





Architecture-driven, Multi-concern and Seamless Assurance and Certification of Cyber-Physical Systems

**AMASS: Technical Vision** 

First EAB Workshop
Trento, September 11, 2017

Barbara Gallina, Ph.D. TM, WP6 Leader, T6.1-2 Leader



ISO 26262→Item definition

→ Hazards analysis and risk assessment

EN 50126→Phase1: concept

BOUNDARY OF SYSTEM/INTERFACES ENVIRONMENT OF THE SYSTEM

?







- Process engineer addressing the safety process
- Architect addressing safety

ARP4761 ISO 26262

- Process engineer addressing the security process
- Architect addressing security

DO-326A SAE J3061



- → Redundant and conflicting documentation/solutions
- → Waste of time and money
- → Risk for lower quality



ISO 26262→Work products traceability

DO-178C→Work products traceability











#### **AMASS**





### **Architecture-driven**







#### **Architecture-driven**

#### Contract-based, component based systems engineering





#### Multi-concern assurance

- Process engineer(s) addressing the security & safety process
- Architect jointly interacting with safety and security managers



- → Synergically conceived documentation/solutions
- → Increased quality



#### Multi-concern assurance

#### Trade-off analysis, Process-related co-assessment



[Presented at ISSA, 2016]



# **Seamless interoperability**





## Seamless interoperability



Safety Case-Argument that the safety requirements for an item are complete and satisfied by evidence compiled from work products of the safety activities during development. ISO 26262- Part 1, Definition 1.106



#### Cross and intra domain reuse





### **Anti-Sysiphus**





#### **AMASS Prototypes**

### Three prototyping dimensions:

- 1. Conceptual/Research Development: development of solutions from a conceptual perspective.
- 2. Tool Development: development of tools implementing conceptual solutions.
- 3. Case Study Development: development of industrial case studies using the conceptual and tooling solutions.

#### Prototype iterations has three phases:

- a) Prototype Development: Involves the three dimensions above-mentioned
- b) Prototype Evaluation: Results evaluated by research questions, tool objectives and case goal achievements.
- c) Prototype Refinement: Changes to the AMASS approach as recommended by the Evaluation phase



#### **Prototype Schedule (First and Second Prototype)**





### **Prototype Core: Baseline Tools**

- Functional description in D2.2: AMASS Reference Architecture (a)
- Prototype Core has been built upon 3 pre-existing toolsets:
  - 1. Tools from Papyrus and CHESS projects (Eclipse/PolarSys)
  - Tools from pre-existing OpenCert project (Eclipse /PolarSys)
  - 3. Tools from EPF (Eclipse Process Framework) project (Eclipse)





#### **AMASS Platform: Standards & Process Models**



\*Tailoring EPF Standard models into Baseline models has not implemented yet.



## **AMASS Platform: Assurance Project Models**



<sup>\*</sup>System Models are edited in Papyrus + CHESS. Its links have not been created yet.



### **AMASS Platform: Importing EPF Models**





### **Prototype Core: Video**





# Thank you for your attention!



