
the ARTA (see Figure 41) (in the diagrams the external components are tagged as actors, according to the
UML semantics). We expect that the ArchitectureDrivenAssurance will be able to interface with external
tools dedicated to system component specification: this is reflected in Figure 39 by the
ComponentManager entity.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 68 of 120

Figure 39. ARTA SystemComponentSpecification and ArchitectureDrivenAssurance components

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 69 of 120

Figure 40. ArchitectureDrivenAssurance components provided interfaces

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 70 of 120

Figure 41. ARTA ArchitectureDrivenAsurance components and external actors/tools

A more detailed picture of the logical architecture is provided in Appendix B: Architecture-driven Assurance
logical architecture (*), where sub-components decomposing the components introduced above have been
designed. The information about the WP3 requirements satisfied by each logical component is also
provided in the diagrams.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 71 of 120

The collaboration diagrams provided in Figure 44 shows the aforementioned sub-components realizing the
features presented Section 2; the data flow between the sub-components shows at logical level the
dependencies of the realized features.

Figure 42. Logical Components Collaboration - part1

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 72 of 120

Figure 43. Logical Components Collaboration - part2

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 73 of 120

Figure 44. Logical Components Collaboration – part3

3.2 System Component Metamodel for Architecture-driven Assurance

This section illustrates the AMASS Component MetaModel supporting Architecture-driven assurance
(CMMA). The metamodel is a review of the SafeCer metamodel [11] and embeds results from the
SEooCMM metamodel [12].

This is an abstract metamodel, in the sense that it is used to elaborate the domain needs in an easier way
(e.g. without the need to introduce and face with the complexity of existing standard component
metamodels, like UML). The concepts available in CMMA will be made available to the modeller by using
standard/existing metamodel(s) properly adapted, like UML and SysML tailored with the CHESS profile (see
Section 3.3).

The metamodel basically provides general architectural entities commonly available in standard modelling
languages for system architectures, like UML/SysML and AADL. Moreover, it covers concepts related to
contract based design approach, like the ones presented in Section 2.1.1. It is worth noting that the main
goal of CMMA is not to provide a unified metamodel for system component, failure behaviour
specification, etc. but to identify the links between architectural-related entities and the other parts of the
CACM (e.g. argumentation, evidences), so to provide the model-based support for the architecture driven
assurance approach.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 74 of 120

3.2.1 Elaborations

This section presents some support that has been made available in the metamodel to cover the
conceptual approaches discussed in chapter 2. The full CMMA specification is then given in Section 3.2.2.
Further extensions of CMMA related to WP4 and WP6 conceptual level needs will be documented in D4.3
and D6.3 respectively, if needed.

3.2.1.1 System Architecture Modelling

As stated above, the CMMA metamodel basically provides general architectural entities commonly
available in standard modelling languages, like views, structured system components, components ports,
connections, etc. This part is then enriched with other kind of constructs (like contracts) and traceability
links to the CACM to support the architecture-driven approach.

3.2.1.2 Representing Analysis

Section 2.1.1 elaborates about the need to represent specific analysis at model level in order to support
argumentation reasoning.

A dedicated entity named AnalysisContext representing a specific analysis run is defined in CMMA;
AnalysisContext allows to refer the entities in the model (e.g. architectural entities, failure behaviours) to
be given in input to a given analysis tool, also together with specific information needed to set the specific
analysis (e.g. analysis parameters), if needed.

AnalysisContext can be then traced to the artefact produced by the analysis and to the CACM entity
representing the tool which has been used to run the analysis.

3.2.1.3 Failure Behaviour Specification

As elaborated in Section 2.1.1, failure behaviour specification plays an important role in the modelling of
the system components, e.g. to support model based V&V activities. In the context of CMMA, generic
entities related to safety behaviour are introduced, mimicking the ones introduced in Section 2.1.1. More
fine-grained support for failure behaviour specification is expected to be available in “concrete”
metamodel for system component specification (like UML+CHESS dependability profile, AADL error model
annex). Direct connections between failure behaviour specification and other CACM entities have not been
introduced; e.g., as presented in Section 2.1.1, the connection between the safety case and the entities of
the failure behaviours (see Figure 5) can be derived from the FailureAnalysis concept, which in CMMA is
represented by the AnalysisContext concept.

3.2.1.4 Link to assurance case, evidence and process models

To support the link between system architecture and assurance, the following information has been
addressed in the CMMA:

• As discussed in Section 2.1.1, the idea is that any instance in the architecture could reference to its
associated arguments included in a component assurance case; to support this idea, the CMMA
metamodel identifies the connection between an instance-entity of the system architecture
(BlockInstance, Section 3.2.2.3.2) and the argumentation entity.

• Contract and assurance case: as discussed in section 2.5, the contract-based requirements
satisfaction pattern is proposed in AMASS as general argument strategy. To support this approach
at model level, several traceability links have been identified between contract, assurance case and
evidence entities (see Section 3.2.2.4). These links facilitate connecting the system model with the
assurance case such that it makes available the information needed for automated instantiation of
argumentation patterns for contract-based assurance of requirements.

• There is a clear relationship between the design architecture and the work-products defined at the
process level; these relationships must be identified to support the demonstration of the

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 75 of 120

compliance of the architecture with respect to a given process. In this regard CMMA identifies
traceability links between system architecture to CACM process activities, i.e. the executed
process. Concerning the planned process, we could have a set of information related to a
tool/system methodology for system design which can be related to a process plan/standard and
possibly reused when the tool/methodology is applied in the context of a given system design; this
traceability aspect addressing the planned process will be investigated in the context of WP6.

3.2.1.5 Support for architectural patterns

CMMA introduces a basic support for patterns definition and instantiation, while focusing on the contract-
based approach applied to patterns and then the enabling of the assurance patterns application (as
discussed in Section 2.5.1).

3.2.2 CMMA Metamodel specification

3.2.2.1 Modelling out of context

This part of the metamodel concerns the constructs that can be used to model entities out of a given
context, i.e. reusable units.

3.2.2.1.1 Block Type

Figure 45. BlockType

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 76 of 120

Figure 46. Composite BlockType

A BlockType (Figure 45) represents a reusable unit out-of-context, i.e., a collection of features that are
constant regardless of the context in which it is used. It can be used to represent any kind of system
entities, e.g. HW, SW, functional, human.

The realize relationships allows to model that a block implements the functionality provided by other (more
abstract) blocks, e.g. to model function blocks realized through SW/HW blocks.

3.2.2.1.2 Port

A Port (Figure 45) represents an interaction point through which data can flow between the block and the
context where it is placed. This is an abstract meta-class.

There are three types of ports: Data, Event and Operation ports. Each port also has a specified direction.

• Data port: A Data port is a point of interaction where typed data can be sent or received by the
block. The direction of a data port is either output (sending data) or input (receiving data).

• Event port: An Event port is a point of interaction where events can be sent or received by the
block. The direction of an event port is either output (sending events) or input (receiving events).

• Operation port: An Operation port is a point of interaction corresponding to a function or method,
with a number of typed parameters and return type.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 77 of 120

3.2.2.1.3 ConfigurationParameter

Configuration parameters (Figure 45) represent points of variability in a BlockType. They allow formulation
of more detailed contracts by including them in assumptions or in the form of parametric contracts. For
example, a contract could specify that the component requires at most 10+5*queue_length units of
memory, where queue_length is one of the configuration parameter defined for the component type.

It can be set when the BlockType appears as Subblock or when it is instantiated (see BlockInstance) in a
given system.

3.2.2.1.4 Subblock

Subblock (Figure 46) represents a part of a decomposed BlockType. A Subblock is an occurrence of a given
BlockType inside a parent BlockType.

Subblock is different from the BlockInstance concept (see 3.2.2.3.2) since Subblock is an occurrence of a
BlockType in the context of a BlockType, while a BlockInstance is an occurrence of a BlockType in the
context of a System.

When a composite BlockType is instantiated in a given system, its Subblocks are instantiated as well; in this
way the Subblocks can be further configured at instance level.

Subblocks of the same parent BlockType can be connected together through ports. Also, Subblocks ports
can be connected to the ports of the parent BlockType.

3.2.2.1.5 Connection and ConnectionEndPoint

Connection and ConnectionEndPoint (Figure 46) allow to connect Subblocks through the ports defined for
the corresponding/typing BlockTypes.

3.2.2.1.6 Patterns

Patterns are represented in the metamodel as a kind of composite block (Figure 46), where the internal
part (Subblocks) represent the roles of the pattern. Pattern comes with the set of attributes presented in
Section 2.2.1.1. The link between Patterns and Contracts is derived through BlockType (see Section 3.2.2.2).

PatternUse (Figure 46) represents the application of a given Pattern in the context of a composite block;
PatternUse owns the traceability information about the parts of the composite block playing the roles
owned by the instantiated pattern.

3.2.2.2 Contracts

This part of the metamodel regards the constructs which enable contract-based design.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 78 of 120

Figure 47. Contract

Figure 48. Contract refinement

3.2.2.2.1 Contract

Contracts (Figure 48) represent information about the block type, bundled together with explicit
descriptions of the assumptions under which the information is guaranteed.

The general format of a contract can be defined as:
<A, G, {<B1, H1>, … , <Bn, Hn>}>

Where:

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 79 of 120

• A defines the strong assumptions that must hold in any context where the component type is used.

• G defines strong guarantees that always hold with no additional assumptions.

• Bi are weak assumptions that describe specific contexts where additional information is available.

• Hi are weak guarantees that are guaranteed to hold only in contexts where Bi hold.

A block type should never be used in a context where some strong assumptions are violated, but if some
weak assumptions do not hold, it just means that the corresponding guarantees cannot be relied on.

Contract can have an integrity level stating the level of argumentation to be provided about the confidence
in the contract; better semantic can be provided for integrity level according to adopted safety standard.
Integrity level can be inherited by the Requirements associated to the Contract through FormalExpression.

The needsFurtherSupport Boolean attribute indicates if the contract is fully validated; if it is false, only
partial evidence is provided with the contract and additional evidence should be provided.

3.2.2.2.2 FormalProperties

FormalProperty (Figure 48) represents a formalization of a requirement; it appears as assumption or
guarantee of a Contract.

3.2.2.2.3 ContractConstituent

ContractConstituent (Figure 48) is used to model contract refinement along the blockType decomposition,
i.e. between BlockType and its parts (Subblocks).

E.g.: supposed to have contract C1 associated to BlockType B1, and B1 is decomposed into B1_1 and B1_2
Subblocks. B1_1 has contract C2 and B1_2 has contract C3 associated.

Then, ContractConstituent allows modelling that contract C1 is decomposed by the B1_1.C2 and B1_2.C3
contracts. In particular the “contract provided by a given Subblock” (e.g. B1_1.C2) is the kind of information
stored in ContractConstituent.

3.2.2.3 Modelling in a given context

This part of the metamodel regards the constructs that can be used to model entities placed in a given
context/system.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 80 of 120

Figure 49. System

3.2.2.3.1 System

A System (Figure 49) represents a given cyber-physical system under design. Hold references to owned
block instances through software and platform association; typically, the latter are created by instantiating
a root composite BlockType.

3.2.2.3.2 BlockInstance

BlockInstance (Figure 49) represents an instance of a given BlockType in a particular system/context; it
inherits the properties (ports, parameters, contracts, subblocks) as specified for its typing BlockType. In
particular the decomposition structure defined for the typing BlockType is replicated at instance level
through the derivedComposition link.

It has allocatedTo relationship to be used to model allocation of block instances, for instance like SW to HW
instance blocks deployment.

The active link on the BlockInstance allows to specify the weak contracts associated to the typing BlockType
which hold for a given block instance. Note that this can have impact on the modelled contract refinement.
E.g., if a weak contract has been used to decompose a parent strong contract, then if the weak contract
does not hold in a given context, then the contract refinement is invalid for that particular context.

A BlockInstance inherits the links to the evidence and assurance entities available for:

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 81 of 120

• the StrongContracts associated to the typing BlockType

• the WeakContracts referred through the active relationships

3.2.2.3.3 AnalysisContext

AnalysisContext (Figure 49) allows to collect all the information required to run a given analysis execution;
in particular it allows to refer the (sub)set of block instances to be analysed.

3.2.2.4 Failure Behaviour

This part of the metamodel regards the definition of the failure behaviour for a given BlockType. The
entities depicted in the following figure mimics the ones presented in Section 2.1.1. Basically, a BlockType
can be decorated with a set of of possible faults effecting the BlockType itself; the faults can be linked to
failures of the given BlockType. Each failure can be described with a given failure mode affecting the port of
the BlockType.

It is expected that actual metamodels (e.g. provided by CHESS or Medini, see Figure 6) will provide
additional constructs to enrich the failure behaviours modelling (like about the impact of a failure mode on
the nominal behaviours, quantitative value or qualitative expression for faults and failures occurrence).

Figure 50. Failure Behaviour

3.2.2.5 Link to evidence and assurance cases

This part of the metamodel regards the connection to the assurance-related entities. Note that the
connections are bidirectional, to allow navigation of the information from all the different perspectives
(architecture, assurance case, evidence models).

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 82 of 120

Figure 51. Artefact and assurance-related entities connections

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 83 of 120

3.2.2.5.1 CitableElement

 Imported from AMASS CACM Evidence Metamodel (see AMASS D2.2 [3] and updates).

3.2.2.5.2 Claim

Imported from AMASS CACM Assurance Case Metamodel (see AMASS D2.2 [3] and updates).

3.2.2.5.3 AssuranceCasePackage

Imported from AMASS CACM Assurance Case Metamodel (see AMASS D2.2 [3] and updates).

3.2.2.5.4 Agreement

Imported from AMASS CACM Assurance Case Metamodel (see AMASS D2.2 [3] and updates).

3.2.2.5.5 ArgumentationElement

Imported from AMASS CACM Assurance Case Metamodel (see AMASS D2.2 [3] and updates).

3.2.2.5.6 BlockInstance

The BlockInstance entity (see 3.2.2.3.2) is extended with the following relationship:

• referenceArgumentation: ArgumentationElement
o the arguments associated to the block instance

3.2.2.5.7 Contract

The Contract entity (see 3.2.2.2.1) is extended with the following relationships:

• assuranceCase: AssuranceCasePackage
o the package(s) owning the assurance case entities related to the contract

• agreement: Agreement
o the agreement owns the arguments about how the assumption of a contract are fulfilled in

the context of the given system

• supportedBy: CitableElement
o allows to model that a Contract statement, in particular its guarantees, can be supported

by artefacts (e.g. the latter referring some verification results)

• claim: Claim
o the referred claim allows to further clarify a contract statement; e.g. that the contract is

derived from some analysis or is based on some specification

The Contract entity is extended with the following attributes:

• contextStatement: String
o store the informal description of what the contract means (which would be the context

statement in the corresponding argumentation)

• artefactStatement: String
o explain how a particular artefact relates to the contract (e.g., whether a contract is derived

from the artefacts or the artefacts support that the implementation behaves according to
the contract, etc.).

3.2.2.5.8 FormalExpression

The FormalProperty entity (see 3.2.2.2.2) is extended with the following relationships:

• Refers: Claim
o Allows to map the guarantees of the contract to claims
o Allows to associate a claim (e.g. GSN away goal) to each of the contract’s assumptions.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 84 of 120

3.2.2.5.9 AnalysisContext

The AnalysisContext (see 3.2.2.3.3) is extended with a relationship to the artefacts produced by the
corresponding analysis execution.

3.2.2.6 Link to executed process

This part of the metamodel regards the connection with the CACM executed process.

The subset of the CMMA entities that can play the role of input or output artefact for a given process
activity is shown in Figure 52.

Figure 52. Links to the executed process

3.3 CHESS Modelling Language

CHESS UML/SysML10/MARTE11 profile has been adopted in the AMASS reference tool architecture, as
“instantiation” of the CMMA abstract metamodel, as part of the System Component Specification basic
building block.

UML and SysML allow modelling the architectural design of the system, so covering the CMMA parts
related to the out of context and in-context architectural parts.

CHESS profile provides support for contract-based design: an introduction of the CHESS profile related to
the support for contract-based design has been reported in AMASS D3.1 [2] Appendix B; this part of the
profile will be extended in the context of the second prototype iteration to support the new metamodel
concepts introduced in Section 3.2.1.

Regarding the AnalysisContext introduced in 3.2.1.2, here the support coming from the MARTE profile will
be evaluated. MARTE already provides constructs to support generic concepts for types of analysis based
on system execution behaviour (see in particular MARTE Generic Quantitative Analysis Modelling (GQAM)
sub-profile from the MARTE specification).

Regarding failure behaviour specification, CHESS comes with a dedicated profile for dependability for
modelling safety aspects related to the system architecture. The metamodel from which the CHESS
dependability profile has been derived is the SafeConcert metamodel [47] resulting from the ARTEMIS JU

CONCERTO12; this metamodel is presented in Appendix C: SafeConcert metamodel, together with
considerations about similarities with what has been presented in Section 2.1.1 about failure behaviour

10 The OMG systems Modelling Language www.omgsysml.org
11 UML Profile for MARTE: Modelling and Analysis of Real-time Embedded Systems.

http://www.omg.org/spec/MARTE/1.1
12 www.concerto-project.org/

http://www.omgsysml.org/
http://www.omg.org/spec/MARTE/1.1
http://www.concerto-project.org/

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 85 of 120

specification. Information about the CHESS profile definition will be covered in the context of AMASS task
T3.3.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 86 of 120

4. Way forward for the implementation (*)

The table below represents the requirements to be implemented in WP3, as derived from D2.1 [1]. A
column here has been added to link the requirements to the sections where elaboration has been
provided.

It is worth noting that some elaborations and approaches presented in Chapter 2 will be implemented as
part of the third prototype (Prototype P2); the “Prototype N°” column in the table below has not to be
considered final here, it is currently under elaboration and its final version will be documented in the
context of Task 3.3.

Table 5. WP3 requirements coverage

ID Short Description Description Prototype
Nº

Priority Elaborated
in section

WP3_APL
_001

Drag and drop an
architectural pattern

The system shall be able to
instantiate in the component
model and architectural pattern
selected from the list of patterns
stored.

Prototype
P1

Should 2.2

WP3_APL
_002

Edit an architectural
pattern

The system should be able to
edit, store and retrieve
architectural patterns.

Prototype
P1

Should 2.2

WP3_APL
_003

Use of architectural
patterns at different
levels

The system shall be able to apply
to the component model
architectural patterns at different
levels: AUTOSAR, IMA,
Safety/Security Mechanisms
(security controls).

Prototype
P1

Should 2.2

WP3_APL
_004

Architectural
Patterns suggestions

The system could provide the
user suggestions about a certain
safety/security mechanisms
stored as architectural patterns.

Prototype
P2

Could 2.2

WP3_APL
_005

Generation of
argumentation
fragments from
architectural
patterns/decisions

The system shall be able to
generate arguments fragments
based on the usage of specific
architectural patterns in the
component model.

Prototype
P2

Should 2.1.3,
2.5.1

WP3_CAC
_001

Validate composition
of components by
validating their
assurance contract

The system shall be able to
validate the composition of two
or more components by
validating the compatibility of the
component contracts.

Prototype
P1

Shall 2.3

WP3_CAC
_002

Assign contract to
component

The system shall allow associating
a contract to a component. Then,
the system shall allow dropping a
contract from a component.

Core
Prototype

Shall 2.3.1

WP3_CAC
_003

Structure properties
into contracts
(assumptions/guaran
tees)

The system shall be able to
support the extraction of
assumptions and guarantees to
be used in component contracts
based on component properties.

Core
Prototype

Must 2.3.1

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 87 of 120

WP3_CAC
_004

Specify contract
refinement

The system shall enable users to
specify the refinement of the
contract along the hierarchical
components architecture.

Core
Prototype

Shall 2.3.1

WP3_CAC
_005

General
management of
contract-component
assignments

The system should enable users
to have a view of the association
between contracts and
components for the entire system
architecture (thus, not only a
view on the single contract
assignment for each component).

Prototype
P1

Should 2.3.1

WP3_CAC
_006

Refinement-based
overview

The system should enable users
to have a hierarchical view of the
contract refinements along the
system architecture.

Prototype
P1

Should 2.3.1

WP3_CAC
_007

Overview of check
refinements results

The system should enable users
to have an overview in terms of
status of check refinement of all
the defined contracts.

Prototype
P1

Should 2.3.1

WP3_CAC
_008

Contract-based
validation and
verification

The system must provide support
for contract-based system
validation and verification,
including refinement checking,
compositional verification of
behavioural models, and
contract-based fault-tree
generation.

Prototype
P1

Must 2.4.3.6

WP3_CAC
_009

Improvement of
Contract definition
process

The operation of contract
definition should be improved in
terms of time spent.

Prototype
P1

Should 2.3.1

WP3_CAC
_011

Overview of
contract-based
validation for
behavioural models

The system could enable users to
have an overview of the
validation of a contract over a
state-machine. In case of failure,
the system could enable users to
have information about the trace
that does not fulfil the contract.

Prototype
P1

Could 2.3.1

WP3_CAC
_012

Browse Contract
status

The user shall be able to browse
the contracts associated within a
component and their status
(fulfilled or not).

Core
Prototype

Must 2.3.1

WP3_CAC
_013

Specify contracts
defining the
assumption and the
guarantee elements

The system shall provide the
capability to create a contract
defining two new properties
(assumptions/guarantees)
implicitly associated to that
contract.

Core
Prototype

Should 2.3.1

WP3_SA
M_001

Trace component
with assurance
assets

The supplier of a component shall
be able to trace all the assurance
information with the specific
component.

Core
Prototype

Must 3.2

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 88 of 120

WP3_SA
M_002

Impact assessment if
the component
changes

The system shall provide the
capability for a component
change impact analysis.

Prototype
P2

Shall 2.1.2
This

requirem
ent will
be also

supporte
d by the

work
performe
d in WP5
related to
traceabilit
y support.

WP3_SA
M_003

Compare different
architectures
according to
different concerns
which have been
specified before

The system shall be able to
compare different system
architectures based on
predefined criteria, like
dependability or timing concerns.

Prototype
P2

Could 2.4.6

WP3_SA
M_004

Integration with
external modelling
tools

The system could interact with
external tools for system design
and development (e.g.,
Rhapsody, Autofocus, Compass)
to get the system architecture.

Prototype
P2

Could 2.1.4

WP3_SC_
001

System abstraction
levels browsing

The user shall be able to browse
along the different abstractions
levels (system, subsystem,
component).

Core
Prototype

Must 2.1.4

WP3_SC_
002

System abstraction
levels editing

The user shall be able to move
and edit along the different
abstractions levels (system,
subsystem, component).

Core
Prototype

Must 2.1.4

WP3_SC_
003

Modelling languages
for component
model

The system shall be able to
support different modelling
languages to model the
component/subsystem/system.

Prototype
P2

Should 2.1.4

WP3_SC_
004

Formalize
requirements with
formal properties

The system shall be able to
specify requirements about a
component in a formal way.

Core
Prototype

Must 2.4.2.4

WP3_SC_
005

Requirements
allocation

The system shall provide the
capability for allocating
requirements to parts of the
component model. More in
general, requirements traceability
shall be enabled.

Core
Prototype

Must 2.4.2.4

WP3_SC_
006

Specify component
behavioural model
(state machines)

The system shall be able to
specify the component
behavioural model.

Core
Prototype

Must Covered
by the
Core

Prototype

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 89 of 120

WP3_SC_
007

Fault injection
(include faulty
behaviour of a
component)

The system shall have fault
injection capabilities.

Core
Prototype

Must 2.1.1,
2.4.7,
2.4.8

WP3_VVA
_001

Traceability between
different kinds of
V&V evidence

The system shall provide the
ability to trace immediate
evidence (obtained during the
execution of the left-hand side of
the V-model) with direct evidence
(obtained during the execution of
the right-hand side of the V-
model). For instance, a contract-
based, component-based
specification should be traced
with the corresponding analysis-
results.

Core
Prototype

Should 2.1.2,
3.2.1.2

WP3_VVA
_002

Trace model-to-
model
transformation

The system shall be able to trace
all component model
transformations executed during
V&V model-based analysis.

Prototype
P1

Must 2.1.2

WP3_VVA
_003

Validate
requirements
checking
consistency,
redundancy, … on
formal properties

The system shall be able to
validate formal
requirements/properties.

Prototype
P1

Must 2.4.3.6

WP3_VVA
_004

Trace requirements
validation checks

The system shall be able to trace
requirements validations.

Core
Prototype

Must 2.4.3.6

WP3_VVA
_005

Verify (model
checking) state
machines

The system shall be able to verify
that the component behavioural
model matches with the
specification.

Prototype
P1

Must 2.4.5.3

WP3_VVA
_006

Automatic provision
of HARA/TARA-
artefacts

The system shall provide the
capability for automating HARA
(Hazard Analysis Risk Assessment)
/ TARA (Threat Assessment &
Remediation Analysis)-related
artefacts (e.g., FTA, FMEA, and
attack trees).

Prototype
P2

Must 2.4.8

WP3_VVA
_007

Generation of
reports about system
description/
verification results
….

The system shall generate reports
about
system/subsystem/component
verification results.

Prototype
P2

Must 2.1

WP3_VVA
_008

Automatic test cases
specification from
assurance
requirements
specification

The system should be able to
generate automatically the test
cases specification based on the
requirements definition.

Prototype
P2

Shall This
requirem
ent has

been
dropped

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 90 of 120

WP3_VVA
_009

Capability to connect
to tools for test case
generation based on
assurance
requirements
specification of a
component/system

The system shall be able to
connect to external tools to
execute the test cases already
specified.

Prototype
P2

Shall This
requirem
ent has

been
dropped

WP3_VVA
_010

Model-based safety
analysis

The system shall allow the user to
generate fault trees and FMEA
tables from the behavioural
model and the fault injection.

Prototype
P1

Must 2.4.8

WP3_VVA
_011

Simulation-based
Fault Injection

The system should allow the user
to generate fault injection
simulations from the fault trees
and FMEA tables.

Prototype
P2

Should 2.4.7

WP3_VVA
_012

Design Space
Exploration

The system could support the
design space exploration of a
system for a certain
safety/security criticality level.

Prototype
P2

Could 2.4.6

WP6_PPA
_004

The AMASS tools
must support
specification of
variability at the
component level

The system shall enable users to
specify what varies (and what
remains unchanged) from one
component and its evolved
version at component level.

Prototype
P1

Shall Addresse
d in the

context of
WP6

WP6_RA_
003

Reusable off the
shelf components

The system shall provide the
capability for reuse of pre-
developed components and their
accompanying artefacts.

Core
Prototype

Must 2.3.2

4.1 Feedback from Core/P1 prototype evaluation

Deliverable D1.4 [6] and D1.5 [10]13 report about the results of evaluating, respectively, the AMASS Core
and P1 prototypes by industrial partners.

While Papyrus and CHESS have been used by some use cases, other use cases have highlighted the need to
use external tools for architecture specification like Rhapsody, Model-based Requirement Management
Tool or Simulink. In WP3 we already have a dedicated requirement covering this aspect, about integration
with external modelling tools, and in this deliverable we propose some approaches for its coverage, e.g. by
proposing functionalities for traceability management with external tools (see Section 2.1.2), the latter
under development in the context of WP5. For instance, support for traceability from AMASS platform to
requirements managed in DOORS will be available by using an extension of the Capra [59] traceability tool
(see AMASS deliverable D5.5 [9]).

Dedicated import facilities from external modelling tool to AMASS internal modelling tool are available in
Papyrus (the system modelling tool adopted by the AMASS platform, together with the CHESS extension)
like the import from Rhapsody models. Section 2.1.4 also is related to the description of specific importers
that will be developed in AMASS.

13 At the time of writing this deliverable D1.5 is under finalization.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 91 of 120

5. Conclusions (*)

In this deliverable, we have elaborated our conceptual approach for architecture-driven assurance. In
particular, in chapter 2 several approaches and features planned to be supported by the AMASS tool
platform, also by using external tools, have been presented, together with argumentation fragments
related to the system architecture modelling and verification and validation activities.

Then in chapter 3 we have presented the logical architecture and system component metamodel that will
allow to support the aforementioned features and that will guide the implementation phase, discussed in
chapter 4.

In the next period of the AMASS project we will focus on the finalization of the implementation of the
presented approaches, to be made available as part of the AMASS final prototype, and on the definition of
the methodological guidelines. We will analyse the feedback from the use cases implementation, in
particular related to the application of the proposed argumentation fragments related to the contract-
based approach. We will continue the investigation around assurance of patterns; for this goal, we will try
to identify specific safety, security or technological patterns that could be of interest for the AMASS use
cases first, and then work on that specific examples, by trying to apply the pattern contract-based
assurance approach proposed in this deliverable.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 92 of 120

Abbreviations and Definitions

AADL Architecture Analysis and Design Language

ADA Architecture-Driven Assurance

ADAM Architecture-Driven Assurance Metamodel

API Application Programming Interface

ARTA AMASS Reference Tool Architecture

ARTEMIS ARTEMIS Industry Association is the association for actors in Embedded Intelligent
Systems within Europe

ASIC Application Specific Integrated Circuit

AUTOSAR AUTomotive Open System Architecture

AV Acceptance Voting

CACM Common Assurance and Certification Metamodel

CBD Contract-Based Design

CCL Common Certification Language

CDO Connected Data Objects

CHESSML CHESS Modelling Language

CMMA Component MetaModel for architecture-driven Assurance

CPS Cyber-Physical Systems

CRC Cyclic Redundancy Check

DIA Development Interface Agreement

E2E End to End

ECSEL Electronic Components and Systems for European Leadership

EDC Error-Detection-Correction codes

ETCS European Train Control System

FI Fault Injection

FMEA Failure Modes and Effects Analysis

FMEDA Failure Modes Effects and Diagnostics Analysis

FTA Fault Tree Analysis

GQAM Generic Quantitative Analysis Modelling

GSN Goal Structured Notation

HARA Hazard Analysis Risk Assessment

HAZOP HAZard and OPerability study

HRELTL Hybrid Linear Temporal Logic with Regular Expressions

HTTP Hypertext Transfer Protocol

HW Hardware

IEC International Electro Technical Commission

IMA Integrated Modular Avionics

ISO International Organization for Standardization

JSON JavaScript Object Notation

LF Latent Fault

LTL Linear Temporal Logic

MA Monitor-Actuator

MARTE Modelling and Analysis of Real Time and Embedded systems

MCS Minimal Correction Set

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 93 of 120

ML Modal Logic

MooN M-out-of-N Pattern

MSS Maximal Satisfiable Subset

MTL Metric Temporal Logic

MUS Minimal Unsatisfiable Subset

NLP Natural Language Processing

OCRA Othello Contracts Refinement Analysis

OEM Original Equipment Manufacturer

OMG Object Management Group

OSLC Open Services for Lifecycle Collaboration

PSAC Plan for Software Aspects of Certification

PUS Packet Utilization Standard

RE Requirement Engineering

RQA Requirements Quality Analyzer

RSHP Relation SHiP

RTCA Radio Technical Commission for Aeronautics

RVS Rapita Verification Suite

SCC Semantic Clusters Nouns

SCS System Component Specification

SCM System Conceptual Model

SCV Hierarchical Views Nouns

SE System Engineering

SEooCMM Safety Element out-of-context Metamodel

SLIM System-Level Integrated Modelling Language

SMUT System Model Under Test

SPF/LF Single Point Failure/Latent Fault

SQA System Quality Analyzer

SW Software

SysML System Modelling Language

TARA Threat Assessment & Remediation Analysis

TLE Top Level Event

UI User Interface

UML Unified Modelling Language

V&V Verification and Validation

WP Work Package

XML eXtensible Markup Language

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 94 of 120

References

[1] AMASS D2.1 Business cases and high-level requirements, 28th February 2017

[2] AMASS D3.1 Baseline and requirements for architecture-driven assurance, 30th September 2017

[3] AMASS D2.2 AMASS reference architecture (a), 30th November 2016

[4] AMASS D4.2 Design of the AMASS tools and methods for multiconcern assurance (a), 30th June 2017

[5] AMASS D6.2 Design of the AMASS tools and methods for cross/intra-domain reuse (a), 31st October
2017

[6] AMASS D1.4 AMASS demonstrators (a), 30th April 2017

[7] AMASS D3.2 Design of the AMASS tools and methods for architecture-driven assurance (a), 30th June
2017

[8] AMASS D2.3 AMASS reference architecture (b), 31st January 2018

[9] AMASS D5.5 Prototype for seamless interoperability (b), 30th November 2017

[10] AMASS D1.5 AMASS demonstrators (b), 16th April 2018

[11] SafeCer Deliverable D132.2, Generic component meta-model v1.0, 2014-12-19

[12] http://www.es.mdh.se/pdf_publications/4435.pdf

[13] M. Bozzano, A. Cimatti, C. Mattarei, S. Tonetta: Formal Safety Assessment via Contract-Based Design.
ATVA 2014: 81-97

[14] A. Pnueli. The temporal logic of programs. In Proceedings of 18th IEEE Symp. on Foundation of
Computer Science, pages 46–57, 1977.

[15] Alessandro Cimatti, Marco Roveri, Angelo Susi, and Stefano Tonetta: Validation of Requirements for
Hybrid Systems: a Formal Approach. ACM Transactions on Software Engineering and Methodology,
Volume 21, Issue 4.

[16] S. Schwendimann. A New One-Pass Tableau Calculus for PLTL. TABLEAUX 1998, 277-292.

[17] P.Wolper. The Tableau Method for Temporal Logic: An Overview. Logique et Analyse 28.110-111
(1985).

[18] K. Rozier and M. Vardi. LTL Satisfiability Checking. STTT 12.2 (2010).

[19] M. Fisher: A Resolution Method for Temporal Logic. IJCAI 1991, 99-104.

[20] M. Fisher, C. Dixon, and M. Peim. Clausal temporal resolution. ACM Trans. Comput. Log. 2(1): 12-56.

[21] Thomas Arts, Stefano Tonetta: Safely Using the AUTOSAR End-to-End Protection Library. SAFECOMP
2015: 74-89

[22] J. Barnat, L. Brim, J. Beran, and T. Kratochvila, “Partial Tool Chain to Support Automated Formal
Verification of Avionics Simulink Designs,” in Submitted to FMICS., 2012.

[23] Llorens, J., Fuentes J.M., Diaz I. RSHP: A Scheme to Classify Information in a Domain Analysis
Environment. IEEE-AAAI- ICEIS 2001. International Conference on Enterprise Information Systems.
Actas del congreso, pp. 686-690. Setúbal, Portugal. 2001

[24] Llorens, Juan, Jorge Morato, and Gonzalo Genova. "RSHP: an information representation model based
on relationships." In Soft computing in software engineering, pp. 221-253. Springer Berlin Heidelberg,
2004.

[25] Génova, G., Fuentes, J.M., Llorens, J., Hurtado, O., Moreno, V. (2013). A Framework to Measure and
Improve the Quality of Textual Requirements. Requirements Engineering Journal, 18(1):25-41.

[26] Parra, E., Dimou, C., Llorens, J., Morento, V. and Fraga, A. (2015). A methodology for the classification
of quality of requirements using machine learning techniques. Information and Software Technology
67:180–195.

[27] System Quality Analyzer (SQA). The Reuse Company. Accessed February 15th, 2018.
https://www.reusecompany.com/system-quality-analyzer-sqa

[28] H. Ziade, R. Ayoubi, R. Velazco, “A survey on fault injection techniques”, Int. Arab J. Inf. Technol., 1(2):

http://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D2.1_Business-cases-and-high-level-requirements_AMASS_final.pdf
http://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D3.1_Baseline-and-Requirements-for-Architecture-Driven-Assurance_AMASS_final.pdf
http://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D1.4_AMASS-demonstrators-%28a%29_AMASS_Final.pdf
https://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D5.5_Prototype-for-seamless-interoperability-%28b%29_AMASS_Final.pdf
http://amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/documents/D1.4_AMASS-demonstrators-%28a%29_AMASS_Final.pdf
http://www.es.mdh.se/pdf_publications/4435.pdf
http://www.informatik.uni-trier.de/~ley/db/journals/tocl/tocl2.html#FisherDP01
https://www.reusecompany.com/system-quality-analyzer-sqa

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 95 of 120

171--186. 2004.

[29] A. Benso and D. C. S., “The art of fault injection,” Journal of Control Engineering and Applied
Informatics, pp. 9–18, 2011.

[30] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre, J.-C. Laprie, E. Martins, and D. Powell, “Fault
injection for dependability validation: A methodology and some applica-tions,” IEEE Trans. Softw. Eng.,
vol. 16, pp. 166–182, Feb. 1990.

[31] A. Pena, I. Iglesias, J. Valera, and A. Martin, “Development and validation of Dynacar RT software, a
new integrated solution for design of electric and hybrid vehicles,” EVS26 Los Angeles, California,
2012.

[32] Marco Gario, Alessandro Cimatti, Cristian Mattarei, Stefano Tonetta, Kristin Yvonne Rozier: Model
Checking at Scale: Automated Air Traffic Control Design Space Exploration. CAV (2) 2016: 3-22

[33] Standardized E-Gas Monitoring Concept for Gasoline and Diesel Engine Control Units V6.0, EGAS
Workgroup_en /2015-07-13.

[34] “ISO 26262: Road vehicles Functional safety,” International Organization for Standardization, Geneva,
Switzerland, Standard, 2011.

[35] Ashraf Armoush, Falk Salewski, Stefan Kowalewski, “Design Pattern Representation for Safety-Critical
Embedded Systems”, J. Software Engineering & Applications, April 2009.

[36] C. Alexander, “A Pattern Language: Towns, Buildings, Construction,” New York: Oxford University
Press, 1977.

[37] J. Barnat, P. Bauch, N. Benes, L. Brim, J. Beran, andT. Kratochvila. Analysing Sanity of Requirements for
Avionics Systems. In Formal Aspects of Computing (FAoC'16), volume 1, pages 1--19, 2016.

[38] J. Barnat, L. Brim, V. Havel, J. Havliček, J. Kriho, M. Lenčo, P. Ročkai, V. Štill, and J. Weiser. DiVinE 3.0 ---
An Explicit-State Model Checker for Multithreaded C&C++ Programs. CAV, pp 863—868, LNCS, vol.
8044, 2013.

[39] R. Bloem, R. Cavada, I. Pill, M. Roveri, A. Tchaltsev. RAT: A Tool for the Formal Analysis of
Requirements. CAV 2007: 263-267.

[40] N. Soundarajan and J. O. Hallstrom. Responsibilities and rewards: Specifying design patterns. In 26th
International Conference on Software Engineering, 23-28 May 2004, Edinburgh, UK, pages 666{675.
IEEE Computer Society, 2004.

[41] MOGENTES, Model-based Generation of Tests for Dependabe Embedded Systems, D3.1b:”Model-
Based Generation of Test-Cases for Embedded Systems. Fault Models”.

[42] D. Domis, “Integrating fault tree analysis and component-oriented model-based design of embedded
systems,” Verl. Dr. Hut, 2011.

[43] B. Kaiser, R. Weber, M. Oertel, E. Böde, B. Monajemi Nejad, J. Zander, „Contract-Based Design of
Embedded Systems Integrating Nominal Behavior and Safety”, in Complex Systems Informatics and
Modeling Quarterly CSIMQ, 2015.

[44] Massif: MATLAB Simulink Integration Framework for Eclipse. https://github.com/viatra/massif
[45] H. L. V. de Matos, A. M. da Cunha and L. A. V. Dias, "Using design patterns for safety assessment of

integrated modular avionics" 2014 IEEE/AIAA 33rd Digital Avionics Systems Conference (DASC),
Colorado Springs, CO, 2014, pp. 4D1-1-4D1-13.

[46] C. Rescher, N. Kajtazovic and C. Kreiner, “System of safety-critical embedded Architecture Patterns”, in
EuroPLoP, 2013.

[47] L. Montecchi and B. Gallina. SafeConcert: a Metamodel for a Concerted Safety Modeling of Socio-
Technical Systems. 5th International Symposium on Model-Based Safety and Assessment (IMBSA),
Trento, Italy, September, 2017.

[48] R. Rosner, Modular synthesis of reactive systems, Ph.D. thesis, Weizmann Institute of Science, 1992.

[49] MOGENTES, Model-based Generation of Tests for Dependable Embedded Systems,
http://www.mogentes.eu.

[50] CRYSTAL-ARTEMIS. 2016. “CRitical sYSTem Engineering AcceLeration (CRYSTAL EU Project).” Accessed

https://github.com/viatra/massif
http://www.mogentes.eu/

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 96 of 120

September 4. http://www.crystal-artemis.eu.

[51] J. M. Alvarez-Rodríguez, J. Llorens, M. Alejandres, and J. Fuentes, “OSLC-KM: A knowledge
management specification for OSLC-based resources.,” INCOSE Int. Symp., vol. 25, no. 1, pp. 16–34,
2015.

[52] I. Sljivo, B. Gallina, J. Carlson, H. Hansson and S. Puri. “A Method to Generate Reusable Safety Case
Argument-Fragments from Compositional Safety Analysis”. Journal of Systems and Software: Special
Issue on Software Reuse, July 2016.

[53] SYNOPSIS - Safety Analysis for Predictable Software Intensive Systems.
http://www.es.mdh.se/SYNOPSIS.

[54] Alessandro Cimatti, Stefano Tonetta: A Property-Based Proof System for Contract-Based Design.
EUROMICRO-SEAA 2012: 21-28

[55] A. Avizienis, J.C. Laprie, B. Randell, C. Landwehr. Basic concepts and taxonomy of dependable and
secure computing. In: IEEE Trans. Dependable Sec. Comput.1(1): 11-33, 2004

[56] OPENCOSS Project, Common Certification Language: Conceptual Model Deliverable D4.4, Version 1
June 2013, Version 1.1 December 2013, Version 1.2 Forthcoming Summer 2014

[57] Irfan Sljivo. Facilitating reuse of safety case artefacts using safety contracts. Licentiate thesis.
Mälardalen University, June 2015.

[58] Foundation. Eclipse process framework (epf) composer 1.0 architecture overview.
http://www.eclipse.org/epf/composer__. _architecture/. Accessed: 2016-08-29

[59] Capra – traceability management project: https://projects.eclipse.org/projects/modeling.capra

http://www.crystal-artemis.eu/
http://www.es.mdh.se/SYNOPSIS/
http://www.eclipse.org/epf/composer_architecture/
https://projects.eclipse.org/projects/modeling.capra

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 97 of 120

Appendix A: LTL/MTL

In this appendix, we define the syntax and semantics of LTL and MTL, which are used by different
architecture-drive assurance functionalities.

LTL

LTL formulas are built with the following grammar:

𝜙 ∶= 𝑡𝑟𝑢𝑒 |𝑎 | 𝜙1 ∧ 𝜙2| ¬𝜙 | 𝑋𝜙 | 𝜙1𝑈𝜙2 ∣∣ 𝐹𝜙 | 𝐺𝜙

where 𝑎 ranges over a given set of predicates 𝑃𝑅𝐸𝐷(𝑉) (which can be for example the set of linear
arithmetic expressions over integer and/or real variables in 𝑉). While the semantics of a predicate is
defined in terms of assignment to the variables in 𝑉, the semantics of LTL formulas is defined over
sequences of assignments, also called traces. Thus, if 𝑠 is an assignment to the variables in 𝑉 and 𝑎 is a
predicate in 𝑃𝑅𝐸𝐷(𝑉), we assume to have defined if 𝑠(𝑎) is true or false, i.e. if substituting the
variables in 𝑎 with the value assigned them by 𝑠, the expression is evaluated to true or to false. Then, if
𝜎 = 𝑠0𝑠1𝑠2 … is an infinite sequence of assignments to variables in 𝑉, the relation 𝜎 ⊨ 𝜙 (in words, 𝜎
satisfies 𝜙) is defined as follows:

𝜎 ⊨ 𝑡𝑟𝑢𝑒

𝜎 ⊨ 𝑎 iff 𝑠0(𝑎) is true

𝜎 ⊨ 𝜙1 ∧ 𝜙2 𝑖𝑓𝑓 𝜎 ⊨ 𝜙1 𝑎𝑛𝑑 𝜎 ⊨ 𝜙2

𝜎 ⊨ ¬𝜙1 𝑖𝑓𝑓 𝜎 ⊭ 𝜙

𝜎 ⊨ 𝑋𝜙 𝑖𝑓𝑓 𝜎1 ⊨ 𝜙

𝜎 ⊨ 𝜙1𝑈𝜙2𝑖𝑓𝑓 ∃𝑗 ≥ 0 𝑠. 𝑡. 𝜎𝑗 ⊨ 𝜙2𝑎𝑛𝑑 𝜎𝑖 ⊨ 𝜙1 , 𝑓𝑜𝑟 𝑎𝑙𝑙 0 ≤ 𝑖 < 𝑗

𝜎 ⊨ 𝐹𝜙 𝑖𝑓𝑓 ∃𝑗 ≥ 0 𝑠. 𝑡. 𝜎𝑗 ⊨ 𝜙

𝜎 ⊨ 𝐺𝜙 𝑖𝑓𝑓 ∀𝑗 ≥ 0 𝑠. 𝑡. 𝜎𝑗 ⊨ 𝜙

where 𝜎ℎ represents the sub-sequence 𝑠ℎ𝑠ℎ+1 … that starts from 𝑠ℎ.

PLTL

PLTL is an extension of LTL introducing past operators, allowing the logic to reason over past events in a
trace. For PLTL, the grammar is defined as follows:

𝜙 ≔ 𝑡𝑟𝑢𝑒 |𝑎 | 𝜙1 ∧ 𝜙2| ¬𝜙 | 𝑋𝜙 | 𝜙1𝑈𝜙2 ∣∣ 𝐹𝜙 | 𝐺𝜙 |𝑌𝜙| 𝑍𝜙|𝑂𝜙|𝐻𝜙|𝜙1𝑆𝜙2

The new operators are:

• Y(esterday): the dual of 𝑋, referring to the previous instant (and false initially, at time 0);

• Z: similar to Y, but true at time instant 0;

• O(nce): dual of 𝐹, is true iff the argument is true in a point in the past;

• H(istorically): dual of 𝐺, is true iff the argument is true in all points of the past;

• S(ince): dual of 𝑈, holds if the first argument was true somewhere in the past, and the second
argument was true from then up until now.

Assuming a trace 𝜋, and a current time instant 𝑖 , the semantics of these operators are defined as follows:

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 98 of 120

(𝜋, 𝑖) ⊨ 𝑌𝜙 𝑖𝑓𝑓 𝑖 > 0 ∧ (𝜋, 𝑖 − 1) ⊨ 𝜙

(𝜋, 𝑖) ⊨ 𝑍𝜙 𝑖𝑓𝑓 𝑖 = 0 ∨ (𝜋, 𝑖 − 1) ⊨ 𝜙

(𝜋, 𝑖) ⊨ 𝑂𝜙 𝑖𝑓𝑓 ∃0 ≤ 𝑗 ≤ 𝑖. (𝜋, 𝑗) ⊨ 𝜙

(𝜋, 𝑖) ⊨ 𝜙1𝑆𝜙2 𝑖𝑓𝑓 ∃0 ≤ 𝑗 ≤ 𝑖. (𝜋, 𝑗) ⊨ 𝜙1 ∧ ∀𝑗 < 𝑘
≤ 𝑖. (𝜋, 𝑘) ⊨ 𝜙2

MTL

The grammar of Metric Temporal Logic (MTL) extends the LTL one by attaching time intervals to
temporal operators as follows:

𝜙 ∶= 𝑡𝑟𝑢𝑒 |𝑎 |𝜙1 ∧ 𝜙2| ¬𝜙 | 𝜙1𝑈𝐼𝜙2

The semantics of MTL formulas is defined in terms of timed state sequences, which enrich traces with a
sequence of intervals 𝐼0𝐼1𝐼2 … cover the real axis that represents the time points. The (continuous)
semantics of MTL are defined by the following satisfaction relations (⊨). If 𝑓: ℝ+ → 2𝑃 is the function
mapping the current time to the set of propositions that hold at that time, then the following hold
(with 𝑓𝑡(𝑠) = 𝑓(𝑠 + 𝑡)):

𝜎, 𝑡 ⊨ 𝑡𝑟𝑢𝑒

𝜎, 𝑡 ⊨ 𝑎 𝑖𝑓𝑓 𝑡 ∈ 𝐼𝑖 , 𝑠𝑖(𝑎) is true

𝜎, 𝑡 ⊨ 𝜙1 ∧ 𝜙2 𝑖𝑓𝑓 𝜎, 𝑡 ⊨ 𝜙1 𝑎𝑛𝑑 𝜎, 𝑡 ⊨ 𝜙2

𝜎, 𝑡 ⊨ ¬𝜙1 𝑖𝑓𝑓 𝜎, 𝑡 ⊭ 𝜙

𝜎, 𝑡 ⊨ 𝜙1𝑈𝐼𝜙2𝑖𝑓𝑓 ∃𝑡′ ∈ 𝐼 + 𝑡 . 𝜎, 𝑡′ ⊨ 𝜙2 ∧ ∀𝑡′′ ∈ (𝑡, 𝑡′). 𝜎, 𝑡′′ ⊨ 𝜙1

where 𝐼 + 𝑡 is the interval obtained from 𝐼 by shifting the endpoints by 𝑡.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 99 of 120

Appendix B: Architecture-driven Assurance logical architecture
(*)

This section shows the detailed logical architecture by using UML diagrams. In the following figures, blue
blocks are components, green blocks are interfaces, yellow comments contain the functional requirements
and red blocks are the components related to the other AMASS technical work packages.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 100 of 120

Figure 53. SystemComponentSpecification internal design

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 101 of 120

Figure 54. ArchitectureDrivenAssurance component internal structure - part1, with interface required from
SystemComponentSpecification components

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 102 of 120

Figure 55. ArchitectureDrivenAssurance component internal structure – part2, with realized interface and interfaces
required from SystemComponentSpecification components and from AMASS WP5 and WP6 technical work packages

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 103 of 120

Figure 56. ArchitectureDrivenAssurance component internal structure – part3, with realized interfaces

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 104 of 120

Figure 57. ArchitectureDrivenAssurance component internal structure – part4, with interfaces required from external
tools

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 105 of 120

Appendix C: SafeConcert metamodel

Failure Modes and Criticality

Here the support for specification of FailureMode is provided; as also supported by the metamodel
discussed in 2.1.1, FailureMode here are attached to Ports.

The metamodel allows specification of information related to hazards and criticality levels; in particular
regarding criticality levels, the modelling of different classification according to the domain/standard of
interested is supported.

Figure 58. Failure Modes and Criticality

Failure Behaviours

Section 2.1.1 introduces the concept of events and event occurrences associated to failures: these aspects
are made available here through the notion of state machine. Moreover, here the concept of events is
refined to consider different kind of events.

The failure behaviour of system elements is defined as a state machine. Then three kinds of states are
considered: NormalStates, i.e., states that belong to the nominal behaviour of the component;
DegradedStates, i.e., states where the service provided by the component is degraded, but still following
the specifications, and ErroneousStates, i.e., states which deviate from the correct behaviour of the
component.

Events are classified with respect to two dimensions: i) location, i.e., whether they are InputEvents,
InternalEvents, or OutputEvents for the component, and ii) type of behaviour, i.e., whether they are
NormalEvents, ErroneousEvents, or FaultToleranceEvents.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 106 of 120

Figure 59. Failure Behaviours

Input and Output Events

External events are either InputEvents or OutputEvents. In both cases, they are events that are occurring
on the ports of a system element.

There are essentially two kinds of events that may occur as an input event: a NormalInput event, meaning
that the component has received a normal input on one of its ports, or an ExternalFault, meaning that the
component has received an input that deviates from the specification, i.e., the service it receives from
another entity of the system is not correct.

Similarly, output events are also of two different kinds: NormalOutput, i.e., the component provides a
normal output (i.e., a correct service) on the involved port, or Failure, meaning that the service provided by
the component on the involved port has become incorrect.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 107 of 120

Figure 60. Input and Output Events

Internal Events

Internal events are those events that are internal to the block. We distinguish essentially between three
macro-categories of internal events: the NormalInternalEvent, the InternalThreats, and the
FaultToleranceEvents.

An internal event may have associated a delay, expressed by a probability distribution, and a probability,
which specifies the relative probability of occurrence the event, in case others are supposed to occur at the
same time.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 108 of 120

Figure 61. Internal Events

A NormalInternalEvent is an event that was foreseen by the specification of the component, e.g., a switch
to a “power saving” mode due to a low battery level. For the purpose of safety analysis, it is important to
take into account such aspects of a component’s behaviour: the occurrence of failures, as well as their
effects and criticality, may depend, for example, on the current system operational mode (e.g., take off,
cruise, and landing for an aircraft).

An InternalThreat is essentially an InternalFault, or an InternalPropagation. An InternalFault element
represents a fault that occurs spontaneously within the component, e.g., an electrical fault, or that is pre-
existing and dormant [55] within the component, e.g., a software fault. The occurrence attribute can be
used to specify a probabilistic delay, after which the fault manifests itself in the state of the component,
i.e., after which the fault gets activated [55].

The InternalPropagation concept serves to the purpose of defining how input events, or combination of
thereof, affect the internal state of the component. The condition that triggers the propagation is specified
by the condition attribute. This attribute is essentially a Boolean expression over InputEvent elements,
which specifies which combination of events on the ports of the involved component cause that particular
internal propagation event.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 109 of 120

Fault-tolerance events

A particular kind of internal events are those events constituting the fault-tolerance behaviour of system
components. Three different events of this kind are considered. The classical taxonomy of dependable
computing essentially classifies fault tolerance techniques in three main groups: error detection, error
handling, and fault handling.

This can be related with what discussed in Section 2.1.1 about Safety Measures.

Figure 62. Fault-tolerance events

The ErrorDetection event represents the detection of an error in the state of the component, to which
different actions may follow. Those actions can be defined by either associating a state transition with the
event (e.g., to a safe state), or by specifying that additional events are triggered by the error detection
event (e.g., reconfiguration events).

The ErrorHandling event represents an event for which an existing error in the state of the component is
eliminated, thus bringing the component to an error-free state. Depending on the actual technique, the
state can be a previous state (rollback), or a new state (roll forward). In some cases, the error can also be
corrected due to redundancy in the component state (compensation).

Fault handling (FaultHandling event) consists in preventing existing faults for being reactivated again. For
this purpose, several techniques can be adopted, including for example fault isolation (faulty components
are excluded from the service delivery) and reconfiguration (the system configuration is modified e.g.,
switching in spare components).

Relation to Contracts

Section 2.1.1 addresses the possibility to model traceability between failure modes and contracts; here we
have failure modes traced to hazards, and the possibility to model requirements and formal properties
traceability. By tracing safety requirement to hazard then traceability between contract and failure modes
can be derived.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 110 of 120

Appendix D: Design patterns for fault tolerance applied to
technology according to ISO 26262

Safety
Mechanism/Measure

Purpose/objective of the
Safety Mechanism/Measure

Typical Diagnostic
Coverage considered
achievable
(PatternGuarantee)

Notes
(PatternAssumption)

Systems

Failure Detection by
on-line monitoring

To detect failures by monitoring
the behaviour of the system in
response to the normal (on-
line) operation

Low Depends on diagnostic
coverage of failure detection

Comparator To detect, as early as possible
(non-simultaneous) failures in
independent hardware or
software

High Depends on the quality of the
comparison

Majority voter To detect and mask failures in
one of at least three channels

High Depends on the quality of the
voting

Dynamic principles To detect static failures by
dynamic signal processing

Medium Depends on diagnostic
coverage of failure detection

Analogue signal
monitoring in
preference to digital
on/off states

To improve confidence in
measured signals

Low _______

Self-test by software
cross exchange
between two
independent units

To detect, as early as possible,
failures in the processing unit
consisting of physical storage
(for example registers) and
functional units (for example,
instruction decoder).

Medium Depends on the quality of the
self test

Electrical elements

Failure detection by
on-line monitoring

To detect failures by monitoring
the behaviour of the system in
response to the normal (on-
line) operation

High Depends on diagnostic
coverage of failure detection

Processing units

Self-test by software:
limited number of
patterns (one channel)

To detect, as early as possible,
failures in the processing unit
and other sub-elements, using
special hardware that increases
the speed and extends the
scope of failure detection.

Medium Depends on the quality of the
self test

Self-test by software
cross exchange
between two
independent units

To detect, as early as possible,
failures in the processing unit,
by dynamic software
comparison.

Medium

Depends of the quality of the
self test

Self-test supported by
hardware (one-
channel)

To detect, as early as possible,
failures in the processing unit
and other sub-elements, using
special hardware that increases
the speed and extends the
scope of failure detection.

Medium

Depends on the quality of the
self test

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 111 of 120

Software diversified
redundancy (one
hardware channel)

The design consists of two
redundant diverse software
implementations in one
hardware channel. In some
cases, using different hardware
resources (e.g. different RAM,
ROM memory ranges) can
increase the diagnostic
coverage.

High

Depends on the quality of the
diversification. Common
mode failures can reduce
diagnostic coverage

Reciprocal comparison
by software

To detect, as early as possible,
failures in the processing unit,
by dynamic software
comparison.

High

Depends on the quality of the
comparison

HW redundancy (e.g.
Dual Core Lockstep,
asymmetric
redundancy, coded
processing)

To detect, as early as possible,
failures in the processing unit,
by step-by-step comparison of
internal or external results or
both produced by two
processing units operating in
lockstep.

High

It depends on the quality of
redundancy. Common mode
failures can reduce diagnostic
coverage

Configuration Register
Test

To detect, as early as possible,
failures in the configuration
resisters of a processing unit.
Failures can be hardware
related (stuck values or soft
errors induced bit flips) or
software related (incorrect
value stored or register
corrupted by software error).

High

Configuration registers only

Stack over/under flow
Detection

To detect, as early as possible,
stack over or under flows

Low

Stack boundary test only

Non-volatile memory

Parity bit To detect a single corrupted bit
or an odd number of corrupted
bits failures in a word (typically
8 bits, 16 bits, 32 bits, 64 bits or
128 bits).

Low —

Memory monitoring
using error-detection-
correction codes (EDC)

To detect each single-bit failure,
each two-bit failure, some
three-bit failures, and some all-
bit failures in a word (typically
32, 64 or 128 bits).

High The effectiveness depends on
the number of redundant bits.
Can be used to correct errors

Modified checksum

To detect each single bit failure. Low Depends on the number and
location of bit errors within
test area

Memory Signature

To detect each one-bit failure
and most multi-bit failures.

High —

Block replication

To detect each bit failure. High —

Volatile memory

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 112 of 120

RAM pattern test

To detect predominantly static
bit failures.

Medium High coverage for stuck-at
failures. No coverage for
linked failures. Can be
appropriate to run under
interrupt protection

RAM March test

To detect predominantly
persistent bit failures, bit
transition failures, addressing
failures and linked cell failures.

High Depends on the write read
order for linked cell coverage.
Test generally not appropriate
for run time

Parity bit

To detect a single corrupted bit
or an odd number of corrupted
bits failures in a word (typically
8 bits, 16 bits, 32 bits, 64 bits or
128 bits).

Low —

Memory monitoring
using error-detection-
correction codes (EDC)

To detect each single-bit failure,
each two-bit failure, some
three-bit failures, and some all-
bit failures in a word (typically
32, 64 or 128 bits).

High The effectiveness depends on
the number of redundant bits.
Can be used to correct errors

Block replication

To detect each bit failure. High Common failure modes can
reduce diagnostic coverage

Running
checksum/CRC

To detect single bit, and some
multiple bit, failures in RAM.

High The effectiveness of the
signature depends on the
polynomial in relation to the
block length of the
information to be protected.
Care needs to be taken so
that values used to determine
checksum are not changed
during checksum calculation

Probability is 1/maximum
value of checksum if random
pattern is returned

Analogue and digital I/O

Failure detection by
on-line monitoring
(Digital I/O)

To detect failures by monitoring
the behaviour of the system in
response to the normal (on-
line) operation.

Low Depends on diagnostic
coverage of failure detection

Test pattern

To detect static failures (stuck-
at failures) and cross-talk.

High Depends on type of pattern

Code protection for
digital I/O

To detect random hardware
and systematic failures in the
input/output dataflow.

Medium Depends on type of coding

Multi-channel parallel
output

To detect random hardware
failures (stuck-at failures),
failures caused by external
influences, timing failures,
addressing failures, drift failures
and transient failures.

High —

Monitored outputs To detect individual failures, High Only if dataflow changes

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 113 of 120

 failures caused by external
influences, timing failures,
addressing failures, drift failures
(for analogue signals) and
transient failures.

within diagnostic test interval

Input
comparison/voting
(1oo2, 2oo3 or better
redundancy)

To detect individual failures,
failures caused by external
influences, timing failures,
addressing failures, drift failures
(for analogue signals) and
transient failures.

High Only if dataflow changes
within diagnostic test interval

Communication bus (serial, parallel)

One-bit hardware
redundancy

To detect each odd-bit failure,
i.e. 50 % of all the possible bit
failures in the data stream.

Low

—

Multi-bit hardware
redundancy

To detect failures during the
communication on a bus and in
serial transmission links.

Medium —

Read back of sent
message

To detect failures in bus
communication.

Medium

—

Complete hardware
redundancy

To detect failures during the
communication by comparing
the signals on two buses.

High

Common mode failures can
reduce diagnostic coverage

Inspection using test
patterns

To detect static failures (stuck-
at failure) and cross-talk.

High

—

Transmission
redundancy

To detect transient failures in
bus communication.

Medium

Depends on type of
redundancy. Effective only
against transient faults

Information
redundancy

To detect failures in bus
communication.

Medium

Depends on type of
redundancy

Frame counter

To detect frame losses. A frame
is a coherent set of data sent
from one controller to other
controller(s). The unique frame
is identified by a message ID.

Medium

—

Timeout monitoring To detect loss of data between
the sending node and the
receiving node.

Medium

—

Combination of
information
redundancy, frame
counter and timeout
monitoring

 High

For systems without
hardware redundancy or test
patterns, high coverage can
be claimed for the
combination of these safety
mechanisms

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 114 of 120

Power supply

Voltage or current
control (input)

To detect as soon as possible
wrong behaviour of input
current or voltage values.

Low —

Voltage or current
control (output)

To detect as soon as possible
wrong behaviour of output
current or voltage values.

High —

Program sequence monitoring/Clock

Watchdog with
separate time base
without time-window

To monitor the behaviour and
the plausibility of the program
sequence.

Low

—

Watchdog with
separate time base and
time-window

To monitor the behaviour and
the plausibility of the program
sequence.

Medium

Depends on time restriction
for the time-window

Logical monitoring of
program sequence

To monitor the correct
sequence of the individual
program sections.

Medium

Only effective against clock
failures if external temporal
events influence the logical
program flow. Provides
coverage for internal
hardware failures (such as
interrupt frequency errors)
that can cause the software to
run out of sequence

Combination of
temporal and logical
monitoring of program
sequence

To monitor the behaviour and
the correct sequence of the
individual program sections.

High

—

Combination of
temporal and logical
monitoring of program
sequences with time
dependency

To monitor the behaviour,
correct sequencing and the
execution time interval of the
individual program sections.

High

Provides coverage for internal
hardware failures that can
cause the software to run out
of sequence.

When implemented with
asymmetrical designs,
provides coverage regarding
communication sequence
between main and monitoring
device

NOTE Method to be designed
to account for execution jitter
from interrupts, CPU loading,
etc.

Sensors

Failure detection by
on-line monitoring

To detect failures by monitoring
the behaviour of the system in
response to the normal (on-
line) operation.

Low Depends on diagnostic
coverage of failure detection

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 115 of 120

Test pattern

To detect static failures (stuck-
at failures) and cross-talk.

High —

Input
comparison/voting
(1oo2, 2oo3 or better
redundancy)

To detect individual failures,
failures caused by external
influences, timing failures,
addressing failures, drift failures
(for analogue signals) and
transient failures.

High Only if dataflow changes
within diagnostic test interval

Sensor valid range

To detect sensor shorts to
ground or power and some
open circuits.

Low Detects shorts to ground or
power and some open circuits

Sensor correlation

To detect sensor-in-range drifts,
offsets or other errors using a
redundant sensor.

High Detects in range failures

Sensor rationality
check

To detect sensor-in-range drifts,
offsets or other errors using
multiple diverse sensors.

Medium —

Actuators

Failure detection by
on-line monitoring

To detect failures by monitoring
the behaviour of the system in
response to the normal (on-
line) operation.

Low Depends on diagnostic
coverage of failure detection

Test pattern

To detect static failures (stuck-
at failures) and cross-talk.

High —

Monitoring (i.e.
coherence control)

To detect the incorrect
operation of an actuator.

High Depends on diagnostic
coverage of failure detection

Combinatorial and sequential logic

Self-test by software

To detect, as early as possible,
failures in the processing unit
and other sub-elements
consisting of physical storage
(for example, registers) or
functional units (for example,
instruction decoder or an EDC
coder/decoder), or both, by
means of software.

Medium

—

Self-test supported by
hardware (one-
channel)

To detect, as early as possible,
failures in the processing unit
and other sub-elements, using
special hardware that increases
the speed and extends the
scope of failure detection.

High

Effectiveness depends on the
type of self-test. Gate level is
an appropriate level for this
test

On-chip communication

One-bit hardware
redundancy

To detect each odd-bit failure,
i.e. 50 % of all the possible bit
failures in the data stream.

Low —

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 116 of 120

Multi-bit hardware
redundancy

To detect failures during the
communication on a bus and in
serial transmission links.

Medium Multi-bit redundancy can
achieve high coverage by
proper interleaving of data,
address and control lines, and
if combined with some
complete redundancy, e.g. for
the arbiter.

Complete hardware
redundancy

To detect failures during the
communication by comparing
the signals on two buses.

High Common failure modes can
reduce diagnostic coverage

Test pattern

To detect static failures (stuck-
at failures) and cross-talk.

High Depends on type of pattern

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 117 of 120

Appendix E: Massif Metamodel

Massif [44] is an Eclipse feature that allows to import and export capabilities of MATLAB Simulink models
to/from eclipse EMF models. Massif is used in the context of the simulation-based fault infection
framework implementation described in section 2.4.7.

The EMF metamodel used by Massif to represent MATLAB Simulink models is showed in Figure 63.

 AMASS
Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 118 of 120

Figure 63. Massif meta-model.

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 119 of 120

Appendix F: Document changes respect to D3.2 (*)

New Sections:

Section Title

2.2.2 Parametrized architectures for architectural patterns

2.4.4.4 Metrics checklists

2.4.7.1 Sabotage architecture

2.4.8.1 Employment in AMASS

2.5 Assurance Patterns for Contract-Based Design

Modified Sections (in the Section column, sections applicable to D3.2 only have “D3.2-” as prefix):

Section Title Change

 Executive Summary Updated

1 Introduction Updated

2.1.2 Tracing CACM with results from external
safety analysis tools

Clarifications provided.
Added information about Capra traceability
metamodel

D3.2-2.2.2 Application of Architectural Patterns Removed

D3.2-2.2.3 Assurance of Architectural Fault Tolerant
Patterns

Moved as section 2.5.1

2.3.2 Reuse of Component The focus on library definition has been
removed. Library of components, as general
concept, is supported by the AMASS
approach and prototype; libraries of specific
components can be defined according to
specific needs.

2.3.3 Contract-Based Assurance Argument
Generation

Minor changes

2.4 Activities Supporting Assurance Case Chapter renamed

2.4.3.5 Checking Realisability of Requirements Updated

2.4.4.3 Metrics for models New correctness metrics provided

2.4.6 Design Space Exploration Minor restructuring.
D3.2 sections 2.4.6.1 and 2.4.6.2 have been
merged as 2.4.6 text.
Added section 2.4.6.1 Employment in
AMASS

2.4.7 Simulation-Based Fault Injection
Framework

Updated

D3.2 - 2.4.7.1 Employment in AMASS Updated
Moved as section 2.4.7.2

3.1 Functional Architecture for Architecture
Driven Assurance

Functional Logical Architecture has been
updated.
Coverage of P2 prototype

3.2 System Component Metamodel for
Architecture-driven Assurance

Extended
The CMMA metamodel presented in D3.2
has been updated. The concept of Pattern
definition and usage have been added.

4 Way forward for the implementation Updated requirements coverage.

5 Conclusions Updated

 AMASS Design of the AMASS tools and methods for architecture-driven assurance (b) D3.3 V1.0

H2020-JTI-ECSEL-2015 # 692474 Page 120 of 120

Appendix B Architecture-driven Assurance logical
architecture

Functional Logical Architecture has been
updated.
Coverage of P2 prototype

