ECSEL
\ Joint Undertaking * ek

European
Commission
I

ECSEL Research and Innovation actions (RIA)

AMASS

Architecture-driven, Multi-concern and Seamless Assurance and
Certification of Cyber-Physical Systems

AMASS Reference Architecture (c)
D2.4

Work Package: WP2: Reference Architecture and Integration
Dissemination level: PU = Public

Status: Final

Date: 4th June 2018

Responsible partner: Garazi Juez | Alejandra Ruiz (TECNALIA)

Contact information: garazi.juez@tecnalia.com | alejandra.ruiz@tecnalia.com
Document reference: AMASS_D2.4_WP2_TEC_V1.0

PROPRIETARY RIGHTS STATEMENT

This document contains information that is proprietary to the AMASS Consortium. Permission to reproduce any
content for non-commercial purposes is granted, provided that this document and the AMASS project are credited as
source.

This deliverable is part of a project that has received funding from the ECSEL JU under grant agreement No 692474.
This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme
and from Spain, Czech Republic, Germany, Sweden, Italy, United Kingdom and France.

Contributors

Names

Organisation

Alejandra Ruiz, Estibaliz Amparan, Garazi Juez,
Angel Lépez, Cristina Martinez

TECNALIA Research & Innovation (TEC)

Jose Luis de la Vara, Jose Maria Alvarez,
Eugenio Parra, Pablo Sdnchez, Juan Llorens

Universidad Carlos Ill de Madrid (UC3)

Luis Alonso, Borja Lopez

The REUSE Company (TRC)

Stefano Puri

Intecs (INT)

Barbara Gallina, Irfan Sljivo, Muhammad Atif
Javed, Faiz UL Muram

Maelardalen Hoegskola (MDH)

Thomas Gruber, Dejan Nickovi¢, Niveditha | AIT Austrian Institute of Technology (AIT)
Manjunath
Stefano Tonetta, Alberto Debiasi Fondazione Bruno Kessler (FBK)
Tomas Kratochvila Honeywell (HON)
Reviewers

Names

Organisation

Jose Luis de la Vara (Peer-reviewer)

Universidad Carlos Ill de Madrid (UC3)

Marc Sango (Peer-reviewer)

Alliance pour les Technologies de I' Informatique (A4T)

Cristina Martinez (Quality Review)

Tecnalia Research & Innovation (TEC)

‘@ AM[ASS AMASS reference architecture (c) D2.4V1.0

TABLE OF CONTENTS

EXECULIVE SUMMAIY...cuuiiiiiiiiiiiiiiiiiiiiiieiireiireei e reestsassrasstraessrassstesssssnsssrasssrasssssssssenssssnssssassssanssssnsss 9
I 141 0T [T 4o o TN 10
T T o T 01 =3 4 N 10

0 VT o Yo YN (USSPt 11

1.3 Technical Context and ObjJECLIVES.cciiciiiiiiieie ettt e st e e e sbee e e s e sbeaeessnes 12

1.4 Relation 10 0ther AIMASS TasKS (*) ..eeeeiiiiiiiiiiieieee ettt et e e e e e esebarereeeeeeessarraeeeeeseeesnsrenes 12

2. AMASS Reference Tool Architecture (ARTA)ccccceeeeeriieiiriniimmnnesiseisiireesnsnsssssissessesnsssssssssssssssnnnssnns 13
D2 R CTo T=1 =Y ol 2d o 11 FoTTo] o] o1V 20PN 13

2.2 ToOl Archit@Cture OULIING () ..eeciieeeieeeciie ettt e rtee e te e e tre e st e e e ba e e snteesnraeenaeeensaeennnes 13

D Y =1 =] o Uo =T USSP 19

D A NV VN SR o Yo W 2 =1 e o o TNl ISR 20

3. ArcChitectural VIEWSccoiiiiiieiueiiiiiiiiiiinenneisiniiiiesssmssssisiiiiissssssssisiiiiessssssssissimmmsssssssssssssssessnssssss 22
I A o Y=ok | IRV PSR ST 23
3.1.1 INFrastrUCtUre USE CaSES......uuiiiuiriiieeiieeeitieesieeesteeesteestesesseeessseesssesesssesssesessseesssessnseessssesenns 24

3.1.2 Architecture-driven Assurance Uses Cases (¥) ...ccccccveeeiieeiiieecciee ettt 30

3.1.3 Multi-concern Assurance USES CaSES (*)...iiuciiriiiiiiiieeiiiieeeeciieeeeiireeeeereeeeesreeeeesasreeeseaseeeeas 46

3.1.4 Seamless Interoperability USE Cas@S........uiiiciiiiiiiiiieiiiiieeeeiiieeeesireeessiee e e ssseeeesssreessseneeeeas 56

3.1.5 Cross-Intra DOmain REUSE USE CASEScceeiuumiiiiiieiiieeiieteeee e ettt e e et e e e e e s neneeeee s 61

3.2 SEFUCTUIAL VIBW (F) curiieiii ettt et e et te e et e e st te e st e e s at e e e baeessteesateeensaeesataeesseesaseeenseeesnsenanns 68
3.2.1 INFrastruCture MOGUIEcouviiiiie ettt et e s e e e bee e sateesnteeenaeesnneeenns 69

3.2.2 ApPliCation MOAUIE ..ot e e st e e et e e e et re e e sanareaeean 71

IS T [0 =T = Lot To T T IRV A 11T PSRRI 77
3.3.1 Interaction Assurance Case Development SCENAIIOcuviiivciieeieiiiee e 77

3.3.2 Interaction Modular Argumentation/Architecture Development Scenarioc.c.ccoveeeuneenne. 78

3.3.3 Interaction Process Based Argumentation Scenario Development........ccccoccveeeiiiieeesiineennn. 79

3.3.4 Interaction Multi-Concern Co-Analysis/Assessment SCENANIO......ccecevveeeeeeeeireeeireeeeree e 79

3.3.5 Interaction Development Cross/Intra-Domain Reuse of Base Models.........ccccceevvveeveeveennen. 80

3.3.6 Interaction User Access and Concurrent Evidence Management.......ccccoecccviveeeeeeeecccnvennenn. 81

3.3.7 Interaction Evidence Information Exchange and Traceabilityccccoecveeiiiiieiiiiiiiecciiee, 82

3.3.8 Interaction INVOKE V&YV ANGIYSIScoeiiiuiiiiieiiie ettt ettt e et e e e eeatae e e eenaaeeeeas 82

4. CONCEPLUALI CACM (¥) cuuuiiireeniiiieeeiiiteennietienneeeteenssesteesssessesnssessesnssessssssssssssnsssssssnssesssnnssesssnnssssssnnnes 84
I O =Y o 1T | IV 1= =1 o o o =] RS RR 85
I Y ole o T3 T g Vo N 2 o Yo 1Y IR 85

4.1.2 Conceptual General MetamoOdelooouiiiiiiiiieeee e et 85

4.1.3 Conceptual Property Metamodel........cocuiiiiiiiiiiiiiieee et e e 88

4.2 System Component MetamOodel.........o.eeeiiiiiie e 89
I Y ole o TN T g Vo I a0 o To 1Y ISP 89

4.2.2 Conceptual Model Definitioncciiiieiiie ettt ree e e abee e e e eare e e e eearaeas 89

4.3 Assurance Case MetamOElcocuiiriiiiiiiiiiie ettt et st ste e st e st e sbe e et e saaeesabee s 90
4.3.1 SCOPE ANA PUIMPOSE .eeieiieeiitiiiieeeeeeeetttteeeeeeeesettteeeeeeeesssssstaeaeeeeseaaanssrenseeaesessanssssnsseaesssnnnsrnes 90

4.3.2 Conceptual Model Definitioncoccuiiiiiiiiie et see e st e e e arae e e e aaaeas 90

4.4 Evidence Management Metamodels....... ..o iiiiiiie e 93
Y ole o T3 T g Vo I o o To 1Y ISR 93

4.4.2 Conceptual Traceability MetamoOdelcoeei i e e 94

4.4.3 Conceptual Managed Artefact Metamodel.........coocuveiiiiiiiiiciiiecce e 97

4.4.4 Conceptual Executed Process Metamodel...........oooveiiiieiiiieiii e 103

H2020-JTI-ECSEL-2015 # 692474 Page 3 of 185

\U& AMASS AMASS reference architecture (c) D2.4V1.0

4.5 Compliance Management Metamodel.......c.ueivicuiiiiiiiiiii i e 105
T Y ole Yo 1T T g Vo I o U] o To 1Y ISP 105

4.5.2 Conceptual Assurance Project Definition.......ccccoveieiiiccienicce e 107

4.5.3 Conceptual Process Definition Metamodel...........ccoeeieeiiiiiiiiii e 110

4.5.4 Conceptual Standard Definition Metamodelccccoiviiiiiiiiiiiie e 112

4.5.5 Conceptual Vocabulary Metamodel.........ccoioiiiiiieiiie et 118

4.5.6 Conceptual Mapping Definition Metamodel........cccvviiviiiiiiiiiie e 120

5. Implementation CACM (*).....cciiiieceiiiieceirireeesrennnerrennseessennssessennsssssenssssssennssssesnsssssssnsssssennnsssnens 124
5.1 General MetamOdel.......oouuiiiiiiee et e e e e e e e e e e bee e e sareeas 124
LT O ol o =TT g To I oW o Lo 1Y ISP 124

5.1.2 Implementation General Metamodelcocuiiiiiiiiiiiiiieece e 124

5.1.3 Implementation Property Metamodel.........ccueeeiiiiiiciiiiecceee e 124

5.2 System Component MetamoOdel.......c.uuiiiiiiiiiciiie e e 124
I ol o =TT g To I eV o Lo 1Y IR 124

5.2.2 Implementation Model Definitionceiviiiiiiiiiie e 124

5.3 Assurance Case MetamOAE]ooocuiiiciiiiiee ettt e e sae e st s et e s e et e e rteeeaeeesaree s 134
5.3.1 SCOPE AN PUIMPOSE weeeiiieiiieeeiiiieeecitee e sttt e e e sittee e s sateeessabaeeesssbaeeessseeeessstaeessnseeessnsseeesennsens 134

5.3.2 Implementation Model Definitionc.cooeciiiiiiiiiie e e 134

5.4 Evidence Management MetamOdelS.......ccuiiiiiiiieiiciiie e ccee et e e e sree e e e e e sree e e sareeas 147
5.4.1 SCOPE ANU PUIMPOSE ..eeieieiiieeeciiteeeecttee e ettt e e e stteeessaaeee e asaeeessassaeesaasaeeeanssaeesesseeesansseneesnnsens 147

5.4.2 Implementation Traceability Metamodel (AssuranceASSet)ccccceevereeecveeiiieeecieesvee e 147

5.4.3 Implementation Managed Artefact Metamodel..........ccuoeeeeciiiiiciiee e 149

5.4.4 Implementation Executed Process Metamodel.......cccoocuveeiiiiiiiiiiiiiee e 153

5.5 Compliance Management Metamodel........ccoociiiiiiiiie et bee e e e 158
5.5.1 SCOPE AN PUIMPOSE ..eeiiieiiiieeiiieeesciiee e sttt e e e sitteeessiae e e s baeeessasseaeesnbteeessssaeeesnseeessnsseeessnnsens 158

5.5.2 Implementation Assurance Project Definitioncccoccuveeeeciiiie e 158

5.5.3 Implementation Process Definition Metamodel..........cccueviriiiiiiiiiee e 160

5.5.4 Implementation Standard Definition Metamodelcccoecvieeeeiiiei e 160

5.5.5 Implementation Baseline Definition Metamodel........ccoveviviiieiiiiiiee e 171

5.5.6 Implementation Vocabulary Metamodel.........cccoccuiiieiiiiecciee e 176

5.5.7 Implementation Mapping Definition Metamodel........cccceevviiiiiiiiiii e, 178

ST oo 14 ol [V 13 Te Y T3 (ol T INN 179
Y 0T e VT 1 T o 181
REFEIENCES (*) . ieruueriiiiiiiiiiiinniiiiiiiiiiinenneiisisiiiiesssmesssissiiieesssssssssssttmeesssssssssssstssssssssssssssssssesnnssssssssssns 183
Appendix A: Changes since the Predecessor Version D2.3 (¥) ..cccecceceeeiiriinimmenicicinneneeenenssscieseneeenanssens 185

H2020-JTI-ECSEL-2015 # 692474 Page 4 of 185

\U& AMASS AMASS reference architecture (c) D2.4V1.0

List of Figures

Figure 1. AMASS Reference (High-Level) Architecture (Prototype P2)ccccccvvvevvieeicieecciee e 15
Figure 2. Functional Decomposition of the AMASS Platformcoociiiieiiie e 19
Figure 3. Architectural Viewpoints for the description of the ARTAcooviiiiiiiiiiiicce e 22
Figure 5. Actors of the AMASS TOOI PIatfOrmeiiiciiiie ettt e e e eaaaee e 24
Figure 6. Use Cases for “Assurance Project Lifecycle Management”cccvvvviieiiiiiieeesciieeeecsiiee s 24
Figure 7. Use Cases for "Assurance Traceability" moduleccuueiieiiiiiciiiii e 26
Figure 8. Use Cases for “Platform Management” ModuUleoccuviiiiiiiiiiiiieeecciee e 28
Figure 9. Use Cases for "System Component Specification", “Architectural Patterns” and “System

Architecture Modelling fOr ASSUIANCE”civuiiii ettt e st e e ssrae e e s ssbaeeessnreeaeens 30
Figure 10. Use Cases for "Contract-based assurance composition" moduleccccecevvviiriiieeeiiciiee i, 35
Figure 11. Use cases for V&V Activities MOAUIEcoccuiiiiiiciiieieiee ettt e e e e 40
Figure 12. Use Cases for "Assurance Case Specification" module.........c.coeeciiiiiiiiiiiiccieeeeceee e 46
Figure 13. Use Cases for "Dependability Modelling" module...........cooociiiiiiiiiiiiciiiecciee e 50
Figure 14. Use Cases for "Contract-based multi-concern assurance"” module.........cccoccueeeeciieeeeiiiieecccneeenn. 51
Figure 15. Use Cases for "System Dependability Co-Analysis/Assessment" module.........ccccceeeveecreecieenennee. 53
Figure 16. Use Cases for "Evidence Management” ModuUlecuueeeeciiiieeciiie et 57
Figure 17. Use Cases for “Tool Integration” moduleoccuiiiiiiiiiiiiiiieccciee e 59
Figure 18. Use Cases for “Compliance Management” Mmodule.........ccccuvieeeciieiieciiee e 62
Figure 19. Use Cases for "Product/Process/Assurance Case Line Specification" module..........ccceeeevvrennenn. 64
Figure 20. Use Cases for "Reuse Assistance" MOdUIE.........cccuviiieciiiiiecieiec ettt e e eaae e 66
Figure 21. AMASS StrUCTUIAl VIEW ...ooiiiiiiie ettt e e s sttt e e st e e e e sata e e e s aaae e e sanaeeessnsaeeesnnsneeeens 69
Figure 22. Tool components for Assurance Project Lifecycle Managementccccceeccveeeeciiieeecccieeeccciieeenn, 69
Figure 23. Tool components for Assurance Tracability.......cccceivciiiiiiciiiiieiie e 70
Figure 24. Tool components for Platform ManagemeNntcooeiierieciiieeeciee ettt e e eaae e 71
Figure 25. Tool components for System Component Specificationccceccvveeeiiiiiiiiiiieecce e, 72
Figure 26. Tool components for Assurance Case SPecificationcccccuveiieciiiiie e 73
Figure 27. Tool components for Compliance ManagemeENntcoccuieiiiciiieieiiiee e ssrae e e e saaee e 74
Figure 28. Tool components for Evidence ManagemeNnt..........oeiecuiieieeciiiee e et e e ectee e e et e e e esbae e e e eaaeeeeas 74
Figure 29. Tool components for TOOI INtEZratioNcuviiieciiii i 75
Figure 30. Tool components for Contracts ManagemeENT.........cocecuiiieeciiiie et ecee e et e e e e ebae e e e eaaeeeeas 76
Figure 31. Tool components for Assurance Analysis/ASSESSMENT.......cccueveiiiiiieeiieeireenreeseesreereeereesreenreenns 76
Figure 32. Tool components for Cross/INtra doOmMain FEUSE........cccueeeiveeeiieeeeiteeeeeeeereeeeteeeeeteeeetreesreeeeteeeeareeas 77
Figure 33. Interactions between tool components in the assurance case development scenario................ 78
Figure 34. Interactions between tool components in the development modular

argumentation/archit@CtUre SCENATIO.......cciiiieeieeciee ettt ettt ereeete e be e s be e teeeaveeabeeave s 79
Figure 35. Interactions between tool components in the development process based argumentation

1ol =T o I= | o TP PPN 79
Figure 36. Interactions between tool components in the Multi-concern co-analysis/assessment

1ol =T o I= | o TP PO PPPPPPPTN 80
Figure 37. Interactions between tool components in the development Cross/Intra Domain Reuse of

Rl foTe [=] I o= o -1 o O S O OO TP PO PPTTRRRPPRPP 81
Figure 38. Interactions for user access and concurrent evidence management.........cccceeeeeceeeeecciieeeeccnneeenn. 81
Figure 39. Interactions for evidence information exchange and traceability........ccccceevivieiiiiieicciiiee e, 82
Figure 40. Interactions for iNVOKE V&YV ANAIYSISoceciiiiiieiiiieecciiee ettt ettt e e e are e e e bae e e e eanaeeaens 83
Figure 41. CACM MELAMOUEI VIEWS ..cccuviiiiiiiiiieeeiiiee ettt ee e sttt e s ettt e e e tte e e e sata e e e esataeeeensaeeesnsaeeesnnsaeeesansseeennn 84
Figure 42. General MetamOdel ... e i e e e e e e e et e e e e e e s s e nnbeaeeeaeesennnsranneeans 86
Figure 43. Property MEetamOdel..... ..o ittt e e e e e et e e e satt e e e e saaae e e sataeeesansaeeeeannaeeeans 88
Figure 44. Conceptual Assurance Case Metamodel diagramooooccciiiiiiii e 90

H2020-JTI-ECSEL-2015 # 692474 Page 5 of 185

\U& AMASS AMASS reference architecture (c) D2.4V1.0

Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.
Figure 72.
Figure 73.
Figure 74.
Figure 75.

Traceability MetamOdeloouiii e ee e s e e s e ee e e e nareeas 94
Managed Artifact MetamMOel..........uvviiiiiee e e et 98
Executed Process MetamOdel.......cc.ueiiiiiiii ittt e s e e e s e s 103
Method Content versus Process in the SPEM 2.0 standard, taken from [28]cccovvvvriiiiiiinnnnes 106
Assurance Project Metamodel..... ...t 108
Method Content from the UMA metamodel............ooooiiiiiiciii i 111
Process from the UMA Metamodelcoiiiiiiiiiiiiie ettt 112
Standard Definition MEetamOdEl.......cccuviiiieciiie e e e e e e raaee e 113
Conceptual Vocabulary Metamodelcoocuuiiiiiiiiiiiiie ettt 118
Mapping Definition MetamOdel.........coouiiii i e 120
(2110 [Y/ o 1P 125
(00T 0] o Yo 1Y (<IN =] Lo Yol g V] oIS 126
L600] 0 | 1 - Lot SF O P U UUPUPTPRPPPPRE 128
(00T o] 4 =Tt 2= TR Y=Y o V=T oL SR 128
3 (=] 1 o TP PPTPPPPPTPPPTPRE 130
Artefact and assurance-related entities CONNECLIONSccccuviiiiiiiiieccieee e 132
e T U =l =T o 1V o T PP STR 134
Assurance Case Class diagramc..ueieeciiiieeciee e e st e e et e e e e abe e e e entae e e e araee s e areeas 135
Argumentation Class DIagramMi......cc.ueeieciiieeiiiiee e eciree et e e et e e e b e e e sabee e e ssbeeessssbaeessnnrenas 136
The Relationships VIEW diagrami..........cociiii it e e etre e e eabee e e 137
AssUrance Asset MetamOdEl......cc.uuiiieiiiiecee e e e 147
Artefact Metamodel (Part 1: Core Model EIEMENTS).......coeecciiiiiiiiiieeecieee e e 150
Artefact Metamodel (Part 1: Core Model ElemMents........cccveevveeeciireciieciee e 150
Process Metamodel (Part 1: Core Model EI@MEeNtS)eeeeevieeiiiiiiie et 154
Process Metamodel (Part 2: Inheritance Relationships)cccccvevieiciiiciie e 154
Assurance Project MetamoOdel.........ooouuiiiieiiie e et 158
Reference Assurance Framework Metamodel (Part 1: Core Model Elements)ccccvveeeennee.. 161
Reference Assurance Framework Metamodel (Part 2: Inheritance Relationships) 162
Baseline Definition metamodel (Part 1: Core Model Elements)ccoovveeeevceeeeeeceeeceereeeennen. 172
Baseline Definition metamodel (Part 2: Inheritance Relationship)cccccceecveiieccieeiecciee e, 173
VoYt | o TU] T AN Y, = - [g T Yo L] PSPPSR 177

H2020-JTI-ECSEL-2015 # 692474 Page 6 of 185

\U& AMASS AMASS reference architecture (c) D2.4V1.0

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.

Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.

List of Tables

Use case “Create ASSUraNCe ProjECT” ...ttt s sbee e s s 25
Use case “Define Dependability Assurance Project Baseling”........cccceeevieveeecieeeiccieee e, 25
Use case “Navigate Assurance project repPoSitOry” ... eeiieieieiriiieecriee e esee e e sree e 25
Use case “Specify Traceability between Assurance Assets”cccccoveeeeiieieecciieeecccieee e 26
Use case “Conduct Impact Analysis of Assurance Asset Change”ccccccceeeeeeiciiiiieeeee e, 27
Use case “Configure Access to ASSUraNCe ASSELS”ccccciiieiiiiieeiiiiee e eeiiee e eesrre e eesiee e e eree e e e ereeas 28
Use case “Log in the platform” ... e 28
Use case “Concurrent Assurance Information Edition”cccccveveiiiiieinieeeseeesiec e 29
Use case “Specify system architecture at different levels”cccccooviieeiiiieccciie e, 31
Use case “Monitor status of system specification”ccooeciiiiiciiiei e 31
Use case "Edit an architectural pattern".........ooo e 33
Use case "Instantiate an architectural pattern" ... e 34
Use case "Edit parameterized architeCture"cuviii i s 34
Use case “Provide a configuration constraint for a parameterized architecture” 34
Use case “Assign contracts t0 COMPONENt”iiiiiiiiiiie e e 35
Use case “Refine component CONTraCES”cccuiiieiiiiiie ettt e e ree e s e arae e e areeas 36
Use case “Structure properties into CONTIacts”uieieiiiiiiiiieiee e e arreeee s 36
Use case “Trace contract to evidence and assuranCe Case”occeeeruerereeeeieeesveesireeeneesssseseneees 37
Use case “Browse components and associated contracts”ccccceeevceviieeeeeeeeccciiiieeee e, 37
Use case “Browse component CoONtracts Status”cccccueeeeeiiieeiiiieee e e e e e e e e e e 38
Use case “Browse Contracts refinement status”cooccveeiiiiiiieiiiiieccceee e 38
Use case “Requirements formalisation”oooouiiie it 38
Use case “Analysis of requirements’ semantics based on their formalisation into temporal

[=4 ol USSP 39
Use case “Requirements SEMantic ANalySiS”ccucuiiiiiiiiieiiiiieeeeciee e esiee e esree e s sree e s esbee e s e sveeas 39
Use case “Validate components composition through contracts-based design”c.......... 40
Use case “Verify contract refin@ment”oooeiiioiiie et 41
Use case “Contract SEmMantic ANalYSiS”ooouiiiiiiiiee e e e et e e aree e e e areeas 41
Use Case “Perform contract-based validation for behavioural models”.........ccccceviiiiniiiniennnnee. 42
Use Case “Inspect contracts refinement result”...........occueeeeeiie e 42
Use case “Generate fault trees” ... i ettt et san e e s e s 42
Use case “Perform contract-based fault trees generation”cccceeeeeciiee e, 43
Use case “Validate Weak CONTIaCES”ccuiiiiiiiiiiiiie ittt ettt ssaee e s e s 43
Use case "Compare parameterized architeCture"cooeoeiiee e 44
Use case "Trace requirement validation"coouiiiiiiiiii e 44
Use case "Simulation-based fault injection"cc.vii e e 45
Use case "Monitoring for Functional Verification"coooiiiiiiiii e, 45
Use case "Generate documentation from the system model"ccocooiiiieiiiieccciee e, 45
Use case “Define and navigate an assurance case StruCture”ccccceeecveeeeeciieeccicieeeeecieee e 47
Use case “Develop Claims and Links 10 EVIAENCE"c.uuiiieeiiieecieee ettt 47
Use case “Apply an argument Pattern” ... 48
Use case “Reuse an argument PatterNccueeeiiiiiieeiiiee e eeiie e ee e e ee e e e e e are e e e e earee e s enreeeeenreeas 48
Use case “Semi-automatic generation of product arguments”.........cccoccveeieiiei e, 48
Use case “Automatic generation of process arguments”cceeeciiieeecieeeeecieee e e e 49
Use case “Monitor status of argumentation” ..o 49
Use case “Assign to component specCification”ooociiieiciiiie e et 50
Use case “Specify impact of Claims”c..uiiiiiieeceee e e 51
Use case “Navigate, define and develop argument contracts”cccccoveveeeciiieececiiee e, 51

H2020-JTI-ECSEL-2015 # 692474 Page 7 of 185

\@ AM[ASS AMASS reference architecture (c) D2.4V1.0

Table 48. Use case “Inference dependenCies”o ciiieiiiiiieiiiiiee et esiree s e e s e e s sbee e e ssraeeesssaeeeeas 52
Table 49. Use case “Validate argument CONTract”c.uveeiiiiii it e aaee e 52
Table 50. Use case “Tag multi-concern t0 CONracts”c.uuiiiiiiiii ittt e e rrrre e e e e e e anare e e 53
Table 51. Use case “Define and Perform Safety/Security Analysis”ccccvvieeieiiiieeeieeecciee e eeree e 54
Table 52. Use case “Provide results as eVIdENCE”cuiiiiiciiiiiiiiiie ettt e s e e s snaeeeeas 54
Table 53. Use case “Support arguments With result data”........c.ccveeieciiricciie e 55
Table 54. Use case “Specify evaluate impact of Claims” ... 55
Table 55. Use case “Characterise Artefact”ccoeiicciiie ittt e e e e e et e e e e etae e e esanaeeeean 57
Table 56. Use case “Link Artefact with EXternal TOOI”coccuiiiiiiiiiiiciiie e e 57
Table 57. Use case “Specify Artefact LIfECYCIE”o e e e 58
Table 58. Use case “Evaluate Artefact” ...t e e 58
Table 59. Use case “Specify Process Information for Artefacts”ccoeeevciiiiiiciiiee e 59
Table 60. Use case “Characterise TOOIChAIN"uuiii i s e e s saaeeeeas 60
Table 61. Use case “Specify Tool Connection INformation”cooeciiirieciiie e 60
Table 62. Use case “Capture information from standards”coooiiiiiieeie i 62
Table 63. Use case “Manage ASSUIranCe ProJECL”oii ittt e e e etre e e e b e e e e aaae e e e eanaeeeeas 62
Table 64. Use case “Monitor Assurance Project STatus”oeoeciieiiiciiee e saee e 63
Table 65. Use case “Define EQUIValENCe Mappings”oooocciiieieiiiiie et e et estre e e e ctre e e s eaae e e s e naeeeean 63
Table 66. Use case “Define Compliance Mappings”uveieiciiieiiiiieeeeciiee ettt esstre e e sstre e e s e e e ssbaeeessnveeeeas 63
Table 67. Use case “Manage process Variability”c.eeeeeciiii et e e aaee e 64
Table 68. Use case “Manage product Variability”cooiiiiiie e e e anrre e 65
Table 69. Use case “Manage assurance case Variability”coooiiiieiiir e 65
Table 70. Use case “Assist for Cross-System Assurance Assets REUSE”coovviviveeeieiieiiciiieeeee e, 66
Table 71. Use case “Assist for Cross-Standards Assurance Assets REUSE”ccccveeeeiiieeeeiiiieeeeccieee e 67
Table 72. Use case “Discover Reuse Opportunities by using Standards Equivalences”cccceeveeericnvennnn. 68
Table 73. Use case “Reuse Selected ASSUranCe ASSETS”c..viiicciiieieiiieeecciee e e eciee e e ecire e e e stre e e esnaeeessnaeeaean 68

H2020-JTI-ECSEL-2015 # 692474 Page 8 of 185

‘@ AM[ASS AMASS reference architecture (c) D2.4V1.0

Executive Summary

AMASS is developing an integrated and holistic approach and supporting tools for assurance and
certification of Cyber-Physical Systems (CPS) by creating and consolidating a European-wide open
certification/qualification platform, ecosystem and community spanning the largest CPS vertical markets.

AMASS aims at defining an AMASS Reference Tool Architecture (ARTA). ARTA is specified as a conceptual
entity that embodies a common set of tool interfaces/adaptors, working methods, tool usage
methodologies, and protocols that will allow any stakeholder of the assurance and certification process to
seamlessly integrate their activities (e.g., product engineering, external/independent assessment, and
component/parts supply) into tool chains adapted to the specific needs of the targeted CPS markets.

ARTA has been intended to evolve, reflect, and integrate the detailed design performed in the AMASS
technical work packages (WP3-WP6).

In this document (D2.4), we present the third version of ARTA, created upon the first version included in
D2.2 [1] and the second version included in D2.3 [2] . The document is organised into three different parts:

e AMASS Reference Tool Architecture. This part includes the architecture overview and outlines the
main ARTA architectural decisions, including a vision of the overall tool architecture. It is based on
the architecture proposed in previous phases and its evolution during the third prototype iteration.
Since some functionalities such as architectural patterns were not covered in the previous versions
of the document, they will be covered along this deliverable.

e Architectural Views. This part organises the architecture specification into a set of representative
architectural viewpoints, including logical, structural and interactional views. The architecture is
intended to evolve during the project life and beyond.

e CACM definition. This part describes the Common Assurance & Certification Metamodel (CACM).
The CACM aims to provide a basis for common understanding between the different domains and
concerns involved in the AMASS project.

This deliverable represents an update of the AMASS D2.3 deliverable [2] released at m18 (September
2017). The sections modified with respect to D2.3 have been marked with an asterisk (*), and the details
about the differences and modifications are provided in Appendix A.

H2020-JTI-ECSEL-2015 # 692474 Page 9 of 185

‘@ AM[ASS AMASS reference architecture (c) D2.4V1.0

1. Introduction

1.1 Context

This section is aimed at recalling the context of the AMASS project as well as the objectives and expected
results that pertain to this document.

Embedded systems have significantly increased in number, technical complexity, and sophistication,
moving towards open, interconnected, networked systems (such as "the connected car" and the cloud),
integrating the physical and digital world, thus justifying the term “cyber-physical systems” (CPS). This
“cyber-physical” dimension is exacerbating the problem of ensuring safety, security, availability,
robustness and reliability in the presence of human, environmental and technological risks. Furthermore,
the products into which these Cyber-Physical Systems (CPS) are integrated (e.g. aircrafts) need to respect
applicable standards for assurance and in some areas, the systems even need certification. The dimension
of the certification issue becomes clear if we look at the passenger plane Boeing 787 as a recent example —
it is reported in [6] that the certification process lasted 8 years and consumed 200.000 staff hours at the
FAA, just for technical work. The staff hours of the manufacturer even exceeded this figure, as more than
1500 regulations had to be fulfilled, with evidence reflected onto 4000+ documents. Although aircrafts are
an extremely safety-critical product with many of such regulations, the situation in other areas (railway,
automotive, medical devices, etc.) is similar.

Unlike practices in electrical and mechanical equipment engineering, CPS do not have a set of standardised
and harmonised practices for assurance and certification that ensure safe, secure and reliable operation
with typical software and hardware architectures. As a result, the CPS community often finds it difficult to
apply existing certification guidance. Ultimately, the pace of assurance and certification will be determined
by the ability of both industry and certification/assessment authorities to overcome technical, regulatory,
and operational challenges. A key regulatory-related challenge must be faced when trying to reuse CPS
products from one application domain in another because they are constrained by different standards and
the full assurance and certification process must be applied as if it was a totally new product, thus reducing
the return on investment of such reuse decisions. Similarly, reuse is of vital importance in the same
domain as well, when trying to reuse CPS products from one project to another.

To deal with the multi-concern nature of present-day critical systems, the complexity due to the
proliferation of assessment models and standards, and the presence of hardly interoperable tools, AMASS
aims to define and implement a platform that supports those activities required for CPS assurance and
certification. AMASS is based on achievements in previous research projects such as SafeCer [4] and
OPENCOSS [5]. AMASS plans to integrate and enhance previous results and include new functionalities
related to architecture-driven assurance (WP3), multi-concern assurance (WP4), seamless interoperability
(WP5), and cross-domain and intra-domain reuse (WP6).

AMASS seeks to support openness of CPS’ technological solutions as a sustainable toolset architecture. To
this purpose, the AMASS Reference Tool Architecture (ARTA), documented in this deliverable, establishes
and enforces cross-domain and cross-project agreements on toolset architectures, methodological
support, interface standards, and interoperability techniques. The task T2.2 AMASS Reference Tool
Architecture and Integration develops ARTA as an entity that embodies a common set of tool
functionalities, user interfaces and tool adaptors. This openness will allow any stakeholder of the
assurance and certification process to perform a seamless integration of their activities (e.g., product
engineering, external/independent assessment, and component/parts supply) into tool chains adapted to
the specific needs of the targeted CPS markets.

H2020-JTI-ECSEL-2015 # 692474 Page 10 of 185

‘@ AM[ASS AMASS reference architecture (c) D2.4V1.0

1.2 Purpose (*)

This document describes the AMASS Reference tool Architecture (ARTA). This document contains the set
of architectural issues, along with the associated architectural decisions; all at appropriate levels of
abstraction to make it easy to understand which architectural decisions have been made. The architecture
specification has been done in an iterative way as described in the deliverables D2.2 [1] and D2.3 [2] . This
document represents the outputs of the third iteration of the specification.

The “Common Assurance & Certification Metamodel (CACM) specification” should be read together with
this document. The CACM specification contains the definition of the different concepts that the different
ARTA models will use to cover different needs. The CACM specification was included in the D2.2
deliverable “AMASS Reference Architecture (a)” [1]. In the D2.4 deliverable, the current version of the
CACM specification is included in Sections 4 and 5. The final version of the CACM specification will be
provided in the deliverable D2.9 “AMASS platform validation”.

This document focuses on:

e The ARTA characteristics
e The ARTA boundaries
e The assumptions and restrictions that constrain the design and implementation

e The high-level design of the system in term of its main components and how they should interact
with each other.

This document is a guide for further detailed design activities and implementation in the AMASS project
that can be used by the AMASS open source community, to be created and coordinated in WP7, task T7.3
Building and Coordination of AMASS Open-Source Community.

This document is also intended as an instrument to ease collaboration among team members in
developing the architecture and to help team members easily retrieve the motivation behind technical
work-package-specific architectural decisions so that those decisions can be robustly adopted. For
example, an architect may make a security-related design decision e.g., by constraining the (type of) data
stored in the ARTA and how it can be implemented in the AMASS Platform. This decision may appear to be
a burden, but the justification can explain that users do not want to place data outside their toolset and so
only want to use the system as a local stand-alone tool or plug-in. The rest of the design must adapt to this
restriction.

This document should also inform the AMASS team members about how the system is partitioned or
organized so that the team can adapt to the system needs. It also gives a high-level outline of the system
and its technical motivations to whoever must maintain and evolve the architecture later (the AMASS
community).

This document has three different parts:

1. AMASS Reference Tool Architecture. This part includes the architecture overview and describes
the main, high-level ARTA architectural decisions including a vision of the overall AMASS Platform.
It is based on the view proposed for the core definition and the second prototype (Prototype P1),
and it is envisioned for the third prototype (Prototype P2).

2. Architectural Views. This part organises the architecture specification into a set of representative
architectural viewpoints, including a structural view, a layered view, and an interactional view. The
architecture is expected to be evolved beyond the project life.

3. CACM definition. This part describes the Common Assurance & Certification Metamodel (CACM).
The CACM aims to provide a basis for common understanding between the different domains and
concerns involved in the AMASS project.

H2020-JTI-ECSEL-2015 # 692474 Page 11 of 185

‘@ AM[ASS AMASS reference architecture (c) D2.4V1.0

1.3 Technical Context and Objectives

The objectives we pursue within the ARTA specification are to:

e Specify ARTA as a conceptual entity that embodies a common set of tool interfaces/adaptors,
working methods, tool usage methodologies, and protocols that will allow any stakeholders of the
assurance and certification/qualification activities to seamlessly integrate their activities (e.g.,
product engineering, external/independent assessment, component/parts supply) into tool chains
adapted to the specific needs of the targeted CPS markets.

e Coordinate the conceptual integration of the AMASS basic building blocks, for each of the four
AMASS technical work packages (WP3-WP6).

1.4 Relation to other AMASS Tasks (*)

The ARTA specification in this document is the third iteration result. It is based on previous specifications
proposed in the deliverable D2.2 [1] and D2.3 [2]. For this iteration, the inputs have been produced by
tasks Tx.2 and Tx.3 (where ‘X’ is 3 to 6) where they have consolidated the basic building blocks described in
the previous iterations and completely addressed the designs of the AMASS functionalities, which aim to
fulfil the scientific technological objectives of the AMASS project:

e System Architecture-driven Assurance
e Multi-concern Assurance

e Seamless Interoperability

e Cross/intra-domain Reuse

Special attention has been paid to the definition of an iterative integration plan where the ARTA building
blocks are added to the system incrementally. The work was based on the previous specification (D2.2 and
D2.3), focusing on this iteration in the communication between the technical areas and addressing
completely the functions to fulfil the technical objectives (AMASS-specific building blocks). Within task
T2.2, we are following a prototyping approach to design the AMASS basic building blocks and the AMASS-
specific building blocks, specifying this way a global integrated platform.

In order to provide a synchronized environment between the different tasks, the two teams created in the
AMASS project in the previous iteration have continued working: the Concept Team and the
Implementation Team. These teams serve as interfaces between the technical tasks and the task T2.2. The
objective is to provide a quick and smooth connection between the tasks so that the platform design takes
into consideration the consistency between the different building blocks.

The aim of the Concept Team is to design the CACM as well as to provide guidelines to technical WPs to
follow the same strategy and templates for defining the metamodels and functionalities to share among
the different areas. This team is also in charge of defining the different metamodels that are part of the
CACM and shared by the different work packages, as well as of integrating these metamodels into a
coherent and consistent way so that the concepts used in the different technical work packages are
captured and shared. The Concept Team is composed by the different conceptual tasks leaders from the
technical work packages and T2.2 partners.

The objective of the Implementation Team is to discuss cross-WP technical solutions such as database
technology options, technologies for the development environment, software licensing, and
implementation conventions. The contributors to the Implementation Team are the implementation tasks
leaders, the validation task leader, and other implementation-oriented partners. This team works in close
cooperation with the Concept Team.

H2020-JTI-ECSEL-2015 # 692474 Page 12 of 185

‘@ AM[ASS AMASS reference architecture (c) D2.4V1.0

2. AMASS Reference Tool Architecture (ARTA)

2.1 Goals and Philosophy

ARTA proposes a specification for a collaborative tool environment, which aims to support CPS assurance
and certification activities. ARTA builds upon OPENCOSS [7], [8], SafeCer [9] and CHESS [23] conceptual,
modelling and methodological frameworks and elaborates on new functionalities. More specifically, ARTA
not only connects both project achievements but also extends them for architecture-driven and multi-
concern assurance, as well as for further cross-domain and intra-domain reuse capabilities and seamless
interoperability mechanisms.

ARTA specification was envisioned as a set of blocks that work together to provide all the functionalities.

e AMASS basic building blocks:
o System Component Modelling Framework
o Assurance Case Modelling Framework
o Evidence Management Framework
o Compliance Management Framework

e AMASS specific tool set:
o System Architecture-driven Assurance tools
o Multi-concern Assurance tools
o Seamless Interoperability tools
o Cross/intra domain Reuse tools

e Knowledge base conforming to CACM
e Eclipse open-source tools proposed as tool infrastructure
e Open standards for interoperability with external tools.

The ARTA specification is described as an infrastructure on which the AMASS building blocks run and
operate in order to perform architecture driven, multi-concern assurance, and cross-domain/concern
assurance in an interoperable environment.

The ARTA specification puts high emphasis on modularity and distribution properties in the whole ARTA
design, so that it supports connection from different roles and locations to the shared information. In
addition, the design must pay special attention to maintainability and flexibility, as the design and
implementation shall follow an incremental approach through different iterations.

2.2 Tool Architecture Outline (*)

The ARTA specification aims at being reference in the area of CPS assurance and certification tooling. It is
an open architecture with no constraints on the implementation and a solution which provides a
customisable assurance assets management infrastructure to support assurance activities along the CPS
development lifecycle. Figure 1 provides a high-level overview of ARTA.

The AMASS Platform Basic Building Blocks were the result of the first research & development iteration.
These building blocks include tools for specification of system components, specification of assurance
cases such as structured argumentation trees, evidence management, and compliance management. In
addition to these, the basic building blocks include user access management and data management tools,
as well as the Common Assurance and Certification Metamodel (CACM). These basic blocks have evolved
during the second and the third iteration, which is the last iteration of the AMASS project. All those
advanced functionalities build on top of the design solutions detailed in deliverables D3-6.3. The
explanation of the implementation of these components is distributed over deliverables D3-6.6. By the

H2020-JTI-ECSEL-2015 # 692474 Page 13 of 185

\U& AMASS AMASS reference architecture (c) D2.4V1.0

time of the submission of this deliverable, D3.3 and D4.3 have been finalised, while D5.3 and D6.3 continue
their conceptual work. The same applies to the last iteration for the implementation deliverables which are
ongoing and will be released in the upcoming months. For further details regarding the technical details of
that evolution, the reader is referred to Dx.2 [10] [11] [12] [13] and Dx.3 [14] [15] [16] [17], where x equals
3to6.

The Dx.2 and Dx.3 deliverables stand for the main Design of the AMASS tools and methods for
architecture-driven assurance, multi-concern assurance, seamless interoperability and intra/cross-domain
reuse, targeting P1 and P2, respectively.

Supported on the basic building blocks and the second iteration blocks, during this third iteration AMASS
has worked on four (4) pillars, which correspond to the specific project Scientific and Technical Objectives
(STOs). Their purpose is summarized as follows:

e Architecture-Driven Assurance (STO1): It allows for explicit integration of assurance and
certification activities with the CPS development activities, including specification and design. It
shall provide support for system components composition in accordance with the domain best
practices, guaranteeing that emerging behaviour does not interfere with the whole system
assurance.

e Multi-concern Assurance (STO2): Tool-supported methodology for the development of assurance
cases, co-assessment, and contract-based assurance, which addresses multiple system
characteristics (mainly safety and security, but also other dependability aspects such as availability,
robustness and reliability).

e Seamless Interoperability (STO3): Open and generically applicable approach to ensure the
interoperability between the tools used in the modelling, analysis, and development of CPS, among
other possible engineering activities; in particular, interoperability from an assurance and
certification-specific perspective, and collaborative work among the stakeholders of the assurance
and certification of CPS.

e Cross/Intra-Domain Reuse (STO4): Consistent assistance for intra- and-cross-domain reuse, or
cross-concern, based on a conceptual framework to specify and manage assurance and
certification assets.

H2020-JTI-ECSEL-2015 # 692474 Page 14 of 185

@ AM[ASS AMASS reference architecture (c)

D2.4V1.0

[e e e
1 AMASS Reference Tool Architecture I
1 |
1 Architecture-Driven Assurance (STO1) Multi-Concern Assurance (STO2) 1
| s :
1 System Architecture Architectural Patterns for System Dependability Co- Dependability 2%
1 Meodeling for Assurance Assurance Analysis/Assessment Assurance “El
1 1
1 . Contract-Based . Contract-Based Multi- 1
| IS SR Assurance Composition N > concern Assurance l
I i ﬁ I
1 V&V Activities e 1
1 g
1 WP3 I WP4 I i
o T] R] e S

AMASS Platform Basic Bmldlng Blocks

Common Assurance &
System Component Assurance Case Evidence CDmleance Certification Metamodel
Specification Specification Management Management (CACM)

l\——I

h————-lln,’Dut

1 fwee} I II WP5 ||

Reuse Assistant Impact Analysis
E& Tool Integration ﬁ
i i Management
Automatic Generation of Semantics Standards a g
Process/Product based .)
Equivalence Mapping
Arguments

Collaborative Work Tool Quality Assessment
Process/Product/Assurance Case reuse via management of Management and Characterization .
variability 9 *E_

L A2

(o=

=

Cross/Intra-Domain Reuse (STO4) Seamless Interoperability (STO3)

|
|
|
|
|
|
|
|
|
|
|
L

Figure 1. AMASS Reference (High-Level) Architecture (Prototype P2)

Independent Assessment

S
Certification Safety/S€curity
Liaison Assessment

Component Supplier

Component Module Assurance
Release Case Development

Product Engineering

a2
Design Validation &
Verification

0sLC
Adapter

OsLC
Adapter

°8: g
7 = Development Quality
o3z Management

In the third iteration the main evolutions have been to (1) consolidate the functionalities of the basic
building blocks and (2) address all the advanced AMASS functionalities which are related to the four
Scientific Technical Objectives. Further details on the AMASS functionality are presented in Section 3.1.

Table 1 lists the different AMASS functionalities grouped by STOs (cf. Figure 1) for the third and last
iteration (P2). Table 1 lists both the AMASS building blocks (blue highlighted) and advanced functionalities

(green highlighted).

Table 1. Functionalities of the AMASS Reference Tool Architecture

This group provides features to allow the modelling of the system
architecture specification, in particular, to allow the definition of components
as reusable entities, and then the assembly of the components themselves, at
any level of the hierarchical architecture, to build/decompose the system.

that are needed for system assurance.
case.
model or from the analysis thereof.

e Functional Refinement.

System This block contains the functionalities that are focused on the modelling of
Architecture the system architecture to support the system assurance, which are:

Modelling for e Supporting the modelling of additional aspects (not already included in
Assurance the system component specification) related to the system architecture

e Tracing the elements of the system architecture model to the assurance
e Generating evidence for the assurance case from the system architecture

e Importing the system architecture model from other tools/languages.

Architecture Driven Assurance

Architectural Support for architectural patterns management. This approach helps designer

H2020-JTI-ECSEL-2015 # 692474

Page 15 of 185

' @ AM[ASS AMASS reference architecture (c) D2.4V1.0

Patterns for and system architect when choosing suitable solutions for commonly
Assurance recurring design problems while achieving component reuse.

This block contains the functionalities that are focused on architectural
patterns to support system assurance, which are:

¢ Management of a library of architectural patterns.
e Automated application of specific architectural patterns.

e Generation of assurance arguments from architectural patterns
application

The system component specification should be extended in order to support
the specification and instantiation of parametrized architectures.
Furthermore, having a contract associated to a specific architectural pattern
allows deriving some argumentation fragment automatically. The information
regarding the implication of using this pattern is collected in a form of
assumption/guarantee (i.e. PatternAssumption and PatternGuarantee). Even
if the field of design pattern is large, AMASS focuses on applying its usage on
safety-critical systems. Hence, the development of fault tolerance design
patterns and its usage for different technologies (also known as technological
patterns) are some of the addressed AMASS objectives.

Contract-Based This block, which is also known as Contract-Based Design for Assurance
Assurance introduces, the functionalities that support the contract-based design of the
Composition system architecture, which provides additional arguments and evidence for

system assurance. These functionalities, also include:

e Contract specification, i.e., specification of components’ assumptions and
guarantees.

¢ Contract-based reuse of components, i.e., a component reuse that is
supported by checks on the contracts.

e Generation of assurance arguments from the contract specification and

validation.
Activities This block contains the functionalities that are focused on enriching the
supporting assurance case with advanced analysis to support the evidence of the
Assurance Case assurance case. These functionalities include the following sub-areas

Requirements support

e Requirements formalisation into temporal logics.

e Analysis of requirements’ semantics based on their formalisation into
temporal logics.

e Analysis of requirements based on quality metrics.

e Safety requirement derivation based on Model-based Safety Analysis and
the creation of the safety concept/definition of safety mechanisms:
automatic creation of safety concept from safety contracts (Contract-
based Safety Engineering).

V&YV Activities or functional verification by simulation and formal methods,

safety verification, and validation by analysis techniques and fault injection

simulations.

e Contract-based verification, i.e. exploiting contracts to verify the
architectural decomposition, to perform compositional analysis, and to
analyse the safety and reliability of the system architecture.

e Automated formal verification (model checking) of requirements on the
system design.

H2020-JTI-ECSEL-2015 # 692474 Page 16 of 185

(&) AmASS

AMASS reference architecture (c) D2.4V1.0

Multi-concern Assurance

Seamless Interoperab

Cross/Intra-Domain Reuse

e Model-based specification of fault-injection and analysis of faulty
scenarios with simulation (e.g. Sabotage) or model checking (e.g. xSAP) for
safety V&V.

e Other techniques (e.g. e.g. Component Fault Trees from SysML models)
for Model-based safety analysis (e.g. Medini Analyze).

e Document generation.

This group manages argumentation information in a modular fashion. It also
includes mechanisms to support compositional assurance and assurance
patterns management.

Dependability

This group contains the functionality for creating and structuring the multi-

Assurance concern assurance case argumentation in an understandable and
maintainable way. This includes argumentations targeting various
dependability attributes with support of argumentation patterns.

System This group provides functionalities for analysing different quality attributes

Dependability Co- | while taking care of the inter-dependences between them. This is ideally

Analysis/Co- realized by inherently combined Co-Analysis and Co-Assessment methods,

Assessment which take care of the inter-dependencies within the method. On the other

hand, multi-concern assurance can be implemented combining separate
processes with mono-concern assurance methods by a workflow tool with a
subsequent interaction point activity for treating the mutual dependencies
between the quality attributes.

ility

Contract-based
Multi-concern
assurance

This group comprises functionalities which contribute to assurance for
multiple concerns by two kinds of contracts: on the one hand, component
contracts, which target more than one quality attribute. On the other hand,
argument contracts, which provide a means for realizing a link between
related assurance cases.

This module manages the full lifecycle of evidence artefacts and evidence
chains. This includes evidence traceability management and impact analysis.

Tool Integration
Management

This module enables the exchange of data between engineering/assurance
tools, e.g. between the AMASS Tool Platform and other tools developed by
the AMASS partners.

Collaborative Work

This module allows different users to work at the same time with the same

Management pieces of data, supporting the interaction of the different users.

Tool Quality This module supports the specification and management of tool quality needs
Assessment and for CPS assurance and certification. It is currently supported by the
Characterisation Compliance Management functionality for Cross/Intra-Domain Reuse.

Functionality related to the management (edition, search, transfer, etc.) of
process and standards’ information as well as of any other information
derived from them, such as interpretations about intents and mapping
between processes and standards. This functional group maintains a
knowledge database about “standards & processes”, which can be consulted
by other AMASS functionalities.

Reuse Assistant

The reuse assistance functionality concerns intra- and cross-domain reuse of
assurance and certification assets. This module supports users to understand
whether reuse of the assurance assets is reasonable or to determine what
further assurance activities (engineering, V&V, or compliance activities) are
required to justify compliance in the new scenario.

Semantics
Standards

For analysis of semantics-based equivalence between standards, AMASS
extends the OPENCOSS Common Certification Language (CCL) approach by

H2020-JTI-ECSEL-2015 # 692474

Page 17 of 185

\@ AMASS

AMASS reference architecture (c) D2.4V1.0

Equivalence
Mapping

leveraging the SafeCer ontology-based method for representation of
standards. Automated means also allows performing an informed gap
analysis of the standards and thus mitigates the risk of inappropriate reuse,
when a given assurance asset might not appropriately match the
requirements of the reuse context.

Impact Analysis

When an assurance asset is changed, the AMASS platform shall indicate how
the change impacts other related assurance assets.

Process-related
reuse via
management of
variability at
process level

Functionality related to the management of variability at process level. This
functionality takes as input a process, which needs to be reconfigured, and
the new selections desired by the user. As outcome, this functionality
generates a new valid re-configuration of the process.

Product-related
reuse via
management of
variability at
product level

Functionality related to the management of variability at product level. This
functionality takes as input a product (more specifically, an architectural
specification given in CHESSML), which needs to be tailored/reconfigured,
and the new selections desired by the user. As outcome, this functionality
generates a new valid re-configuration of the architectural specification.

Assurance Case-
related reuse via
management of
variability at
assurance level

Functionality related to the management of variability at assurance case level.
This functionality takes as input an assurance case (more specifically, an
assurance case developed in OpenCert), which needs to be
tailored/reconfigured, and the new selections desired by the user. As
outcome, this functionality generates a new valid re-configuration of the
assurance case.

Automatic
generation of
process-based
arguments

This functionality is related to the generation of structured arguments from
process models. It supports the strengthening of the safety case via
arguments that are aimed at explaining why a process is compliant.

Automatic
generation of
product-based
arguments

This functionality is related to the generation of structured arguments from
contract-based architectural specification. It supports the strengthening of
the safety case via arguments aimed at showing why the product is expected
to behave safely.

Table 2 lists the main concepts regarding the AMASS infrastructure i.e. Assurance Project Management,
Platform Management and Assurance Traceability.

Table 2. AMASS Infrastructure

Functionality Group Description

Infrastructure

Assurance Project
Lifecycle Management

This functionality factorizes aspects such as the creation of assurance
projects in the ARTA. This module manages a “project repository” which
can be accessed by any other ARTA module.

Platform Management | This

is an infrastructure functional module. It includes generic
functionality for security, permission and profiles, data storage,
visualization, and reporting.

Assurance Traceability | This

is an infrastructure functional module. It includes generic
functionality for traceability management and impact analysis.

H2020-JTI-ECSEL-2015 # 692474

Page 18 of 185

AMASS

AMASS reference architecture (c) D2.4V1.0

Figure 2 illustrates the functional decomposition of the AMASS Platform. This functional decomposition is
further analysed in Section 3.

Architecture Driven Assurance Multi-Concern Assurance

Requirements support V&V Activities System Dependability

Co-Analysis/Assessment

| i
AMASS building blocks

g e Common Assurance &
Assurance Case Compliance Evidence Platform S
Management Management Management Management (CACM)

System

Architecture
Management

Contract-based i g
Component Spec Assurance Standard Editor C"“ab":t"'e Assur. Project Assurance
We Management Configuration
Contract-based Assurance Case
composition Editor Compliance Editor Ay — Assurance Project Traceability
e Editor Visor
Architectural GAu‘tnm.atlcof
P s Pi eneralt’lor:i Baseline Editor im
Management rocess/Product- Process Visor Access Manager Analyser
based Arguments
Contract-based
Multi-concern Reporting Reuse Assistant
Assurance
I I Advanced
Blocks
Product/Process/ .
Tool Integration Tool Characterization P @ s :e"_lﬂ'lltlﬁ St:lndar_ds B.asi.c
ST quivalence Mapping Building

Blocks

Seamless Interoperability Cross/Intra domain Reuse

Figure 2. Functional Decomposition of the AMASS Platform

2.3 Stakeholders

In this section, we present a general view of the different stakeholders for the ARTA. We can identify the
following main groups:

e Manufacturer

e Supplier

e Assessor and Authorities
e Tool providers

Manufacturer

They are the interface with the user groups and organizations. They are partly responsible to introduce the
ARTA envisioned tools to the public. This includes the system manufacturers from the different domains,
system responsible, engineers, assurance assessors to carry on the assurance activities, evidence
collection, and so on.

The Project Manager is the role that works on a compliance and assurance-based project where a product
(system or component) needs to be assessed as acceptably dependable (safety, security or other
dependability properties). The Manager will use an implementation of the ARTA (e.g. the AMASS Tool
Platform) to check the status of the project's goals within the planned budget, time, and resources.

The Assurance Engineer is the role responsible for executing the different V&V and assurance activities
e.g., create and/or collect the evidence to demonstrate that the product is acceptable safe/secure. An
assurance engineer can be split into safety and security engineer roles.

H2020-JTI-ECSEL-2015 # 692474 Page 19 of 185

‘@ AM[ASS AMASS reference architecture (c) D2.4V1.0

The Assurance Manager is responsible to show compliance with a particular standard and argue the
safety/security of the product in an assurance case, or demonstrate the properties of a component or
system that are required for an assurance case. The Assurance Manager will use the ARTA platform to
plan, structure, view, review and assess the system structure and arguments or modules, sometimes by
composing pre-existing arguments, and reusing arguments and evidence relating to reusable components.
In the same way that an assurance engineer can be split in two groups (i.e. safety and security engineer),
an assurance manager can be subdivided into safety and security manager.

The Internal Assessor is responsible for assessing the adequacy of the evidence and assurance ‘package’, in
terms of demonstrating the safety/security of the system under consideration.

Supplier

Suppliers are system and component development organisations that are the functional and financial
beneficiaries of the AMASS tools. A supplier can have the same kind of actors as described for the
manufacturer stakeholder (project manager, assurance manager, assurance engineer and internal
assessor). They can either benefit from the use of the AMASS, by implementing tools or integrating some
of the available tools within their own products or by using the tools and provide composable assurance
assets (e.g. assurance cases, composable evidence, component modules design in the architecture, etc.).

Assessor and Authorities

The Authority may be of three types:

e The National Safety/Security Authority is a generic placeholder for the various national bodies
responsible for safety/security in a particular domain. These bodies are answerable to the national
governments. They are included here as political beneficiaries from the AMASS tools, since
improved visibility of assurance is a benefit.

e The European Safety/Security Authority is a generic placeholder for the European overseers of
overall transport safety in the aerospace and railway domains. As with the National
Safety/Security Authorities, they will benefit politically from the enhanced visibility of assurance.

e The Regulator is a generic placeholder for the safety/security regulatory and certification bodies in
the aerospace and railway domains (automotive manufacturers do not answer directly to a
certification body).

The Assurance Assessor is responsible for assessing the adequacy of the evidence and assurance ‘package’
provided by the manufacturers, in terms of justifying the safety/security of the system or component
under consideration. Depending on the domain, and on the nature of the system under consideration, the
assurance assessor may be independent of the manufacturing organisation. The safety/security assessor
will use the AMASS tools to view workflows, arguments, compliance checklists and evidence artefacts
related to the system or component.

Tool providers

The tool provider creates tools for manufacturing CPS or supporting assessment of these systems. Their
objective is to create competitive tools that support the manufacturers and assessors in their goals. They
will either implement possible alternatives for the ARTA or connect with the AMASS tools as it clearly
provides an added value for manufacturers and assessors in achieving their goals.

Please note that the group of AMASS stakeholders is refined in the “logical view” in Section 3.1.

2.4 AMASS Tool Platform (*)

The AMASS Tool Platform (or the AMASS Platform) is a specific implementation of ARTA, with capability
for evolution and adaptation, which will be released as an open technological solution by AMASS through

H2020-JTI-ECSEL-2015 # 692474 Page 20 of 185

\U& AMASS AMASS reference architecture (c) D2.4V1.0

the OpenCert project [18]. The AMASS Tool Platform is a collaborative tool environment that supports CPS
assurance and certification.

Since AMASS targets high-risk objectives, the AMASS Consortium decided to follow an incremental
approach for the AMASS Tool Platform design, implementation and benchmarking, by developing rapid
and early prototypes. The benefits of following a prototyping approach are:

e Better assessment of ideas by focusing on a few aspects of the solution.
e Ability to change critical decisions by using practical and industrial feedback (case studies).

AMASS has planned three prototype iterations and the results are being released in the OpenCert project
hosted by the PolarSys working group [19]:

1. During the first prototyping iteration (Prototype Core), the AMASS Platform Basic Building Blocks
were aligned, merged and consolidated at TRL4 (Technology Readiness Level - 4).

2. During the second prototyping iteration (Prototype P1), the previous Basic Building Blocks were
improved and the first version of the AMASS-specific Building Blocks were developed and
benchmarked at TRL4.

3. Finally, at the third prototyping iteration (Prototype P2), all AMASS building blocks will be
integrated in a comprehensive toolset operating at TRL5.

Each of these iterations has the following three prototyping dimensions:
e Conceptual/research development: development of solutions from a conceptual perspective.
e Tool development: development of tools implementing conceptual solutions.

e (ase study development: development of industrial case studies using the conceptual and tooling
solutions.

This deliverable reports the ARTA design of the third prototype iteration (Prototype P2), which covers the
basic building blocks, and a second version of the AMASS-specific building blocks (which provide a solution
to the AMASS scientific technological objectives: Architecture-driven Assurance, Multi-concern Assurance,
Seamless Interoperability and Cross/Intra Domain Reuse).

H2020-JTI-ECSEL-2015 # 692474 Page 21 of 185

@\J AM[ASS AMASS reference architecture (c) D2.4V1.0

3. Architectural Views

The architectural description of the ARTA focuses on the concepts of view and viewpoint [20]. A view is “a
representation of a whole system from the perspective of a related set of concerns based on a viewpoint”.
A viewpoint is a “specification of the conventions for constructing and using a view”, e.g. technology
viewpoint, information model viewpoint. A set of architectural viewpoints that describe the ARTA from a
high-level design perspective have been selected. In this chapter, we include the different architectural
views that any implementation of the ARTA should fulfil. For validation purposes, the AMASS platform will
be used as the implemented version of the ARTA.

Logical Viewpoint (Functions Structural Viewpoint
traced to HLR) (Subsystems/Components)
< — —

Editor

=
& ‘I |I'Te

Analysis &
Design

Process
Compliance

Repository

Metrics

Interaction Viewpoint
(external and internal)

I3
()
S
(7]
S
coller] [mapager 1 Qg,

Figure 3. Architectural Viewpoints for the description of the ARTA

The ARTA architecture specification has three viewpoints (see Figure 3):

e Logical Viewpoint (see Section 3.1). The ARTA Logical Viewpoint shows the functionality that will
be required to fulfil the High Level Requirements (HLR) [21]. In this document, the Logical
Viewpoint is shown as UML Use Case diagrams that contain actors and use cases with interaction
flows.

e Structural Viewpoint (see Section 3.2). The AMASS Structural Viewpoint defines a set of building
blocks (tool modules), their services and their data. In this document, we describe the Structural
Viewpoint by using UML package and component diagrams.

e Interaction Viewpoint (see Section 3.3). The AMASS Interaction Viewpoint describes the scenarios
of interaction between the user and the ARTA platforms and internally between tool modules. We
have described the interaction viewpoint by using UML sequence diagrams.

In our approach of architectural description, we use a “layered” pattern to handle functionality at different
levels of service reusability and abstraction. The layered pattern structures the system description into
groups of modules that form layers on top of each other. In this pattern, upper layers use services of the
layers below only (never above).

H2020-JTI-ECSEL-2015 # 692474 Page 22 of 185

\U& AMASS AMASS reference architecture (c) D2.4V1.0

3.1 Logical View

The Logical View description organizes the ARTA specification into different use case groups. We have
derived functional groups from an analysis of Case Studies description [22] and Requirements Specification
[21]. The analysis consisted of the following points:

e Selection of requirements [21] related to the “third prototype” (Prototype P2) in the information
workflow handled by AMASS. Selection of needs from the case studies [22] updating or reading
common set of data. For instance, use cases managing evidence have been grouped in a single
functional group.

e Selection of the logical functionalities analysed and conceptual design included in the technical
deliverables Dx.2 [10][11][12][13] and Dx.3 [14][15][16][17] (where x=3-6).

e Transversal functionalities have been factorized in common modules. For instance, access
management and assurance project lifecycle management have resulted in independent functional
groups.

During the third prototype iteration, all the functionalities described in the ARTA have been fully
addressed. For instance, comparing with the previous D2.3, use cases related to architectural patterns for
assurance, functional verification by monitors and simulation-based fault injection have been defined.

The technical Dx.3 (where x=3-6) deliverables have improved the overall understanding of the general
platform.

Table 1 lists the main AMASS functionalities while Table 2 depicts the main concepts addressing the AMASS
infrastructure i.e. Assurance Project Management, Platform Management and Assurance Traceability.

To describe each of the proposed functionality groups, use case diagrams are utilised. A use case is a list of
steps, typically defining interactions between a role (known as an "actor") and a system (the AMASS
platform in our case), to achieve a goal. Figure 4 defines the set of actors which interact with the AMASS
platform. The actors are based on stakeholders (Section 2.3) with some refinements:

e Management. It stands for Project and Assurance Manager, which is an AMASS-specific actor
artificially created to represent a manager who is in charge of managing all the processes and
activities involved in the AMASS platform usage. This also includes an IT Manager who is in charge
of managing and setting the AMASS tool platform, as an IT infrastructure.

e Engineers. Any actor involved in the execution of development, V&V and safety-security analysis
activities. We separate safety and security engineers, since some activities may need to distinguish
according to the targeted concern (safety and security). The process Engineer is a subtype of a
development engineer who is in charge of defining the development processes and ensure the
process is being followed.

e Assessors. Two kinds of assessors: internal to the company and external or independent assessor.
In this iteration they are not distinguished in the proposed logic, however, they could have some
implications regarding accessibility to certain confidential assurance assess.

H2020-JTI-ECSEL-2015 # 692474 Page 23 of 185

AM[ASS AMASS reference architecture (c) D2.4V1.0

I Management :
|
I |
I |
|
: Project Manager Assurance Manager IT Manager :
I |
S o e !
I Engineers : Assessors !
I : I
1 |
|
I |
|
1 |
|
I Development Assurance |
| Engineer Engineer ! Assurance Assessor |
I : !
|
I |
|
I |
|
I |
|
I |
|
I |
|
| Process Safety Security Independent Internal |
I Engineer Engineer Engineer | Assessor Assessor 1
|
L e e e e e e e e e e e = e e e e :

Figure 4. Actors of the AMASS Tool Platform

3.1.1 Infrastructure Use Cases

3.1.1.1 Assurance Project Lifecycle Management Use Cases

This functionality includes aspects such as the creation of assurance projects locally in the AMASS Platform
and any project baseline information that may be shared by the different functional modules. This module
manages a “project repository”, which can be accessed by the other AMASS modules.

|--------------------------------q

A Y
| A Y
| .
I N
A
: <<extend>> :
i Create Assurance _ Drop Assurance I
I Project Projects I
|
|
|
Define Assurance _<<_ex'fnd_>> Import Assurance :
Project Baseline Project i
|
Assurance Manager |
I Navigate Assurance :
| Projects Repository i
1 1
| |
l------------------------------------I

Figure 5. Use Cases for “Assurance Project Lifecycle Management”

H2020-JTI-ECSEL-2015 # 692474 Page 24 of 185

@ AM[ASS AMASS reference architecture (c) D2.4V1.0
Table 1.

Use case “Create Assurance Project”

Create Assurance project

Functionality The system should allow users to create a kind of “container” for the whole
Description information related to a given safety assurance project.

A Assurance Manager

General Information about the project must be available: general timing, responsible
Post-conditions JE\[elsl

system, client, product and type of product under assurance, etc.)
#Drop Assurance Project: The system could delete information about a whole
assurance project from the repository

Non-functional B\[Js2
None

Table 2. Use case “Define Dependability Assurance Project Baseline”

Use Case Define Dependability Assurance Project Baseline

Functionality The system should allow users to define a technical information baseline about a
Description given project, including, standards scope, compliance means, and justifications on any
project decisions of company process tailoring.

Assurance Manager

2. Specify general project information (general timing, responsible person in the

Variations

person in the system, client, product and type of product under assurance, etc.
r 1. Create a new project defining any dependency with other projects

1. Define project structure (into sub-projects if needed).
4. Specify any justification on compliance means

Technical information about the project must be available: project plans,
dependability/safety/certification plans, standards scope, and means of compliance
2. Define the scope of standards for this project (phases, activities, etc.) and/or sub-

Variations #lmport an assurance project: the system lets the user import the information for this
use case, from an external file created with the process editor.

(agreed with authorities.
Post-conditions \[e]sl:
projects if needed.
3. Define the compliance means (evidence to be presented for compliance)
Non-functional \[ef3l:

Table 3. Use case “Navigate Assurance project repository”

Use Case Navigate Assurance projects repository

Functionality The system should allow users to navigate along the assurance project repository.
Description

Assurance Manager

The assurance project repository previously exists.
Post-conditions JE\[e]yld

1. Open the Assurance Project.

2. Navigate through the different assurance project elements.
VELEL None

Non-functional PF\G)E

H2020-JTI-ECSEL-2015 # 692474 Page 25 of 185

@ AM[ASS AMASS reference architecture (c) D2.4V1.0

3.1.1.2 Assurance Traceability Use Cases

Traceability can be defined as the existence of a relationship between two artefacts relevant to a system’s
lifecycle; e.g. between a requirement and the test cases that validate it. The Assurance Traceability Use
Cases focus on cross-cutting traceability aspects that other AMASS areas might need, i.e. traceability
between different assurance assets: between evidence artefacts, between an assurance case and the
evidence artefacts that the assurance case reports, between a component contract and its evidence of
satisfaction, etc. Traceability is not limited only to the specification of relationships but also deals with
other activities that exploit it, specifically, with change impact analysis.

l----------------------\

Specify Traceability
between Assurance
Assets

Conduct Impact
Analysis of Assurance
Asset Change

Assurance
Manager

Figure 6. Use Cases for "Assurance Traceability" module

Table 4. Use case “Specify Traceability between Assurance Assets”

Specify Traceability between Assurance Assets

Functionality The AMASS Platform shall: (1) allow an Assurance Manager to specify relationships
Description between evidence artefacts; (2) display the chains of evidence to which an evidence
artefact belongs; (3) analyse the quality of the relationships between evidence
artefacts (e.g. completeness and correctness). When specifying relationships for an
evidence artefact, the system shall suggest evidence artefacts to which the first
evidence artefact might relate.

The same kind of features could be used for traceability of other assurance assets.

EEER Assurance Manager
m Two Assurance Assets have been created.

The trace chain of the specified traceability is shown.

1. The Assurance Manager selects an Assurance Asset

2. The Assurance Manager adds a Trace Link to the Asset

3. The Assurance Manager indicates the Assurance Asset or Assets that corresponds
to the target of the Trace Link

VELE LT # The AMASS Platform indicates Assurance Assets that could correspond to the target

of the Trace Link

The Assurance Manager indicates the Change Effect Kinds of the Trace Link (None, To

Validate, To Modify, Modification, Revocation; see details in CACM definition in D2.2)

H2020-JTI-ECSEL-2015 # 692474 Page 26 of 185

@ AM[ASS AMASS reference architecture (c) D2.4V1.0

The AMASS Platform shows information about the quality of the Trace Links
The AMASS Platform shows possibly missing Trace links
The Assurance Manager evaluates the quality of a Trace Link

Non-functional F\e)s=

ST wPs_EM_002, WP5_EM_008, WP5_EM_009, WP5_EM_012

Table 5. Use case “Conduct Impact Analysis of Assurance Asset Change”

Conduct Impact Analysis of Assurance Asset Change

Functionality When an evidence artefact is changed, the AMASS Platform shall indicate how the
Description change impacts other evidence artefacts. The AMASS Platform shall allow an
Assurance Manager to indicate what evidence artefacts are actually impacted by the
changes to a given evidence artefact.

The same kind of features could be used for change impact analysis of other assurance
assets.

Assurance Manager

Several Assurance Assets have been created.
An Assurance Asset has been changed.
Traceability between the Assurance Assets has been specified, including change effects

w

in the trace links
The potential change impact matches the information of the trace links between
Assurance Assets.
1. The AMASS Platform conducts an impact analysis for the change of an Assurance
Asset
‘ 2. The AMASS Platform shows the potential change impacts
. The Assurance Manager selects the relevant change impacts
4. The AMASS Platform records the change impact selection and propagates
accordingly (i.e. determine impacts resulting from the selection in step 3).
None
WP5_EM_003, WP5_EM_011
3.1.1.3 Platform Management Use Cases
This functionality factorises features that provide access to users and secure the data stored in the

platform. It ensures the authentication and availability of the data stored in the platform. The functionality
also addresses the possibility of concurrent, collaborative work among different users.

H2020-JTI-ECSEL-2015 # 692474 Page 27 of 185

J; AM[ASS AMASS reference architecture (c) D2.4V1.0

Configure Accessto
Assurance Assets

Qin the platform
Concurrent Assurance
Information Edition

N

Platform
Administrator

AMASS user

Figure 7. Use Cases for “Platform Management” module

Table 6. Use case “Configure Access to Assurance Assets”

Configure Access to Assurance Assets

Description The AMASS Tool Platform shall provide users with different options for data access and

for action permission, to allow users to have different profiles (roles) for Platform
access, and to belong to different access rights groups depending the role they are
executing at that moment. To these ends, it is necessary that a platform administrator
makes the necessary access configurations.

Platform Administrator

| Assumptions JILLE

Pre-conditions None

Lo e 1o | The AMASS user information is recorded in the Platform.

1. The Platform administrator creates a new AMASS user account for the AMASS Tool
Platform

2. The Platform administrator assigns a user profile group to the AMASS user account

3. The Platform administrator grants additional access permission to the AMASS user
account

VELE LT # The Platform administrator creates a new user profile group and specifies access
permission for the group

Non-functional \eJiE

Requirements WP5_AM_002, WP5_AM_004, WP5_AM_005

Table 7. Use case “Log in the platform”

Log in the platform

Description The AMASS Tool Platform shall require users to be authenticated for Platform access.
This in turn will allow the Platform to maintain a log with all the actions performed by
the users. The AMASS Tool Platform shall also provide a secure standard API for data
access.

AMASS user: Project Manager, Assurance Manager, Platform Administrator
Development Engineer, Assurance Engineer, Assurance Assessor

H2020-JTI-ECSEL-2015 # 692474 Page 28 of 185

@ AM[ASS AMASS reference architecture (c) D2.4V1.0

Pre-conditions

Post-conditions

Variations

Non-functional

Requirements

The user credentials are already defined in the platform.

An account has been created for the AMASS user.

The AMASS user can access the AMASS Tool Platform data and services according to
the access permission granted.

1. The AMASS user indicates its user credentials

2. The AMASS Platform validates the credentials

3. The AMASS user accesses the AMASS Tool Platform

If the user name or password are incorrect, the AMASS user is notified about it

The AMASS user log-in shall use a secure standard API

WP5_AM_001, WP5_AM_003, WP5_DM_008

Table 8. Use case “Concurrent Assurance Information Edition”

Description

Post-conditions

Variations

Concurrent Assurance Information Edition

During CPS lifecycle, it is usually necessary that several people work together to

perform CPS lifecycle activities. Support to concurrent work in this collaboration can be

provided, so that different users can access and edit assurance information at the same

time. Examples of collaborations that can be taken into account include:

e systems engineers, safety engineers, and security engineers for system analysis

e systems engineers, safety engineers, and security engineers for system modelling

e systems engineers, assurance managers for management of compliance with
standards and of process assurance

e assurance managers and assurance engineers for re-certification needs &

consequences analysis

systems engineers for system V&V

systems engineers, safety engineers, and security engineers for model-based

systems engineering

assurance managers and systems engineers for assurance evidence management

systems engineers and assurance managers for product reuse needs &

consequences analysis

assurance managers and assurance engineers for assurance case specification

assurance managers for compliance needs specification

assurance managers, assurance engineers, and assurance assessors for assurance

assessment

e assurance managers, assurance engineers, and assurance assessors for compliance
assessment

In addition, the AMASS Tool Platform shall manage metrics and measurements about
collaborative work.

AMASS user (several)

None

The AMASS users have logged in

The AMASS Tool Platform is consistent

An AMASS user accesses some data

Another AMASS user accesses the same data

Both users are notified of the concurrent access

The first AMASS user changes some data

5. The second AMASS user is notified of the data change

If a (possible) conflict arises from concurrent data access, the AMASS users will be
notified about it.

The AMASS users can access information about the collaborative work performed

= 9PN =

H2020-JTI-ECSEL-2015 # 692474 Page 29 of 185

AM[ASS AMASS reference architecture (c) D2.4V1.0

Non-functional J\eJy[S

Requirements WP5_DM_001, WP5 DM_002, WP5 DM 003, WP5 DM 004, WP5 CW_001,
WP5_CW_002, WP5_CW_003, WP5_CW_004, WP5_CW_005 WP5_CW_006,
WP5_CW_007, WP5 _CW_008, WP5 _CW_009, WP5 _CW_010, WP5_CW_011,
WP5_CW_012, WP5_CW_013

3.1.2 Architecture-driven Assurance Uses Cases (*)

This section addresses the uses cases which are related to STO1 Architecture-Driven Assurance. This stands
for System Component Specification, System Architecture Modelling for Assurance, Architectural Patterns
for Assurance, Requirements Support and V&V Activities. Requirements support and V&V activities are part
of the so-called “Additional Activities supporting the Assurance Case” in D1.5 [3].

The new use cases related to architecture-driven assurance in terms of System Component Specification,
System Architecture Modelling for Assurance and Architectural Patterns for Assurance and are highlighted
in yellow in Figure 8 . The rest of the use cases regarding architectural-driven assurance are tackled in
Figure 9 and Figure 10.

~
Browse, edit, update and \\
drop component Reuse -~
specifications at different component \\
abstraction levels ’ by

4cei‘egd?

<<extend>>
/

Specify system
architecture at different
levels

Specify component
_ - behavioral model

<gextend>>
~

-~
<<exYEn\d>> ~

1
1
1
1
1
1
:
i <<extend>> \ 7
1
1
1
1
1
1
1
1

Specify component

fault model Assurance Assessor

N

Edit an architectural
pattern
1 Import model

Edit parameterized
architecture

Provide a

Allocate
requirements

R e ——

7/
| | |

Assurance Engineer

Monitor status of
system specification

configuration Trace System Assurance
constraint for a model with Manager
parameterized assurance assets
architecture
Generate
documentation 18
from the system

model

Impact
assessment

Figure 8. Use Cases for "System Component Specification", “Architectural Patterns” and “System Architecture
Modelling for Assurance”

H2020-JTI-ECSEL-2015 # 692474 Page 30 of 185

@ AM[ASS AMASS reference architecture (c) D2.4V1.0

3.1.2.1 System Component Specification Use Cases

The use cases for system component specification deal with the possibility to provide and browse
information about the architecture of the system of interest and how the entities of the architecture itself
can be related to the assurance case. In particular, regarding the design of the system, a key role is played
by the concept of component, a reusable entity which can be used, in a top-down or bottom-up process,
to specify the architecture of the entire system in a hierarchical way, at different abstraction levels.

Table 9. Use case “Specify system architecture at different levels”

Use Case Specify system architecture at different levels (e.g., component interfaces,
subcomponents, connections)

Functionality System component Specification Editor shall allow the user to create, update, modify,
and delete the architectural entities.
m Assurance engineer
m The actor has proven knowledge about model-based design.

The specified architecture is compliant with the CACM.

1. Create a new system/component project and model.

2. Open the model

3. Use the model-based editor facilities to create, update, modify, delete the
entities.

Variations #Browse along the different abstractions levels

1. Select the component model diagram

2. Use the model editor explorer and diagrams tabs to navigate the contents

3. Edit, modify, update the contents or drop the diagrams.

Specify component behavioural model
1. The actor uses the system model editor functionalities to create, associate to the
component, and model the state machine which defines the component behaviour.

Specify component fault model
1. The actor uses the system model editor functionalities to create, associate to the
component, and model the fault behaviour for the component itself.

Reuse Component

1. When defining the system architecture, the actor will be able to reuse previous
component model, together with its previously specified behavioural models, state
machine, fault models, component contracts, associated arguments and evidence.

Allocate requirements
1. The user will specify allocated requirements to the selected component.

Non-functional FI\e)hE

WP3_SC_001, WP3_SC_006, WP3_SC_007, WP3_SC_005, WP3_SC_002

Table 10. Use case “Monitor status of system specification”

Monitor status of system specification

Functionality System component Specification Editor shall allow users to view a summary of the
Description system specification highlighting the components with no specification completed.
Assurance Manager, Assurance Assessor

w The system architecture main component shall be already defined, together with

associated contracts.

eI S The report is generated.

H2020-JTI-ECSEL-2015 # 692474 Page 31 of 185

AM[ASS AMASS reference architecture (c) D2.4V1.0

®

The user asks for the system specification report.

The report shall include:

e The number of contracts not fulfilled (not validated with arguments and/or not
supported by evidence).

VELEL None

\GLHE (4L EINN None

Requirements WP3_SC_001, WP3_CAC_012, WP3_VVA_007

3.1.2.2 System Architecture Modelling for Assurance Use Cases

This section addresses the uses cases which are related to System Architecture Modelling for Assurance.

Table 3. Use case "Trace system model with assurance assets"

Trace system model with assurance assets

Functionality The system editor shall allow the user to specify the links between the system
Description components and assurance case-related information.

Assurance Manager

Components and assurance case-related information to be trace shall be already
defined.

LS8y [[1i[s) 38 The links conforms to the CACM specification.

1. The user selects the component to trace.

2. The user selects the fragments for the assurance case to trace.

3. The tool allows the user to create the trace for the selected entities.

Use Case

=2
o
>
0}

Variations
Non-functional I\e)sl=
Requirements WP3_SAM_001

Table 4. Use case "Import model"

Import model

Functionality The System Component Specification Editor shall allow the user to import a model
Description from an external system editor.

Assurance Engineer

The system model to be imported is compatible with the system component
metamodel defined within the CACM

LSS i The imported model conforms to the CACM specification.

1. The user selects the system model (or the package) where the model has to be
imported, by using the system editor coming within the ARTA

The user selects the “import model” from the menu command associated to the
editor

The user selects the model to be imported

The tool creates the imported entities in the current system model. In case of
errors, the system notifies to the user such errors.

Optionally, the tool creates the diagrams related to the imported entities.

VELEL None

Non-functional J\[eJ3f:]

Requirements WP3_SAM_004

2

= @

e

Table 5. Requirements allocation

H2020-JTI-ECSEL-2015 # 692474 Page 32 of 185

@ AM[ASS AMASS reference architecture (c) D2.4V1.0

Requirements Allocation

Functionality The system must provide the capability for allocating requirements to parts of the
Description component model. More in general, requirements traceability shall be enabled
(Functional Refinement).

IEETTEN Assurance Engineer

The requirements should be previously defined.

None

1. The user opens system component editor.

2. The user selects the component.

3. The user allocates a certain requirement to the component.

Variations None

Non-functional J\[e];=]
Requirements WP3_SC_005

Table 6. Use case "Impact assessment"

Use Case Impact assessment

Functionality The system component shall provide the capability for a component change impact
Description analysis

Assurance Manager
The component to be changed has contracts associated and traceability links to the

assurance case and evidence
Post-conditions \[e]il=
The traceability view shows the contracts associated to the components, so the
requirements formalized by the contracts themselves. Moreover, the view shows
Non-functional \[ef3l:
WP3_SAM 002

The user opens the traceability view
the assurance case and the evidence traced to the component.
3.1.2.3 Architectural Patterns for Assurance Use Cases

w N -

. The user selects the component
None

This section addresses the uses cases which are related to Architectural Patterns for Assurance.

Table 11. Use case "Edit an architectural pattern"

Functionality System component Specification Editor shall allow users to create and edit an
architectural pattern, to be instantiated later in a given system architecture.
m Assurance Engineer
| Assumptions JITE
The architectural pattern is available to be instantiated in a given system model.

1. Create a new project-model, or open an available model

2. Create a new component diagram

3. Use the model-based editor facilities to create a composite component tagged as
pattern

4. Create a dedicate diagram to design the roles of the patterns and the connections
between the roles

Variations None

H2020-JTI-ECSEL-2015 # 692474 Page 33 of 185

@ AM[ASS AMASS reference architecture (c) D2.4V1.0

Non-functional " J\[e13l:]
Requirements WP3_APL_002, WP3_APL_003

Table 12. Use case "Instantiate an architectural pattern"

Instantiate an architectural pattern
Functionality System component Specification Editor shall allow users to instantiate an
Description architectural pattern previously defined in a given system architecture.
Assurance Engineer
None.

The tool shows the patterns defined in the current and imported models
Select the pattern to be instantiated
Use the model-based editor facilities to bind the roles and connections defined for

LS The architectural pattern is available in a given model.
the pattern to the entities available in the current system
The tool creates an entity in the system model representing the instantiated

1. Open the system model where the pattern has to be instantiated
patterns and store the information about the bindings.

2. Import the model where the pattern has been defined, if different from the
None

current system model
Non-functional J\[ef3:]

Ask the tool to instantiate an existing pattern
Requirements WP3_APL_001

ey G o> LY

=

Table 13. Use case "Edit parameterized architecture"

Edit parameterized architecture

Functionality The System Component Specification Editor shall allow the user to specify the
Description parameterized architecture

Assurance Engineer

The basic (i.e. non- parameterized) system architecture shall be already defined.

SIS 861 38 The architecture defined by parameters is available

1. Select the instance of the subcomponent that is going to represent an array of
subcomponent instances.

2. In the property tab, edit the multiplicity attribute, that is the number of

subcomponents instances of the same subcomponent. The multiplicity can be

expressed as an arithmetic expression.

Select the port that is going to represent an array of ports of the same type.

4. In the property tab, edit the multiplicity attribute, that is the number of ports that
the selected port represents. The multiplicity can be expressed as an arithmetic
expression.

5. Create one or more constraints to define the connection between the
parameterized parts (subcomponents and ports).

6. Create one or more constraints to define the boundaries on the number of
subcomponents and ports.

VELEL None

Non-functional J\[eJ3l:]

Requirements WP3_APL_002

w

Table 14. Use case “Provide a configuration constraint for a parameterized architecture”

H2020-JTI-ECSEL-2015 # 692474 Page 34 of 185

AM[ASS AMASS reference architecture (c) D2.4V1.0

®

Use Case Provide a configuration constraint for a parameterized architecture

Functionality The System component Specification Editor shall allow the user to specify a

Description configuration constraint for a defined parameterized architecture

Assurance Engineer

The parameterized system architecture shall be already defined.

SIS a1 38 The architecture defined by parameters is available and configured.

1. Create one or more constraints to configure the parameters used to define the
multiplicity of ports and subcomponents.

Variations None
Non-functional F\e)s=
Requirements WP3_APL_002

3.1.2.4 Contract-based Assurance Composition Use Cases

Each component comes with a set of external-visible functional and non-functional properties; these
properties must be guaranteed to hold for the component, if needed by assuming that the environment on
which the component is placed behaves in a certain manner. The information about the aforementioned
assumptions and guarantees is provided for a given component through the concept of contract, which in
particular can be specified according to safety requirements previously derived. In turn, components
contracts and in particular their assumptions and guarantees can be related to the assurance case
specification, e.g. to support argumentation about the properties of the component/system, so to support
the architecture-driven assurance approach.

FoETTEEEEEEEEEEEmEmEmEmEmEmmEmm———————s

~
“~
) N
ccextends> Reassign, drop \\
P component contract \\

>>
44‘3-7'“9_26‘—-
—

Refine contracts

A

Assurance Engineer

T(e

X

~ o Fe”d);
—

¢ /_

Trace contract evidence
and assurance case

Browse contract
refinement status

i —

Assurance Assessor
Browse components
and associated
contracts

<<extend>>

~
~
Browse component
contract status

Figure 9. Use Cases for "Contract-based assurance composition" module

Table 15. Use case “Assign contracts to component”

H2020-JTI-ECSEL-2015 # 692474 Page 35 of 185

@ AM[ASS AMASS reference architecture (c) D2.4V1.0

Assign a contract to the component

Functionality The system should allow associating a contract to a component.
Description

m Assurance engineer
w The actor has proven knowledge about modelling languages for contracts.
The component is available in the model.

el BT The Contract conforms to the CACM.

1. The user selects the component model and opens it.
2. The user creates a new component contract.
3. The user assigns the contract to the component.

VELE # Semi automated assignment of a contract to a component

1. The user selects the component model and opens it.

2. The user creates and assigns exclusively the contract to that specific component.
This variant enables the content assist during the editing of the contract (see Use
Case “Structure properties into contracts”).

Drop the component contract

1. The user selects a component contract

2. The user selects to delete the contract and its content

Reassign component contract

1. The user selects a component contract

2. The user updates the component to which the contract is associated and all its
content is reassigned.

Non-functional JR\[e]3:]

Requirements WP3_CAC_009, WP3_CAC_002

Table 16. Use case “Refine component contracts”

Refine component contract

Functionality The system should allow providing contract information, the contract contents.
Description

Assurance Engineer
The actor has proof knowledge about modelling languages for contracts.
Contract and component are available in the model.

Information provided about contract refinement conforms to the CACM.

1. The user selects the component contract and opens it.
“ 2. The user edits, modifies or drops information about contract refinement.
None

Table 17. Use case “Structure properties into contracts”

Structure properties into contracts (assumptions/guarantees)

Functionality The contract should allow to model a contract as aggregation of assumptions and to
Description guarantee formal properties.

Assurance Engineer

The actor has proof knowledge about the modelling languages such as SysML, UML,
CHESS profile for contracts.

Properties are available in the model and are specified in a formal way.

Post-conditions \Iil=

H2020-JTI-ECSEL-2015 # 692474 Page 36 of 185

AM[ASS AMASS reference architecture (c) D2.4V1.0

®

1. The user selects the component contract and opens it

. The user selects the option of editing contract properties

. The user uses the Properties view to bind the existing Formal Properties from the

component as contract’s assumption and guarantee.

Variations # Automatic creation of assumptions/guarantees

1. The tool automatically creates the (empty) assumption and guarantee Formal
Property for the created Contract.

Contract/property Editor with Content Assist

1. The user selects a contract component or a formal property.

2. The user edits the body of the contract component/formal property with the
support of a content assist on: ports and attributes of the component, and of
keywords of the current language.

3. Each error is notified by the content assist in the Editor view, in the Error view,
and graphically on the current element in the Model Explorer view.

Non-functional None

T WP3_CAC_009, WP3_CAC_003, WP3_CAC_013, WP3_SC_004

w N

Table 18. Use case “Trace contract to evidence and assurance case”

Use Case Trace contract to evidence and assurance case-related information

Functionality The contract editor shall allow the user to specify the links between the contract

Description information and the evidence and assurance case-related information.

Assurance Engineer

Component contracts and evidence-and assurance case-related information shall be

already defined.

LSS 8 The links conforms to the CACM specification.

1. The user selects inside the component contract, the assumption or guarantee to
be linked.

2. The user selects the fragments for the assurance case to be linked.

3. The tool allows the user to create the links to the proper and evidence or
assurance case-related information.

Variations None

Non-functional \[ef3l:

Requirements WP3_VVA_ 001, WP3_SAM_001

Table 19. Use case “Browse components and associated contracts”

Use Case
Functionality The system should allow providing information about the modelled components and
Description associated contracts.

Assurance Engineer

None

Post-conditions JE\[elsl

1. The user selects the dedicated view to check the status of the components
currently defined in the system architecture, together with the associated
contracts.

Variations None
Non-functional F\e)sE
Requirements WP3_CAC_005

H2020-JTI-ECSEL-2015 # 692474 Page 37 of 185

@ AM[ASS AMASS reference architecture (c) D2.4V1.0

Table 20. Use case “Browse component contracts status”

Browse component contracts status
Functionality The contract editor shall be able to show the user the contracts associated within a
Description component and their status (fulfilled or not).

m Assurance Engineer, Assurance Assessor

m Component contracts shall be already defined.
Post-conditions J\[]yTs

1. The user selects a component and from a menu selects the show contracts option.

2. In a view, the user is able to see all the contracts associated with the selected
component.

3. For each of the contracts, when selected, the user is able to see the status, if it is
already fulfilled or not.

WP3_CAC_012

Table 21. Use case “Browse Contracts refinement status”

Brose Contracts refinement status

Functionality The system should allow providing information about the modelled contracts
Description refinement.

Assurance Engineer
The actor has proven knowledge about modelling languages for contracts.
Contracts refinement is available in the model.

LIS I3 None

1. The user selects the dedicated view to check the status of the contracts
refinements along the system architecture.

WP3_CAc_006

3.1.2.5 Requirements Support Use Cases

This section addresses the uses cases which are related to Requirements Support.

Table 22. Use case “Requirements formalisation”

Use Case Requirements formalisation

Functionality The AMASS platform must be able to formalise requirements into formal properties
Description (i.e., expressions in a language with a formal semantics such as temporal logics). This
enables the application of formal verification.

Assurance Engineer

The actor has proof knowledge about the modelling languages such as SysML, UML,
CHESS profile for contracts.

Requirements must be available

LSS Y None

1. The user selects the requirements and imports them
2. The user selects and formalises the requirement

Variations None

H2020-JTI-ECSEL-2015 # 692474 Page 38 of 185

®

AM[ASS AMASS reference architecture (c) D2.4V1.0

Non-functional J\lJ3l3]
Requirements WP3_SC_004

Table 23. Use case “Analysis of requirements’ semantics based on their formalisation into temporal logics”

Use Case Analysis of requirements’ semantics based on their formalisation into temporal
logics

Functionality The ARTA shall enable users to analyse the requirements to validate formal

Description requirements/properties.

Assurance engineer

Requirements must be already defined and formalised into temporal logic.

A tool for the analysis of requirements semantics which is properly interconnected to

ARTA will complete the validation of the requirements.

LSS 8 Requirements are verified.

1. The user requirements to be analysed

2. The user runs an external tool such as Knowledge Manager to complete the
validation of those requirements.

3. The user analyses the results of the validation and identifies possible redundant or
inconsistent requirements.

Variations None
Non-functional B\[Js2

Requirements WP3_VVA_003, WP3_SC_004

Table 24. Use case “Requirements Semantic Analysis”

Requirements Semantic Analysis

Functionality The ARTA shall enable users to semantically analyse requirements for logical
Description consistency, non-redundancy, and realisability (system can be created from the
requirements).

Assurance engineer

Requirements shall be already defined.
The external V&V tools or verification servers are properly installed through the ARTA
preferences page.

Requirements are logically consistent, non-redundant, and realisable.
1. The user selects the contracts to be analysed
2. The user selects Validate = V&V Manager - Requirements Semantic Analysis
3. Verification server calls
4. The user sees results from the analysis in V&V Results windows and removes all
defects in contracts (and corresponding requirements) and iteratively executes the
Requirements Semantic Analysis till all contracts are logically consistent, non-
redundant, and realisable.
Variations # Quality analysis
e The user selects and configures a set of metrics to perform a quality analysis
(about correctness, consistency, completeness...). The system shows a quality
report, which might include a quality evolution information.

WP3_VVA_003, WP3_SC_004

H2020-JTI-ECSEL-2015 # 692474 Page 39 of 185

AM[ASS AMASS reference architecture (c) D2.4V1.0

3.1.2.6 V&V Activities

This group of use cases deals with the possibility to perform verification and validation analysis based upon
the currently available system model specification, where the latter comprises components hierarchical
specification, nominal and error behavioural models, and contracts associated to the components. The
goal of the proposed features is to support architecture-driven assurance, so to allow the generation of
evidence and to support dedicated claims available in the system assurance case.

Figure 10 depicts the use cases regarding V&V activities. The new use cases are highlighted in yellow e.g.
simulation-based fault injection which pursues an early safety validation of the system.

Validate
components
composition
through contracts-
based design

STTTTTN

erform contract-
based fault tree
eneration

A_

Assurance Engineer

Perform contract-
based verification
for behavioural
models

Validate weak
contract

Compare
Parameterized

Architecture Assurance

Manager

Figure 10. Use cases for V&V Activities module

Table 25. Use case “Validate components composition through contracts-based design”

Validate components composition through contracts-based design
Functionality The ARTA shall enable the validation the components composition by checking the
Description compatibility of the contracts available for the components themselves.
m Assurance engineer

m Component contracts shall be already defined.
Post-conditions]3I

1. The user selects the “Check contracts compatibility” functionality.

2. The user selects the guarantee and the assumption of two components contracts.

3. The user selects the type of check to perform, i.e. consistency, possibility, and
entailment.

4. ARTA allows to perform the validation and to show the result of the verification

Variations None

H2020-JTI-ECSEL-2015 # 692474 Page 40 of 185

@ AM[ASS AMASS reference architecture (c) D2.4V1.0

WP3_CAC_001

Table 26. Use case “Verify contract refinement”

The ARTA shall enable users to check that a given system architecture is correct with
Description respect to the specified refinement of contracts

Assurance engineer

Component contracts and their refinement shall be already defined for the

components to be analysed.

The external tool allowing contracts refinement is properly configured through the

ARTA preferences page.

Post-conditions J\[IifE

1. The user selects the Check Contracts Refinement functionality

2. The ARTA enables the verification of the system model and the extraction of the
information to be given in input to the external tool

3. The ARTA allows to invoke the external tool with the collected data in input,
waiting for the result.

4. The result produced by the external tool is about the contract refinement analysis
result is presented by the ARTA to the user.

VELELT 1.a The user invokes the Check Contract Refinement Functionality by specifying that

all the weak contracts available in the model have to be considered for the analysis.

#Verify contract refinement with all the weak contracts: The contract refinement

analysis cannot be performed, then a report with a list of model errors is generated.

Non-functional JR\[e]3:]

WP3_CAC_008, WP3_VVA_007
Table 27. Use case “Contract Semantic Analysis”

The ARTA shall enable users to semantically analyse contracts for logical consistency,
Description non-redundancy, and realizability (system can be created from the requirements).

m Assurance engineer

Component contracts shall be already defined.

The external V&V tools or verification servers are properly installed through the ARTA

preferences page.

Contracts are logically consistent, non-redundant, and realisable.

5. The user selects the contracts to be analysed

6. The user selects Validate - V&V Manager = Contract Semantic Analysis

7. Verification server calls

8. The user sees results from the analysis in V&V Results windows and removes all
defects in contracts (and corresponding requirements) and iteratively executes the
Contract Semantic Analysis till all contracts are logically consistent, non-redundant,
and realisable.

Variations # Quality analysis

e The user selects and configures a set of metrics to perform a quality analysis

(about correctness, consistency, completeness...). The system shows a quality
report, which might include a quality evolution information.

Non-functional B3

H2020-JTI-ECSEL-2015 # 692474 Page 41 of 185

@ AM[ASS AMASS reference architecture (c) D2.4V1.0

Requirements WP3_VVA_003

Table 28. Use Case “Perform contract-based validation for behavioural models”

Perform contract-based verification of behavioural models

Functionality The ARTA shall enable users to verify if the state machine satisfies the contracts.
Description

Assurance engineer

Components contracts and state-machines shall be already defined for the system

components to be analysed.

The external tool allowing contract-based validation for behavioural models is

properly configured through the ARTA preferences.

Post-conditions E\[e]il

1. The user selects the “Perform contract-based verification for behavioural models”
functionality for the selected components

2. The ARTA verifies if the machine satisfies the contracts and extract the information
to be given in input to the external tool

3. The ARTA invokes the configured external tool with the collected data in input,
waiting for the result

4. For each component and contract, the result produced by the external tool about
the contract verification against the behavioural model of the component is
presented by the ARTA to the user.

VELELT 2.a The generation cannot be performed, then a report with a list of model errors is

generated

Non-functional JR\[e]3fE]

Requirements WP3_CAC_011, WP3_VVA_005, WP3_VVA_007

Table 29. Use Case “Inspect contracts refinement result”

Inspect contracts refinement result

Functionality The ARTA shall enable users to have an overview of contracts refinement check
Description result.

Assurance engineer

Component contracts shall be already defined and contract refinement analysis shall

be already performed.

Post-conditions NIl

1. The user opens the Contract Refinement View

2. The user navigates the view to check the refinement status for all the defined
contracts.

VELEL None

Non-functional J\[e];E]

Requirements WP3_CAC 007, WP3_VVA _ 007

Table 30. Use case “Generate fault trees”

Generate fault tree

Functionality The ARTA shall enable users to generate the fault trees starting from the modelled
Description nominal and failure behaviour.

Assurance engineer

